MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralxpf Structured version   Visualization version   GIF version

Theorem ralxpf 5715
Description: Version of ralxp 5710 with bound-variable hypotheses. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
ralxpf.1 𝑦𝜑
ralxpf.2 𝑧𝜑
ralxpf.3 𝑥𝜓
ralxpf.4 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
Assertion
Ref Expression
ralxpf (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑦𝐴𝑧𝐵 𝜓)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑧,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)   𝐴(𝑧)

Proof of Theorem ralxpf
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cbvralsvw 3472 . 2 (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑤 ∈ (𝐴 × 𝐵)[𝑤 / 𝑥]𝜑)
2 cbvralsvw 3472 . . . 4 (∀𝑧𝐵 [𝑢 / 𝑦]𝜓 ↔ ∀𝑣𝐵 [𝑣 / 𝑧][𝑢 / 𝑦]𝜓)
32ralbii 3169 . . 3 (∀𝑢𝐴𝑧𝐵 [𝑢 / 𝑦]𝜓 ↔ ∀𝑢𝐴𝑣𝐵 [𝑣 / 𝑧][𝑢 / 𝑦]𝜓)
4 nfv 1908 . . . 4 𝑢𝑧𝐵 𝜓
5 nfcv 2981 . . . . 5 𝑦𝐵
6 nfs1v 2265 . . . . 5 𝑦[𝑢 / 𝑦]𝜓
75, 6nfralw 3229 . . . 4 𝑦𝑧𝐵 [𝑢 / 𝑦]𝜓
8 sbequ12 2244 . . . . 5 (𝑦 = 𝑢 → (𝜓 ↔ [𝑢 / 𝑦]𝜓))
98ralbidv 3201 . . . 4 (𝑦 = 𝑢 → (∀𝑧𝐵 𝜓 ↔ ∀𝑧𝐵 [𝑢 / 𝑦]𝜓))
104, 7, 9cbvralw 3446 . . 3 (∀𝑦𝐴𝑧𝐵 𝜓 ↔ ∀𝑢𝐴𝑧𝐵 [𝑢 / 𝑦]𝜓)
11 vex 3502 . . . . . 6 𝑢 ∈ V
12 vex 3502 . . . . . 6 𝑣 ∈ V
1311, 12eqvinop 5374 . . . . 5 (𝑤 = ⟨𝑢, 𝑣⟩ ↔ ∃𝑦𝑧(𝑤 = ⟨𝑦, 𝑧⟩ ∧ ⟨𝑦, 𝑧⟩ = ⟨𝑢, 𝑣⟩))
14 ralxpf.1 . . . . . . . 8 𝑦𝜑
1514nfsbv 2343 . . . . . . 7 𝑦[𝑤 / 𝑥]𝜑
166nfsbv 2343 . . . . . . 7 𝑦[𝑣 / 𝑧][𝑢 / 𝑦]𝜓
1715, 16nfbi 1897 . . . . . 6 𝑦([𝑤 / 𝑥]𝜑 ↔ [𝑣 / 𝑧][𝑢 / 𝑦]𝜓)
18 ralxpf.2 . . . . . . . . 9 𝑧𝜑
1918nfsbv 2343 . . . . . . . 8 𝑧[𝑤 / 𝑥]𝜑
20 nfs1v 2265 . . . . . . . 8 𝑧[𝑣 / 𝑧][𝑢 / 𝑦]𝜓
2119, 20nfbi 1897 . . . . . . 7 𝑧([𝑤 / 𝑥]𝜑 ↔ [𝑣 / 𝑧][𝑢 / 𝑦]𝜓)
22 ralxpf.3 . . . . . . . . 9 𝑥𝜓
23 ralxpf.4 . . . . . . . . 9 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
2422, 23sbhypf 3557 . . . . . . . 8 (𝑤 = ⟨𝑦, 𝑧⟩ → ([𝑤 / 𝑥]𝜑𝜓))
25 vex 3502 . . . . . . . . . 10 𝑦 ∈ V
26 vex 3502 . . . . . . . . . 10 𝑧 ∈ V
2725, 26opth 5364 . . . . . . . . 9 (⟨𝑦, 𝑧⟩ = ⟨𝑢, 𝑣⟩ ↔ (𝑦 = 𝑢𝑧 = 𝑣))
28 sbequ12 2244 . . . . . . . . . 10 (𝑧 = 𝑣 → ([𝑢 / 𝑦]𝜓 ↔ [𝑣 / 𝑧][𝑢 / 𝑦]𝜓))
298, 28sylan9bb 510 . . . . . . . . 9 ((𝑦 = 𝑢𝑧 = 𝑣) → (𝜓 ↔ [𝑣 / 𝑧][𝑢 / 𝑦]𝜓))
3027, 29sylbi 218 . . . . . . . 8 (⟨𝑦, 𝑧⟩ = ⟨𝑢, 𝑣⟩ → (𝜓 ↔ [𝑣 / 𝑧][𝑢 / 𝑦]𝜓))
3124, 30sylan9bb 510 . . . . . . 7 ((𝑤 = ⟨𝑦, 𝑧⟩ ∧ ⟨𝑦, 𝑧⟩ = ⟨𝑢, 𝑣⟩) → ([𝑤 / 𝑥]𝜑 ↔ [𝑣 / 𝑧][𝑢 / 𝑦]𝜓))
3221, 31exlimi 2208 . . . . . 6 (∃𝑧(𝑤 = ⟨𝑦, 𝑧⟩ ∧ ⟨𝑦, 𝑧⟩ = ⟨𝑢, 𝑣⟩) → ([𝑤 / 𝑥]𝜑 ↔ [𝑣 / 𝑧][𝑢 / 𝑦]𝜓))
3317, 32exlimi 2208 . . . . 5 (∃𝑦𝑧(𝑤 = ⟨𝑦, 𝑧⟩ ∧ ⟨𝑦, 𝑧⟩ = ⟨𝑢, 𝑣⟩) → ([𝑤 / 𝑥]𝜑 ↔ [𝑣 / 𝑧][𝑢 / 𝑦]𝜓))
3413, 33sylbi 218 . . . 4 (𝑤 = ⟨𝑢, 𝑣⟩ → ([𝑤 / 𝑥]𝜑 ↔ [𝑣 / 𝑧][𝑢 / 𝑦]𝜓))
3534ralxp 5710 . . 3 (∀𝑤 ∈ (𝐴 × 𝐵)[𝑤 / 𝑥]𝜑 ↔ ∀𝑢𝐴𝑣𝐵 [𝑣 / 𝑧][𝑢 / 𝑦]𝜓)
363, 10, 353bitr4ri 305 . 2 (∀𝑤 ∈ (𝐴 × 𝐵)[𝑤 / 𝑥]𝜑 ↔ ∀𝑦𝐴𝑧𝐵 𝜓)
371, 36bitri 276 1 (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑦𝐴𝑧𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wex 1773  wnf 1777  [wsb 2062  wral 3142  cop 4569   × cxp 5551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796  ax-sep 5199  ax-nul 5206  ax-pr 5325
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ral 3147  df-rex 3148  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-sn 4564  df-pr 4566  df-op 4570  df-iun 4918  df-opab 5125  df-xp 5559  df-rel 5560
This theorem is referenced by:  rexxpf  5716
  Copyright terms: Public domain W3C validator