MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralxpf Structured version   Visualization version   GIF version

Theorem ralxpf 5681
Description: Version of ralxp 5676 with bound-variable hypotheses. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
ralxpf.1 𝑦𝜑
ralxpf.2 𝑧𝜑
ralxpf.3 𝑥𝜓
ralxpf.4 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
Assertion
Ref Expression
ralxpf (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑦𝐴𝑧𝐵 𝜓)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑧,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)   𝐴(𝑧)

Proof of Theorem ralxpf
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cbvralsvw 3414 . 2 (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑤 ∈ (𝐴 × 𝐵)[𝑤 / 𝑥]𝜑)
2 cbvralsvw 3414 . . . 4 (∀𝑧𝐵 [𝑢 / 𝑦]𝜓 ↔ ∀𝑣𝐵 [𝑣 / 𝑧][𝑢 / 𝑦]𝜓)
32ralbii 3133 . . 3 (∀𝑢𝐴𝑧𝐵 [𝑢 / 𝑦]𝜓 ↔ ∀𝑢𝐴𝑣𝐵 [𝑣 / 𝑧][𝑢 / 𝑦]𝜓)
4 nfv 1915 . . . 4 𝑢𝑧𝐵 𝜓
5 nfcv 2955 . . . . 5 𝑦𝐵
6 nfs1v 2157 . . . . 5 𝑦[𝑢 / 𝑦]𝜓
75, 6nfralw 3189 . . . 4 𝑦𝑧𝐵 [𝑢 / 𝑦]𝜓
8 sbequ12 2250 . . . . 5 (𝑦 = 𝑢 → (𝜓 ↔ [𝑢 / 𝑦]𝜓))
98ralbidv 3162 . . . 4 (𝑦 = 𝑢 → (∀𝑧𝐵 𝜓 ↔ ∀𝑧𝐵 [𝑢 / 𝑦]𝜓))
104, 7, 9cbvralw 3387 . . 3 (∀𝑦𝐴𝑧𝐵 𝜓 ↔ ∀𝑢𝐴𝑧𝐵 [𝑢 / 𝑦]𝜓)
11 vex 3444 . . . . . 6 𝑢 ∈ V
12 vex 3444 . . . . . 6 𝑣 ∈ V
1311, 12eqvinop 5343 . . . . 5 (𝑤 = ⟨𝑢, 𝑣⟩ ↔ ∃𝑦𝑧(𝑤 = ⟨𝑦, 𝑧⟩ ∧ ⟨𝑦, 𝑧⟩ = ⟨𝑢, 𝑣⟩))
14 ralxpf.1 . . . . . . . 8 𝑦𝜑
1514nfsbv 2338 . . . . . . 7 𝑦[𝑤 / 𝑥]𝜑
166nfsbv 2338 . . . . . . 7 𝑦[𝑣 / 𝑧][𝑢 / 𝑦]𝜓
1715, 16nfbi 1904 . . . . . 6 𝑦([𝑤 / 𝑥]𝜑 ↔ [𝑣 / 𝑧][𝑢 / 𝑦]𝜓)
18 ralxpf.2 . . . . . . . . 9 𝑧𝜑
1918nfsbv 2338 . . . . . . . 8 𝑧[𝑤 / 𝑥]𝜑
20 nfs1v 2157 . . . . . . . 8 𝑧[𝑣 / 𝑧][𝑢 / 𝑦]𝜓
2119, 20nfbi 1904 . . . . . . 7 𝑧([𝑤 / 𝑥]𝜑 ↔ [𝑣 / 𝑧][𝑢 / 𝑦]𝜓)
22 ralxpf.3 . . . . . . . . 9 𝑥𝜓
23 ralxpf.4 . . . . . . . . 9 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
2422, 23sbhypf 3500 . . . . . . . 8 (𝑤 = ⟨𝑦, 𝑧⟩ → ([𝑤 / 𝑥]𝜑𝜓))
25 vex 3444 . . . . . . . . . 10 𝑦 ∈ V
26 vex 3444 . . . . . . . . . 10 𝑧 ∈ V
2725, 26opth 5333 . . . . . . . . 9 (⟨𝑦, 𝑧⟩ = ⟨𝑢, 𝑣⟩ ↔ (𝑦 = 𝑢𝑧 = 𝑣))
28 sbequ12 2250 . . . . . . . . . 10 (𝑧 = 𝑣 → ([𝑢 / 𝑦]𝜓 ↔ [𝑣 / 𝑧][𝑢 / 𝑦]𝜓))
298, 28sylan9bb 513 . . . . . . . . 9 ((𝑦 = 𝑢𝑧 = 𝑣) → (𝜓 ↔ [𝑣 / 𝑧][𝑢 / 𝑦]𝜓))
3027, 29sylbi 220 . . . . . . . 8 (⟨𝑦, 𝑧⟩ = ⟨𝑢, 𝑣⟩ → (𝜓 ↔ [𝑣 / 𝑧][𝑢 / 𝑦]𝜓))
3124, 30sylan9bb 513 . . . . . . 7 ((𝑤 = ⟨𝑦, 𝑧⟩ ∧ ⟨𝑦, 𝑧⟩ = ⟨𝑢, 𝑣⟩) → ([𝑤 / 𝑥]𝜑 ↔ [𝑣 / 𝑧][𝑢 / 𝑦]𝜓))
3221, 31exlimi 2215 . . . . . 6 (∃𝑧(𝑤 = ⟨𝑦, 𝑧⟩ ∧ ⟨𝑦, 𝑧⟩ = ⟨𝑢, 𝑣⟩) → ([𝑤 / 𝑥]𝜑 ↔ [𝑣 / 𝑧][𝑢 / 𝑦]𝜓))
3317, 32exlimi 2215 . . . . 5 (∃𝑦𝑧(𝑤 = ⟨𝑦, 𝑧⟩ ∧ ⟨𝑦, 𝑧⟩ = ⟨𝑢, 𝑣⟩) → ([𝑤 / 𝑥]𝜑 ↔ [𝑣 / 𝑧][𝑢 / 𝑦]𝜓))
3413, 33sylbi 220 . . . 4 (𝑤 = ⟨𝑢, 𝑣⟩ → ([𝑤 / 𝑥]𝜑 ↔ [𝑣 / 𝑧][𝑢 / 𝑦]𝜓))
3534ralxp 5676 . . 3 (∀𝑤 ∈ (𝐴 × 𝐵)[𝑤 / 𝑥]𝜑 ↔ ∀𝑢𝐴𝑣𝐵 [𝑣 / 𝑧][𝑢 / 𝑦]𝜓)
363, 10, 353bitr4ri 307 . 2 (∀𝑤 ∈ (𝐴 × 𝐵)[𝑤 / 𝑥]𝜑 ↔ ∀𝑦𝐴𝑧𝐵 𝜓)
371, 36bitri 278 1 (∀𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∀𝑦𝐴𝑧𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wex 1781  wnf 1785  [wsb 2069  wral 3106  cop 4531   × cxp 5517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-iun 4883  df-opab 5093  df-xp 5525  df-rel 5526
This theorem is referenced by:  rexxpf  5682
  Copyright terms: Public domain W3C validator