Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reu8nf | Structured version Visualization version GIF version |
Description: Restricted uniqueness using implicit substitution. This version of reu8 3648 uses a non-freeness hypothesis for 𝑥 and 𝜓 instead of distinct variable conditions. (Contributed by AV, 21-Jan-2022.) |
Ref | Expression |
---|---|
reu8nf.1 | ⊢ Ⅎ𝑥𝜓 |
reu8nf.2 | ⊢ Ⅎ𝑥𝜒 |
reu8nf.3 | ⊢ (𝑥 = 𝑤 → (𝜑 ↔ 𝜒)) |
reu8nf.4 | ⊢ (𝑤 = 𝑦 → (𝜒 ↔ 𝜓)) |
Ref | Expression |
---|---|
reu8nf | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1916 | . . 3 ⊢ Ⅎ𝑤𝜑 | |
2 | reu8nf.2 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
3 | reu8nf.3 | . . 3 ⊢ (𝑥 = 𝑤 → (𝜑 ↔ 𝜒)) | |
4 | 1, 2, 3 | cbvreuw 3355 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑤 ∈ 𝐴 𝜒) |
5 | reu8nf.4 | . . 3 ⊢ (𝑤 = 𝑦 → (𝜒 ↔ 𝜓)) | |
6 | 5 | reu8 3648 | . 2 ⊢ (∃!𝑤 ∈ 𝐴 𝜒 ↔ ∃𝑤 ∈ 𝐴 (𝜒 ∧ ∀𝑦 ∈ 𝐴 (𝜓 → 𝑤 = 𝑦))) |
7 | nfcv 2920 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
8 | reu8nf.1 | . . . . . 6 ⊢ Ⅎ𝑥𝜓 | |
9 | nfv 1916 | . . . . . 6 ⊢ Ⅎ𝑥 𝑤 = 𝑦 | |
10 | 8, 9 | nfim 1898 | . . . . 5 ⊢ Ⅎ𝑥(𝜓 → 𝑤 = 𝑦) |
11 | 7, 10 | nfralw 3154 | . . . 4 ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 (𝜓 → 𝑤 = 𝑦) |
12 | 2, 11 | nfan 1901 | . . 3 ⊢ Ⅎ𝑥(𝜒 ∧ ∀𝑦 ∈ 𝐴 (𝜓 → 𝑤 = 𝑦)) |
13 | nfv 1916 | . . 3 ⊢ Ⅎ𝑤(𝜑 ∧ ∀𝑦 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦)) | |
14 | 3 | bicomd 226 | . . . . 5 ⊢ (𝑥 = 𝑤 → (𝜒 ↔ 𝜑)) |
15 | 14 | equcoms 2028 | . . . 4 ⊢ (𝑤 = 𝑥 → (𝜒 ↔ 𝜑)) |
16 | equequ1 2033 | . . . . . 6 ⊢ (𝑤 = 𝑥 → (𝑤 = 𝑦 ↔ 𝑥 = 𝑦)) | |
17 | 16 | imbi2d 345 | . . . . 5 ⊢ (𝑤 = 𝑥 → ((𝜓 → 𝑤 = 𝑦) ↔ (𝜓 → 𝑥 = 𝑦))) |
18 | 17 | ralbidv 3127 | . . . 4 ⊢ (𝑤 = 𝑥 → (∀𝑦 ∈ 𝐴 (𝜓 → 𝑤 = 𝑦) ↔ ∀𝑦 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦))) |
19 | 15, 18 | anbi12d 634 | . . 3 ⊢ (𝑤 = 𝑥 → ((𝜒 ∧ ∀𝑦 ∈ 𝐴 (𝜓 → 𝑤 = 𝑦)) ↔ (𝜑 ∧ ∀𝑦 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦)))) |
20 | 12, 13, 19 | cbvrexw 3354 | . 2 ⊢ (∃𝑤 ∈ 𝐴 (𝜒 ∧ ∀𝑦 ∈ 𝐴 (𝜓 → 𝑤 = 𝑦)) ↔ ∃𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦))) |
21 | 4, 6, 20 | 3bitri 301 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 400 Ⅎwnf 1786 ∀wral 3071 ∃wrex 3072 ∃!wreu 3073 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ral 3076 df-rex 3077 df-reu 3078 |
This theorem is referenced by: reusngf 4570 reuprg0 4596 reuop 6123 reuccatpfxs1 14157 reupr 44408 |
Copyright terms: Public domain | W3C validator |