| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reu8nf | Structured version Visualization version GIF version | ||
| Description: Restricted uniqueness using implicit substitution. This version of reu8 3739 uses a nonfreeness hypothesis for 𝑥 and 𝜓 instead of distinct variable conditions. (Contributed by AV, 21-Jan-2022.) |
| Ref | Expression |
|---|---|
| reu8nf.1 | ⊢ Ⅎ𝑥𝜓 |
| reu8nf.2 | ⊢ Ⅎ𝑥𝜒 |
| reu8nf.3 | ⊢ (𝑥 = 𝑤 → (𝜑 ↔ 𝜒)) |
| reu8nf.4 | ⊢ (𝑤 = 𝑦 → (𝜒 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| reu8nf | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . . 3 ⊢ Ⅎ𝑤𝜑 | |
| 2 | reu8nf.2 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
| 3 | reu8nf.3 | . . 3 ⊢ (𝑥 = 𝑤 → (𝜑 ↔ 𝜒)) | |
| 4 | 1, 2, 3 | cbvreuw 3410 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑤 ∈ 𝐴 𝜒) |
| 5 | reu8nf.4 | . . 3 ⊢ (𝑤 = 𝑦 → (𝜒 ↔ 𝜓)) | |
| 6 | 5 | reu8 3739 | . 2 ⊢ (∃!𝑤 ∈ 𝐴 𝜒 ↔ ∃𝑤 ∈ 𝐴 (𝜒 ∧ ∀𝑦 ∈ 𝐴 (𝜓 → 𝑤 = 𝑦))) |
| 7 | nfcv 2905 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 8 | reu8nf.1 | . . . . . 6 ⊢ Ⅎ𝑥𝜓 | |
| 9 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑥 𝑤 = 𝑦 | |
| 10 | 8, 9 | nfim 1896 | . . . . 5 ⊢ Ⅎ𝑥(𝜓 → 𝑤 = 𝑦) |
| 11 | 7, 10 | nfralw 3311 | . . . 4 ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 (𝜓 → 𝑤 = 𝑦) |
| 12 | 2, 11 | nfan 1899 | . . 3 ⊢ Ⅎ𝑥(𝜒 ∧ ∀𝑦 ∈ 𝐴 (𝜓 → 𝑤 = 𝑦)) |
| 13 | nfv 1914 | . . 3 ⊢ Ⅎ𝑤(𝜑 ∧ ∀𝑦 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦)) | |
| 14 | 3 | bicomd 223 | . . . . 5 ⊢ (𝑥 = 𝑤 → (𝜒 ↔ 𝜑)) |
| 15 | 14 | equcoms 2019 | . . . 4 ⊢ (𝑤 = 𝑥 → (𝜒 ↔ 𝜑)) |
| 16 | equequ1 2024 | . . . . . 6 ⊢ (𝑤 = 𝑥 → (𝑤 = 𝑦 ↔ 𝑥 = 𝑦)) | |
| 17 | 16 | imbi2d 340 | . . . . 5 ⊢ (𝑤 = 𝑥 → ((𝜓 → 𝑤 = 𝑦) ↔ (𝜓 → 𝑥 = 𝑦))) |
| 18 | 17 | ralbidv 3178 | . . . 4 ⊢ (𝑤 = 𝑥 → (∀𝑦 ∈ 𝐴 (𝜓 → 𝑤 = 𝑦) ↔ ∀𝑦 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦))) |
| 19 | 15, 18 | anbi12d 632 | . . 3 ⊢ (𝑤 = 𝑥 → ((𝜒 ∧ ∀𝑦 ∈ 𝐴 (𝜓 → 𝑤 = 𝑦)) ↔ (𝜑 ∧ ∀𝑦 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦)))) |
| 20 | 12, 13, 19 | cbvrexw 3307 | . 2 ⊢ (∃𝑤 ∈ 𝐴 (𝜒 ∧ ∀𝑦 ∈ 𝐴 (𝜓 → 𝑤 = 𝑦)) ↔ ∃𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦))) |
| 21 | 4, 6, 20 | 3bitri 297 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 Ⅎwnf 1783 ∀wral 3061 ∃wrex 3070 ∃!wreu 3378 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-10 2141 ax-11 2157 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 |
| This theorem is referenced by: reusngf 4674 reuprg0 4702 reuop 6313 reuccatpfxs1 14785 reupr 47509 |
| Copyright terms: Public domain | W3C validator |