Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme43frv1snN Structured version   Visualization version   GIF version

Theorem cdleme43frv1snN 38349
Description: Value of 𝑅 / 𝑠𝑁 when ¬ 𝑅 (𝑃 𝑄). (Contributed by NM, 30-Mar-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemefr27.b 𝐵 = (Base‘𝐾)
cdlemefr27.l = (le‘𝐾)
cdlemefr27.j = (join‘𝐾)
cdlemefr27.m = (meet‘𝐾)
cdlemefr27.a 𝐴 = (Atoms‘𝐾)
cdlemefr27.h 𝐻 = (LHyp‘𝐾)
cdlemefr27.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdlemefr27.c 𝐶 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
cdlemefr27.n 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐶)
cdleme43fr.x 𝑋 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
Assertion
Ref Expression
cdleme43frv1snN ((𝑅𝐴 ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑅 / 𝑠𝑁 = 𝑋)
Distinct variable groups:   𝐴,𝑠   ,𝑠   ,𝑠   ,𝑠   𝑃,𝑠   𝑄,𝑠   𝑅,𝑠   𝑈,𝑠   𝑊,𝑠   𝐻,𝑠   𝐾,𝑠   𝐵,𝑠
Allowed substitution hints:   𝐶(𝑠)   𝐼(𝑠)   𝑁(𝑠)   𝑋(𝑠)

Proof of Theorem cdleme43frv1snN
StepHypRef Expression
1 cdlemefr27.c . 2 𝐶 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
2 cdlemefr27.n . 2 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐶)
3 cdleme43fr.x . 2 𝑋 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
41, 2, 3cdleme31sn2 38330 1 ((𝑅𝐴 ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑅 / 𝑠𝑁 = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  csb 3828  ifcif 4456   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895  joincjn 17944  meetcmee 17945  Atomscatm 37204  LHypclh 37925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator