Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme43frv1snN Structured version   Visualization version   GIF version

Theorem cdleme43frv1snN 40402
Description: Value of 𝑅 / 𝑠𝑁 when ¬ 𝑅 (𝑃 𝑄). (Contributed by NM, 30-Mar-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemefr27.b 𝐵 = (Base‘𝐾)
cdlemefr27.l = (le‘𝐾)
cdlemefr27.j = (join‘𝐾)
cdlemefr27.m = (meet‘𝐾)
cdlemefr27.a 𝐴 = (Atoms‘𝐾)
cdlemefr27.h 𝐻 = (LHyp‘𝐾)
cdlemefr27.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdlemefr27.c 𝐶 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
cdlemefr27.n 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐶)
cdleme43fr.x 𝑋 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
Assertion
Ref Expression
cdleme43frv1snN ((𝑅𝐴 ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑅 / 𝑠𝑁 = 𝑋)
Distinct variable groups:   𝐴,𝑠   ,𝑠   ,𝑠   ,𝑠   𝑃,𝑠   𝑄,𝑠   𝑅,𝑠   𝑈,𝑠   𝑊,𝑠   𝐻,𝑠   𝐾,𝑠   𝐵,𝑠
Allowed substitution hints:   𝐶(𝑠)   𝐼(𝑠)   𝑁(𝑠)   𝑋(𝑠)

Proof of Theorem cdleme43frv1snN
StepHypRef Expression
1 cdlemefr27.c . 2 𝐶 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
2 cdlemefr27.n . 2 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐶)
3 cdleme43fr.x . 2 𝑋 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
41, 2, 3cdleme31sn2 40383 1 ((𝑅𝐴 ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑅 / 𝑠𝑁 = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  csb 3862  ifcif 4488   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  joincjn 18272  meetcmee 18273  Atomscatm 39256  LHypclh 39978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-ov 7390
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator