| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme43frv1snN | Structured version Visualization version GIF version | ||
| Description: Value of ⦋𝑅 / 𝑠⦌𝑁 when ¬ 𝑅 ≤ (𝑃 ∨ 𝑄). (Contributed by NM, 30-Mar-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cdlemefr27.b | ⊢ 𝐵 = (Base‘𝐾) |
| cdlemefr27.l | ⊢ ≤ = (le‘𝐾) |
| cdlemefr27.j | ⊢ ∨ = (join‘𝐾) |
| cdlemefr27.m | ⊢ ∧ = (meet‘𝐾) |
| cdlemefr27.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdlemefr27.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdlemefr27.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
| cdlemefr27.c | ⊢ 𝐶 = ((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) |
| cdlemefr27.n | ⊢ 𝑁 = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, 𝐶) |
| cdleme43fr.x | ⊢ 𝑋 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) |
| Ref | Expression |
|---|---|
| cdleme43frv1snN | ⊢ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ⦋𝑅 / 𝑠⦌𝑁 = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdlemefr27.c | . 2 ⊢ 𝐶 = ((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) | |
| 2 | cdlemefr27.n | . 2 ⊢ 𝑁 = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, 𝐶) | |
| 3 | cdleme43fr.x | . 2 ⊢ 𝑋 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) | |
| 4 | 1, 2, 3 | cdleme31sn2 40391 | 1 ⊢ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ⦋𝑅 / 𝑠⦌𝑁 = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ⦋csb 3899 ifcif 4525 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 lecple 17304 joincjn 18357 meetcmee 18358 Atomscatm 39264 LHypclh 39986 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-iota 6514 df-fv 6569 df-ov 7434 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |