![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme43frv1snN | Structured version Visualization version GIF version |
Description: Value of β¦π / π β¦π when Β¬ π β€ (π β¨ π). (Contributed by NM, 30-Mar-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cdlemefr27.b | β’ π΅ = (BaseβπΎ) |
cdlemefr27.l | β’ β€ = (leβπΎ) |
cdlemefr27.j | β’ β¨ = (joinβπΎ) |
cdlemefr27.m | β’ β§ = (meetβπΎ) |
cdlemefr27.a | β’ π΄ = (AtomsβπΎ) |
cdlemefr27.h | β’ π» = (LHypβπΎ) |
cdlemefr27.u | β’ π = ((π β¨ π) β§ π) |
cdlemefr27.c | β’ πΆ = ((π β¨ π) β§ (π β¨ ((π β¨ π ) β§ π))) |
cdlemefr27.n | β’ π = if(π β€ (π β¨ π), πΌ, πΆ) |
cdleme43fr.x | β’ π = ((π β¨ π) β§ (π β¨ ((π β¨ π ) β§ π))) |
Ref | Expression |
---|---|
cdleme43frv1snN | β’ ((π β π΄ β§ Β¬ π β€ (π β¨ π)) β β¦π / π β¦π = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemefr27.c | . 2 β’ πΆ = ((π β¨ π) β§ (π β¨ ((π β¨ π ) β§ π))) | |
2 | cdlemefr27.n | . 2 β’ π = if(π β€ (π β¨ π), πΌ, πΆ) | |
3 | cdleme43fr.x | . 2 β’ π = ((π β¨ π) β§ (π β¨ ((π β¨ π ) β§ π))) | |
4 | 1, 2, 3 | cdleme31sn2 39565 | 1 β’ ((π β π΄ β§ Β¬ π β€ (π β¨ π)) β β¦π / π β¦π = π) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 β¦csb 3894 ifcif 4529 class class class wbr 5149 βcfv 6544 (class class class)co 7413 Basecbs 17150 lecple 17210 joincjn 18270 meetcmee 18271 Atomscatm 38438 LHypclh 39160 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-iota 6496 df-fv 6552 df-ov 7416 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |