Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme43frv1snN Structured version   Visualization version   GIF version

Theorem cdleme43frv1snN 40395
Description: Value of 𝑅 / 𝑠𝑁 when ¬ 𝑅 (𝑃 𝑄). (Contributed by NM, 30-Mar-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemefr27.b 𝐵 = (Base‘𝐾)
cdlemefr27.l = (le‘𝐾)
cdlemefr27.j = (join‘𝐾)
cdlemefr27.m = (meet‘𝐾)
cdlemefr27.a 𝐴 = (Atoms‘𝐾)
cdlemefr27.h 𝐻 = (LHyp‘𝐾)
cdlemefr27.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdlemefr27.c 𝐶 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
cdlemefr27.n 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐶)
cdleme43fr.x 𝑋 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
Assertion
Ref Expression
cdleme43frv1snN ((𝑅𝐴 ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑅 / 𝑠𝑁 = 𝑋)
Distinct variable groups:   𝐴,𝑠   ,𝑠   ,𝑠   ,𝑠   𝑃,𝑠   𝑄,𝑠   𝑅,𝑠   𝑈,𝑠   𝑊,𝑠   𝐻,𝑠   𝐾,𝑠   𝐵,𝑠
Allowed substitution hints:   𝐶(𝑠)   𝐼(𝑠)   𝑁(𝑠)   𝑋(𝑠)

Proof of Theorem cdleme43frv1snN
StepHypRef Expression
1 cdlemefr27.c . 2 𝐶 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
2 cdlemefr27.n . 2 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐶)
3 cdleme43fr.x . 2 𝑋 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
41, 2, 3cdleme31sn2 40376 1 ((𝑅𝐴 ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑅 / 𝑠𝑁 = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  csb 3859  ifcif 4484   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  joincjn 18252  meetcmee 18253  Atomscatm 39249  LHypclh 39971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-iota 6452  df-fv 6507  df-ov 7372
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator