Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemefr29clN Structured version   Visualization version   GIF version

Theorem cdlemefr29clN 39278
Description: Show closure of the unique element in cdleme29c 39247. TODO fix comment. TODO Not needed? (Contributed by NM, 29-Mar-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemefr27.b 𝐡 = (Baseβ€˜πΎ)
cdlemefr27.l ≀ = (leβ€˜πΎ)
cdlemefr27.j ∨ = (joinβ€˜πΎ)
cdlemefr27.m ∧ = (meetβ€˜πΎ)
cdlemefr27.a 𝐴 = (Atomsβ€˜πΎ)
cdlemefr27.h 𝐻 = (LHypβ€˜πΎ)
cdlemefr27.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
cdlemefr27.c 𝐢 = ((𝑠 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ π‘Š)))
cdlemefr27.n 𝑁 = if(𝑠 ≀ (𝑃 ∨ 𝑄), 𝐼, 𝐢)
cdlemefr29cl.o 𝑂 = (℩𝑧 ∈ 𝐡 βˆ€π‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (𝑅 ∧ π‘Š)) = 𝑅) β†’ 𝑧 = (𝑁 ∨ (𝑅 ∧ π‘Š))))
Assertion
Ref Expression
cdlemefr29clN ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑂 ∈ 𝐡)
Distinct variable groups:   𝐴,𝑠   ∨ ,𝑠   ≀ ,𝑠   ∧ ,𝑠   𝑃,𝑠   𝑄,𝑠   𝑅,𝑠   π‘ˆ,𝑠   π‘Š,𝑠,𝑧   𝐻,𝑠   𝐾,𝑠   𝑧,𝐴   𝐡,𝑠,𝑧   𝑧,𝐻   𝑧, ∨   𝑧,𝐾   𝑧, ≀   𝑧, ∧   𝑧,𝑁   𝑧,𝑃   𝑧,𝑄   𝑧,𝑅   𝑧,π‘Š
Allowed substitution hints:   𝐢(𝑧,𝑠)   π‘ˆ(𝑧)   𝐼(𝑧,𝑠)   𝑁(𝑠)   𝑂(𝑧,𝑠)

Proof of Theorem cdlemefr29clN
StepHypRef Expression
1 cdlemefr27.b . 2 𝐡 = (Baseβ€˜πΎ)
2 cdlemefr27.l . 2 ≀ = (leβ€˜πΎ)
3 cdlemefr27.j . 2 ∨ = (joinβ€˜πΎ)
4 cdlemefr27.m . 2 ∧ = (meetβ€˜πΎ)
5 cdlemefr27.a . 2 𝐴 = (Atomsβ€˜πΎ)
6 cdlemefr27.h . 2 𝐻 = (LHypβ€˜πΎ)
7 breq1 5152 . . 3 (𝑠 = 𝑅 β†’ (𝑠 ≀ (𝑃 ∨ 𝑄) ↔ 𝑅 ≀ (𝑃 ∨ 𝑄)))
87notbid 318 . 2 (𝑠 = 𝑅 β†’ (Β¬ 𝑠 ≀ (𝑃 ∨ 𝑄) ↔ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)))
9 simp11 1204 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄 ∧ (𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ Β¬ 𝑠 ≀ (𝑃 ∨ 𝑄)))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
10 simp12l 1287 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄 ∧ (𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ Β¬ 𝑠 ≀ (𝑃 ∨ 𝑄)))) β†’ 𝑃 ∈ 𝐴)
11 simp13l 1289 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄 ∧ (𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ Β¬ 𝑠 ≀ (𝑃 ∨ 𝑄)))) β†’ 𝑄 ∈ 𝐴)
12 simp3l 1202 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄 ∧ (𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ Β¬ 𝑠 ≀ (𝑃 ∨ 𝑄)))) β†’ 𝑠 ∈ 𝐴)
13 simp3rr 1248 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄 ∧ (𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ Β¬ 𝑠 ≀ (𝑃 ∨ 𝑄)))) β†’ Β¬ 𝑠 ≀ (𝑃 ∨ 𝑄))
14 simp2 1138 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄 ∧ (𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ Β¬ 𝑠 ≀ (𝑃 ∨ 𝑄)))) β†’ 𝑃 β‰  𝑄)
15 cdlemefr27.u . . . 4 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
16 cdlemefr27.c . . . 4 𝐢 = ((𝑠 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ π‘Š)))
17 cdlemefr27.n . . . 4 𝑁 = if(𝑠 ≀ (𝑃 ∨ 𝑄), 𝐼, 𝐢)
181, 2, 3, 4, 5, 6, 15, 16, 17cdlemefr27cl 39274 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) β†’ 𝑁 ∈ 𝐡)
199, 10, 11, 12, 13, 14, 18syl33anc 1386 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄 ∧ (𝑠 ∈ 𝐴 ∧ (Β¬ 𝑠 ≀ π‘Š ∧ Β¬ 𝑠 ≀ (𝑃 ∨ 𝑄)))) β†’ 𝑁 ∈ 𝐡)
201, 2, 3, 4, 5, 6, 15, 16, 17cdlemefr32snb 39276 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)) β†’ ⦋𝑅 / π‘ β¦Œπ‘ ∈ 𝐡)
21 cdlemefr29cl.o . 2 𝑂 = (℩𝑧 ∈ 𝐡 βˆ€π‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (𝑅 ∧ π‘Š)) = 𝑅) β†’ 𝑧 = (𝑁 ∨ (𝑅 ∧ π‘Š))))
221, 2, 3, 4, 5, 6, 8, 19, 20, 21cdlemefrs29clN 39270 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑂 ∈ 𝐡)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2941  βˆ€wral 3062  ifcif 4529   class class class wbr 5149  β€˜cfv 6544  β„©crio 7364  (class class class)co 7409  Basecbs 17144  lecple 17204  joincjn 18264  meetcmee 18265  Atomscatm 38133  HLchlt 38220  LHypclh 38855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-proset 18248  df-poset 18266  df-plt 18283  df-lub 18299  df-glb 18300  df-join 18301  df-meet 18302  df-p0 18378  df-p1 18379  df-lat 18385  df-clat 18452  df-oposet 38046  df-ol 38048  df-oml 38049  df-covers 38136  df-ats 38137  df-atl 38168  df-cvlat 38192  df-hlat 38221  df-lines 38372  df-psubsp 38374  df-pmap 38375  df-padd 38667  df-lhyp 38859
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator