Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31sn2 Structured version   Visualization version   GIF version

Theorem cdleme31sn2 40376
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 26-Feb-2013.)
Hypotheses
Ref Expression
cdleme32sn2.d 𝐷 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
cdleme31sn2.n 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐷)
cdleme31sn2.c 𝐶 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
Assertion
Ref Expression
cdleme31sn2 ((𝑅𝐴 ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑅 / 𝑠𝑁 = 𝐶)
Distinct variable groups:   𝐴,𝑠   ,𝑠   ,𝑠   ,𝑠   𝑃,𝑠   𝑄,𝑠   𝑅,𝑠   𝑈,𝑠   𝑊,𝑠
Allowed substitution hints:   𝐶(𝑠)   𝐷(𝑠)   𝐼(𝑠)   𝑁(𝑠)

Proof of Theorem cdleme31sn2
StepHypRef Expression
1 cdleme31sn2.n . . . . 5 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐷)
2 eqid 2729 . . . . 5 if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷) = if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷)
31, 2cdleme31sn 40367 . . . 4 (𝑅𝐴𝑅 / 𝑠𝑁 = if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷))
43adantr 480 . . 3 ((𝑅𝐴 ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑅 / 𝑠𝑁 = if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷))
5 iffalse 4493 . . . . 5 𝑅 (𝑃 𝑄) → if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷) = 𝑅 / 𝑠𝐷)
6 cdleme32sn2.d . . . . . 6 𝐷 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
76csbeq2i 3867 . . . . 5 𝑅 / 𝑠𝐷 = 𝑅 / 𝑠((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
85, 7eqtrdi 2780 . . . 4 𝑅 (𝑃 𝑄) → if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷) = 𝑅 / 𝑠((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊))))
9 nfcvd 2892 . . . . 5 (𝑅𝐴𝑠((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊))))
10 oveq1 7376 . . . . . 6 (𝑠 = 𝑅 → (𝑠 𝑈) = (𝑅 𝑈))
11 oveq2 7377 . . . . . . . 8 (𝑠 = 𝑅 → (𝑃 𝑠) = (𝑃 𝑅))
1211oveq1d 7384 . . . . . . 7 (𝑠 = 𝑅 → ((𝑃 𝑠) 𝑊) = ((𝑃 𝑅) 𝑊))
1312oveq2d 7385 . . . . . 6 (𝑠 = 𝑅 → (𝑄 ((𝑃 𝑠) 𝑊)) = (𝑄 ((𝑃 𝑅) 𝑊)))
1410, 13oveq12d 7387 . . . . 5 (𝑠 = 𝑅 → ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊))) = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊))))
159, 14csbiegf 3892 . . . 4 (𝑅𝐴𝑅 / 𝑠((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊))) = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊))))
168, 15sylan9eqr 2786 . . 3 ((𝑅𝐴 ∧ ¬ 𝑅 (𝑃 𝑄)) → if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷) = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊))))
174, 16eqtrd 2764 . 2 ((𝑅𝐴 ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑅 / 𝑠𝑁 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊))))
18 cdleme31sn2.c . 2 𝐶 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
1917, 18eqtr4di 2782 1 ((𝑅𝐴 ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑅 / 𝑠𝑁 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  csb 3859  ifcif 4484   class class class wbr 5102  (class class class)co 7369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-iota 6452  df-fv 6507  df-ov 7372
This theorem is referenced by:  cdlemefr32sn2aw  40391  cdleme43frv1snN  40395  cdlemefr31fv1  40398  cdleme35sn2aw  40445  cdleme35sn3a  40446
  Copyright terms: Public domain W3C validator