Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31sn2 Structured version   Visualization version   GIF version

Theorem cdleme31sn2 36464
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 26-Feb-2013.)
Hypotheses
Ref Expression
cdleme32sn2.d 𝐷 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
cdleme31sn2.n 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐷)
cdleme31sn2.c 𝐶 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
Assertion
Ref Expression
cdleme31sn2 ((𝑅𝐴 ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑅 / 𝑠𝑁 = 𝐶)
Distinct variable groups:   𝐴,𝑠   ,𝑠   ,𝑠   ,𝑠   𝑃,𝑠   𝑄,𝑠   𝑅,𝑠   𝑈,𝑠   𝑊,𝑠
Allowed substitution hints:   𝐶(𝑠)   𝐷(𝑠)   𝐼(𝑠)   𝑁(𝑠)

Proof of Theorem cdleme31sn2
StepHypRef Expression
1 cdleme31sn2.n . . . . 5 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐷)
2 eqid 2825 . . . . 5 if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷) = if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷)
31, 2cdleme31sn 36455 . . . 4 (𝑅𝐴𝑅 / 𝑠𝑁 = if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷))
43adantr 474 . . 3 ((𝑅𝐴 ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑅 / 𝑠𝑁 = if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷))
5 iffalse 4315 . . . . 5 𝑅 (𝑃 𝑄) → if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷) = 𝑅 / 𝑠𝐷)
6 cdleme32sn2.d . . . . . 6 𝐷 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
76csbeq2i 4217 . . . . 5 𝑅 / 𝑠𝐷 = 𝑅 / 𝑠((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
85, 7syl6eq 2877 . . . 4 𝑅 (𝑃 𝑄) → if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷) = 𝑅 / 𝑠((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊))))
9 nfcvd 2970 . . . . 5 (𝑅𝐴𝑠((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊))))
10 oveq1 6912 . . . . . 6 (𝑠 = 𝑅 → (𝑠 𝑈) = (𝑅 𝑈))
11 oveq2 6913 . . . . . . . 8 (𝑠 = 𝑅 → (𝑃 𝑠) = (𝑃 𝑅))
1211oveq1d 6920 . . . . . . 7 (𝑠 = 𝑅 → ((𝑃 𝑠) 𝑊) = ((𝑃 𝑅) 𝑊))
1312oveq2d 6921 . . . . . 6 (𝑠 = 𝑅 → (𝑄 ((𝑃 𝑠) 𝑊)) = (𝑄 ((𝑃 𝑅) 𝑊)))
1410, 13oveq12d 6923 . . . . 5 (𝑠 = 𝑅 → ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊))) = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊))))
159, 14csbiegf 3781 . . . 4 (𝑅𝐴𝑅 / 𝑠((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊))) = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊))))
168, 15sylan9eqr 2883 . . 3 ((𝑅𝐴 ∧ ¬ 𝑅 (𝑃 𝑄)) → if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷) = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊))))
174, 16eqtrd 2861 . 2 ((𝑅𝐴 ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑅 / 𝑠𝑁 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊))))
18 cdleme31sn2.c . 2 𝐶 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
1917, 18syl6eqr 2879 1 ((𝑅𝐴 ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑅 / 𝑠𝑁 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386   = wceq 1658  wcel 2166  csb 3757  ifcif 4306   class class class wbr 4873  (class class class)co 6905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-br 4874  df-iota 6086  df-fv 6131  df-ov 6908
This theorem is referenced by:  cdlemefr32sn2aw  36479  cdleme43frv1snN  36483  cdlemefr31fv1  36486  cdleme35sn2aw  36533  cdleme35sn3a  36534
  Copyright terms: Public domain W3C validator