Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31sn2 Structured version   Visualization version   GIF version

Theorem cdleme31sn2 39917
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 26-Feb-2013.)
Hypotheses
Ref Expression
cdleme32sn2.d 𝐷 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
cdleme31sn2.n 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐷)
cdleme31sn2.c 𝐶 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
Assertion
Ref Expression
cdleme31sn2 ((𝑅𝐴 ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑅 / 𝑠𝑁 = 𝐶)
Distinct variable groups:   𝐴,𝑠   ,𝑠   ,𝑠   ,𝑠   𝑃,𝑠   𝑄,𝑠   𝑅,𝑠   𝑈,𝑠   𝑊,𝑠
Allowed substitution hints:   𝐶(𝑠)   𝐷(𝑠)   𝐼(𝑠)   𝑁(𝑠)

Proof of Theorem cdleme31sn2
StepHypRef Expression
1 cdleme31sn2.n . . . . 5 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐷)
2 eqid 2725 . . . . 5 if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷) = if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷)
31, 2cdleme31sn 39908 . . . 4 (𝑅𝐴𝑅 / 𝑠𝑁 = if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷))
43adantr 479 . . 3 ((𝑅𝐴 ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑅 / 𝑠𝑁 = if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷))
5 iffalse 4533 . . . . 5 𝑅 (𝑃 𝑄) → if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷) = 𝑅 / 𝑠𝐷)
6 cdleme32sn2.d . . . . . 6 𝐷 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
76csbeq2i 3893 . . . . 5 𝑅 / 𝑠𝐷 = 𝑅 / 𝑠((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
85, 7eqtrdi 2781 . . . 4 𝑅 (𝑃 𝑄) → if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷) = 𝑅 / 𝑠((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊))))
9 nfcvd 2893 . . . . 5 (𝑅𝐴𝑠((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊))))
10 oveq1 7422 . . . . . 6 (𝑠 = 𝑅 → (𝑠 𝑈) = (𝑅 𝑈))
11 oveq2 7423 . . . . . . . 8 (𝑠 = 𝑅 → (𝑃 𝑠) = (𝑃 𝑅))
1211oveq1d 7430 . . . . . . 7 (𝑠 = 𝑅 → ((𝑃 𝑠) 𝑊) = ((𝑃 𝑅) 𝑊))
1312oveq2d 7431 . . . . . 6 (𝑠 = 𝑅 → (𝑄 ((𝑃 𝑠) 𝑊)) = (𝑄 ((𝑃 𝑅) 𝑊)))
1410, 13oveq12d 7433 . . . . 5 (𝑠 = 𝑅 → ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊))) = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊))))
159, 14csbiegf 3919 . . . 4 (𝑅𝐴𝑅 / 𝑠((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊))) = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊))))
168, 15sylan9eqr 2787 . . 3 ((𝑅𝐴 ∧ ¬ 𝑅 (𝑃 𝑄)) → if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷) = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊))))
174, 16eqtrd 2765 . 2 ((𝑅𝐴 ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑅 / 𝑠𝑁 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊))))
18 cdleme31sn2.c . 2 𝐶 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
1917, 18eqtr4di 2783 1 ((𝑅𝐴 ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑅 / 𝑠𝑁 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1533  wcel 2098  csb 3885  ifcif 4524   class class class wbr 5143  (class class class)co 7415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-ss 3957  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-iota 6494  df-fv 6550  df-ov 7418
This theorem is referenced by:  cdlemefr32sn2aw  39932  cdleme43frv1snN  39936  cdlemefr31fv1  39939  cdleme35sn2aw  39986  cdleme35sn3a  39987
  Copyright terms: Public domain W3C validator