Proof of Theorem cdleme31sn2
Step | Hyp | Ref
| Expression |
1 | | cdleme31sn2.n |
. . . . 5
⊢ 𝑁 = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, 𝐷) |
2 | | eqid 2738 |
. . . . 5
⊢ if(𝑅 ≤ (𝑃 ∨ 𝑄), ⦋𝑅 / 𝑠⦌𝐼, ⦋𝑅 / 𝑠⦌𝐷) = if(𝑅 ≤ (𝑃 ∨ 𝑄), ⦋𝑅 / 𝑠⦌𝐼, ⦋𝑅 / 𝑠⦌𝐷) |
3 | 1, 2 | cdleme31sn 38321 |
. . . 4
⊢ (𝑅 ∈ 𝐴 → ⦋𝑅 / 𝑠⦌𝑁 = if(𝑅 ≤ (𝑃 ∨ 𝑄), ⦋𝑅 / 𝑠⦌𝐼, ⦋𝑅 / 𝑠⦌𝐷)) |
4 | 3 | adantr 480 |
. . 3
⊢ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ⦋𝑅 / 𝑠⦌𝑁 = if(𝑅 ≤ (𝑃 ∨ 𝑄), ⦋𝑅 / 𝑠⦌𝐼, ⦋𝑅 / 𝑠⦌𝐷)) |
5 | | iffalse 4465 |
. . . . 5
⊢ (¬
𝑅 ≤ (𝑃 ∨ 𝑄) → if(𝑅 ≤ (𝑃 ∨ 𝑄), ⦋𝑅 / 𝑠⦌𝐼, ⦋𝑅 / 𝑠⦌𝐷) = ⦋𝑅 / 𝑠⦌𝐷) |
6 | | cdleme32sn2.d |
. . . . . 6
⊢ 𝐷 = ((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) |
7 | 6 | csbeq2i 3836 |
. . . . 5
⊢
⦋𝑅 /
𝑠⦌𝐷 = ⦋𝑅 / 𝑠⦌((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) |
8 | 5, 7 | eqtrdi 2795 |
. . . 4
⊢ (¬
𝑅 ≤ (𝑃 ∨ 𝑄) → if(𝑅 ≤ (𝑃 ∨ 𝑄), ⦋𝑅 / 𝑠⦌𝐼, ⦋𝑅 / 𝑠⦌𝐷) = ⦋𝑅 / 𝑠⦌((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊)))) |
9 | | nfcvd 2907 |
. . . . 5
⊢ (𝑅 ∈ 𝐴 → Ⅎ𝑠((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)))) |
10 | | oveq1 7262 |
. . . . . 6
⊢ (𝑠 = 𝑅 → (𝑠 ∨ 𝑈) = (𝑅 ∨ 𝑈)) |
11 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑠 = 𝑅 → (𝑃 ∨ 𝑠) = (𝑃 ∨ 𝑅)) |
12 | 11 | oveq1d 7270 |
. . . . . . 7
⊢ (𝑠 = 𝑅 → ((𝑃 ∨ 𝑠) ∧ 𝑊) = ((𝑃 ∨ 𝑅) ∧ 𝑊)) |
13 | 12 | oveq2d 7271 |
. . . . . 6
⊢ (𝑠 = 𝑅 → (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊)) = (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) |
14 | 10, 13 | oveq12d 7273 |
. . . . 5
⊢ (𝑠 = 𝑅 → ((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)))) |
15 | 9, 14 | csbiegf 3862 |
. . . 4
⊢ (𝑅 ∈ 𝐴 → ⦋𝑅 / 𝑠⦌((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)))) |
16 | 8, 15 | sylan9eqr 2801 |
. . 3
⊢ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → if(𝑅 ≤ (𝑃 ∨ 𝑄), ⦋𝑅 / 𝑠⦌𝐼, ⦋𝑅 / 𝑠⦌𝐷) = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)))) |
17 | 4, 16 | eqtrd 2778 |
. 2
⊢ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ⦋𝑅 / 𝑠⦌𝑁 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)))) |
18 | | cdleme31sn2.c |
. 2
⊢ 𝐶 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) |
19 | 17, 18 | eqtr4di 2797 |
1
⊢ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ⦋𝑅 / 𝑠⦌𝑁 = 𝐶) |