| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clmring | Structured version Visualization version GIF version | ||
| Description: The scalar ring of a subcomplex module is a ring. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| Ref | Expression |
|---|---|
| clm0.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| clmring | ⊢ (𝑊 ∈ ℂMod → 𝐹 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clmlmod 24997 | . 2 ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ LMod) | |
| 2 | clm0.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 3 | 2 | lmodring 20805 | . 2 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (𝑊 ∈ ℂMod → 𝐹 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ‘cfv 6488 Scalarcsca 17168 Ringcrg 20155 LModclmod 20797 ℂModcclm 24992 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6444 df-fv 6496 df-ov 7357 df-lmod 20799 df-clm 24993 |
| This theorem is referenced by: clmvsubval 25039 cvsmuleqdivd 25064 |
| Copyright terms: Public domain | W3C validator |