MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clmring Structured version   Visualization version   GIF version

Theorem clmring 25000
Description: The scalar ring of a subcomplex module is a ring. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypothesis
Ref Expression
clm0.f 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
clmring (𝑊 ∈ ℂMod → 𝐹 ∈ Ring)

Proof of Theorem clmring
StepHypRef Expression
1 clmlmod 24997 . 2 (𝑊 ∈ ℂMod → 𝑊 ∈ LMod)
2 clm0.f . . 3 𝐹 = (Scalar‘𝑊)
32lmodring 20805 . 2 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
41, 3syl 17 1 (𝑊 ∈ ℂMod → 𝐹 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cfv 6488  Scalarcsca 17168  Ringcrg 20155  LModclmod 20797  ℂModcclm 24992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-nul 5248
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-iota 6444  df-fv 6496  df-ov 7357  df-lmod 20799  df-clm 24993
This theorem is referenced by:  clmvsubval  25039  cvsmuleqdivd  25064
  Copyright terms: Public domain W3C validator