MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clmlmod Structured version   Visualization version   GIF version

Theorem clmlmod 25018
Description: A subcomplex module is a left module. (Contributed by Mario Carneiro, 16-Oct-2015.)
Assertion
Ref Expression
clmlmod (𝑊 ∈ ℂMod → 𝑊 ∈ LMod)

Proof of Theorem clmlmod
StepHypRef Expression
1 eqid 2735 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
2 eqid 2735 . . 3 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
31, 2isclm 25015 . 2 (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ (Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊))) ∧ (Base‘(Scalar‘𝑊)) ∈ (SubRing‘ℂfld)))
43simp1bi 1145 1 (𝑊 ∈ ℂMod → 𝑊 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  cfv 6531  (class class class)co 7405  Basecbs 17228  s cress 17251  Scalarcsca 17274  SubRingcsubrg 20529  LModclmod 20817  fldccnfld 21315  ℂModcclm 25013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-nul 5276
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6484  df-fv 6539  df-ov 7408  df-clm 25014
This theorem is referenced by:  clmgrp  25019  clmabl  25020  clmring  25021  clmfgrp  25022  clmvscl  25039  clmvsass  25040  clmvsdir  25042  clmvsdi  25043  clmvs1  25044  clmvs2  25045  clm0vs  25046  clmopfne  25047  clmvneg1  25050  clmvsneg  25051  clmsubdir  25053  clmvsubval  25060  zlmclm  25063  cmodscmulexp  25073  iscvs  25078  cvsi  25081  isncvsngp  25101  ttgbtwnid  28863  ttgcontlem1  28864
  Copyright terms: Public domain W3C validator