MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clmlmod Structured version   Visualization version   GIF version

Theorem clmlmod 24967
Description: A subcomplex module is a left module. (Contributed by Mario Carneiro, 16-Oct-2015.)
Assertion
Ref Expression
clmlmod (𝑊 ∈ ℂMod → 𝑊 ∈ LMod)

Proof of Theorem clmlmod
StepHypRef Expression
1 eqid 2729 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
2 eqid 2729 . . 3 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
31, 2isclm 24964 . 2 (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ (Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊))) ∧ (Base‘(Scalar‘𝑊)) ∈ (SubRing‘ℂfld)))
43simp1bi 1145 1 (𝑊 ∈ ℂMod → 𝑊 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6511  (class class class)co 7387  Basecbs 17179  s cress 17200  Scalarcsca 17223  SubRingcsubrg 20478  LModclmod 20766  fldccnfld 21264  ℂModcclm 24962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-ov 7390  df-clm 24963
This theorem is referenced by:  clmgrp  24968  clmabl  24969  clmring  24970  clmfgrp  24971  clmvscl  24988  clmvsass  24989  clmvsdir  24991  clmvsdi  24992  clmvs1  24993  clmvs2  24994  clm0vs  24995  clmopfne  24996  clmvneg1  24999  clmvsneg  25000  clmsubdir  25002  clmvsubval  25009  zlmclm  25012  cmodscmulexp  25022  iscvs  25027  cvsi  25030  isncvsngp  25049  ttgbtwnid  28811  ttgcontlem1  28812
  Copyright terms: Public domain W3C validator