| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clmlmod | Structured version Visualization version GIF version | ||
| Description: A subcomplex module is a left module. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| Ref | Expression |
|---|---|
| clmlmod | ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ LMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 2 | eqid 2729 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 3 | 1, 2 | isclm 24964 | . 2 ⊢ (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ (Scalar‘𝑊) = (ℂfld ↾s (Base‘(Scalar‘𝑊))) ∧ (Base‘(Scalar‘𝑊)) ∈ (SubRing‘ℂfld))) |
| 4 | 3 | simp1bi 1145 | 1 ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ LMod) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 ↾s cress 17200 Scalarcsca 17223 SubRingcsubrg 20478 LModclmod 20766 ℂfldccnfld 21264 ℂModcclm 24962 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-clm 24963 |
| This theorem is referenced by: clmgrp 24968 clmabl 24969 clmring 24970 clmfgrp 24971 clmvscl 24988 clmvsass 24989 clmvsdir 24991 clmvsdi 24992 clmvs1 24993 clmvs2 24994 clm0vs 24995 clmopfne 24996 clmvneg1 24999 clmvsneg 25000 clmsubdir 25002 clmvsubval 25009 zlmclm 25012 cmodscmulexp 25022 iscvs 25027 cvsi 25030 isncvsngp 25049 ttgbtwnid 28811 ttgcontlem1 28812 |
| Copyright terms: Public domain | W3C validator |