MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clmlmod Structured version   Visualization version   GIF version

Theorem clmlmod 25024
Description: A subcomplex module is a left module. (Contributed by Mario Carneiro, 16-Oct-2015.)
Assertion
Ref Expression
clmlmod (𝑊 ∈ ℂMod → 𝑊 ∈ LMod)

Proof of Theorem clmlmod
StepHypRef Expression
1 eqid 2725 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
2 eqid 2725 . . 3 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
31, 2isclm 25021 . 2 (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ (Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊))) ∧ (Base‘(Scalar‘𝑊)) ∈ (SubRing‘ℂfld)))
43simp1bi 1142 1 (𝑊 ∈ ℂMod → 𝑊 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  cfv 6547  (class class class)co 7417  Basecbs 17179  s cress 17208  Scalarcsca 17235  SubRingcsubrg 20510  LModclmod 20747  fldccnfld 21283  ℂModcclm 25019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2931  df-rab 3420  df-v 3465  df-sbc 3775  df-dif 3948  df-un 3950  df-ss 3962  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-iota 6499  df-fv 6555  df-ov 7420  df-clm 25020
This theorem is referenced by:  clmgrp  25025  clmabl  25026  clmring  25027  clmfgrp  25028  clmvscl  25045  clmvsass  25046  clmvsdir  25048  clmvsdi  25049  clmvs1  25050  clmvs2  25051  clm0vs  25052  clmopfne  25053  clmvneg1  25056  clmvsneg  25057  clmsubdir  25059  clmvsubval  25066  zlmclm  25069  cmodscmulexp  25079  iscvs  25084  cvsi  25087  isncvsngp  25107  ttgbtwnid  28750  ttgcontlem1  28751
  Copyright terms: Public domain W3C validator