Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clmlmod | Structured version Visualization version GIF version |
Description: A subcomplex module is a left module. (Contributed by Mario Carneiro, 16-Oct-2015.) |
Ref | Expression |
---|---|
clmlmod | ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ LMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
2 | eqid 2736 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
3 | 1, 2 | isclm 24272 | . 2 ⊢ (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ (Scalar‘𝑊) = (ℂfld ↾s (Base‘(Scalar‘𝑊))) ∧ (Base‘(Scalar‘𝑊)) ∈ (SubRing‘ℂfld))) |
4 | 3 | simp1bi 1145 | 1 ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ LMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 ‘cfv 6458 (class class class)co 7307 Basecbs 16957 ↾s cress 16986 Scalarcsca 17010 SubRingcsubrg 20065 LModclmod 20168 ℂfldccnfld 20642 ℂModcclm 24270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-nul 5239 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2942 df-rab 3287 df-v 3439 df-sbc 3722 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-iota 6410 df-fv 6466 df-ov 7310 df-clm 24271 |
This theorem is referenced by: clmgrp 24276 clmabl 24277 clmring 24278 clmfgrp 24279 clmvscl 24296 clmvsass 24297 clmvsdir 24299 clmvsdi 24300 clmvs1 24301 clmvs2 24302 clm0vs 24303 clmopfne 24304 clmvneg1 24307 clmvsneg 24308 clmsubdir 24310 clmvsubval 24317 zlmclm 24320 cmodscmulexp 24330 iscvs 24335 cvsi 24338 isncvsngp 24358 ttgbtwnid 27296 ttgcontlem1 27297 |
Copyright terms: Public domain | W3C validator |