MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clmlmod Structured version   Visualization version   GIF version

Theorem clmlmod 24211
Description: A subcomplex module is a left module. (Contributed by Mario Carneiro, 16-Oct-2015.)
Assertion
Ref Expression
clmlmod (𝑊 ∈ ℂMod → 𝑊 ∈ LMod)

Proof of Theorem clmlmod
StepHypRef Expression
1 eqid 2739 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
2 eqid 2739 . . 3 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
31, 2isclm 24208 . 2 (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ (Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊))) ∧ (Base‘(Scalar‘𝑊)) ∈ (SubRing‘ℂfld)))
43simp1bi 1143 1 (𝑊 ∈ ℂMod → 𝑊 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2109  cfv 6430  (class class class)co 7268  Basecbs 16893  s cress 16922  Scalarcsca 16946  SubRingcsubrg 20001  LModclmod 20104  fldccnfld 20578  ℂModcclm 24206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-nul 5233
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-iota 6388  df-fv 6438  df-ov 7271  df-clm 24207
This theorem is referenced by:  clmgrp  24212  clmabl  24213  clmring  24214  clmfgrp  24215  clmvscl  24232  clmvsass  24233  clmvsdir  24235  clmvsdi  24236  clmvs1  24237  clmvs2  24238  clm0vs  24239  clmopfne  24240  clmvneg1  24243  clmvsneg  24244  clmsubdir  24246  clmvsubval  24253  zlmclm  24256  cmodscmulexp  24266  iscvs  24271  cvsi  24274  isncvsngp  24294  ttgbtwnid  27232  ttgcontlem1  27233
  Copyright terms: Public domain W3C validator