![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clmlmod | Structured version Visualization version GIF version |
Description: A subcomplex module is a left module. (Contributed by Mario Carneiro, 16-Oct-2015.) |
Ref | Expression |
---|---|
clmlmod | ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ LMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2799 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
2 | eqid 2799 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
3 | 1, 2 | isclm 23191 | . 2 ⊢ (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ (Scalar‘𝑊) = (ℂfld ↾s (Base‘(Scalar‘𝑊))) ∧ (Base‘(Scalar‘𝑊)) ∈ (SubRing‘ℂfld))) |
4 | 3 | simp1bi 1176 | 1 ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ LMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 ‘cfv 6101 (class class class)co 6878 Basecbs 16184 ↾s cress 16185 Scalarcsca 16270 SubRingcsubrg 19094 LModclmod 19181 ℂfldccnfld 20068 ℂModcclm 23189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-nul 4983 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-iota 6064 df-fv 6109 df-ov 6881 df-clm 23190 |
This theorem is referenced by: clmgrp 23195 clmabl 23196 clmring 23197 clmfgrp 23198 clmvscl 23215 clmvsass 23216 clmvsdir 23218 clmvsdi 23219 clmvs1 23220 clmvs2 23221 clm0vs 23222 clmopfne 23223 clmvneg1 23226 clmvsneg 23227 clmsubdir 23229 clmvsubval 23236 zlmclm 23239 cmodscmulexp 23249 iscvs 23254 cvsi 23257 isncvsngp 23276 ttgbtwnid 26121 ttgcontlem1 26122 |
Copyright terms: Public domain | W3C validator |