MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clmlmod Structured version   Visualization version   GIF version

Theorem clmlmod 24995
Description: A subcomplex module is a left module. (Contributed by Mario Carneiro, 16-Oct-2015.)
Assertion
Ref Expression
clmlmod (𝑊 ∈ ℂMod → 𝑊 ∈ LMod)

Proof of Theorem clmlmod
StepHypRef Expression
1 eqid 2733 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
2 eqid 2733 . . 3 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
31, 2isclm 24992 . 2 (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ (Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊))) ∧ (Base‘(Scalar‘𝑊)) ∈ (SubRing‘ℂfld)))
43simp1bi 1145 1 (𝑊 ∈ ℂMod → 𝑊 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cfv 6486  (class class class)co 7352  Basecbs 17122  s cress 17143  Scalarcsca 17166  SubRingcsubrg 20486  LModclmod 20795  fldccnfld 21293  ℂModcclm 24990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-nul 5246
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-iota 6442  df-fv 6494  df-ov 7355  df-clm 24991
This theorem is referenced by:  clmgrp  24996  clmabl  24997  clmring  24998  clmfgrp  24999  clmvscl  25016  clmvsass  25017  clmvsdir  25019  clmvsdi  25020  clmvs1  25021  clmvs2  25022  clm0vs  25023  clmopfne  25024  clmvneg1  25027  clmvsneg  25028  clmsubdir  25030  clmvsubval  25037  zlmclm  25040  cmodscmulexp  25050  iscvs  25055  cvsi  25058  isncvsngp  25077  ttgbtwnid  28863  ttgcontlem1  28864
  Copyright terms: Public domain W3C validator