Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clmlmod | Structured version Visualization version GIF version |
Description: A subcomplex module is a left module. (Contributed by Mario Carneiro, 16-Oct-2015.) |
Ref | Expression |
---|---|
clmlmod | ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ LMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
2 | eqid 2739 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
3 | 1, 2 | isclm 24208 | . 2 ⊢ (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ (Scalar‘𝑊) = (ℂfld ↾s (Base‘(Scalar‘𝑊))) ∧ (Base‘(Scalar‘𝑊)) ∈ (SubRing‘ℂfld))) |
4 | 3 | simp1bi 1143 | 1 ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ LMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 ‘cfv 6430 (class class class)co 7268 Basecbs 16893 ↾s cress 16922 Scalarcsca 16946 SubRingcsubrg 20001 LModclmod 20104 ℂfldccnfld 20578 ℂModcclm 24206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-nul 5233 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-iota 6388 df-fv 6438 df-ov 7271 df-clm 24207 |
This theorem is referenced by: clmgrp 24212 clmabl 24213 clmring 24214 clmfgrp 24215 clmvscl 24232 clmvsass 24233 clmvsdir 24235 clmvsdi 24236 clmvs1 24237 clmvs2 24238 clm0vs 24239 clmopfne 24240 clmvneg1 24243 clmvsneg 24244 clmsubdir 24246 clmvsubval 24253 zlmclm 24256 cmodscmulexp 24266 iscvs 24271 cvsi 24274 isncvsngp 24294 ttgbtwnid 27232 ttgcontlem1 27233 |
Copyright terms: Public domain | W3C validator |