MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clmlmod Structured version   Visualization version   GIF version

Theorem clmlmod 24992
Description: A subcomplex module is a left module. (Contributed by Mario Carneiro, 16-Oct-2015.)
Assertion
Ref Expression
clmlmod (𝑊 ∈ ℂMod → 𝑊 ∈ LMod)

Proof of Theorem clmlmod
StepHypRef Expression
1 eqid 2731 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
2 eqid 2731 . . 3 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
31, 2isclm 24989 . 2 (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ (Scalar‘𝑊) = (ℂflds (Base‘(Scalar‘𝑊))) ∧ (Base‘(Scalar‘𝑊)) ∈ (SubRing‘ℂfld)))
43simp1bi 1145 1 (𝑊 ∈ ℂMod → 𝑊 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  Basecbs 17117  s cress 17138  Scalarcsca 17161  SubRingcsubrg 20482  LModclmod 20791  fldccnfld 21289  ℂModcclm 24987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489  df-ov 7349  df-clm 24988
This theorem is referenced by:  clmgrp  24993  clmabl  24994  clmring  24995  clmfgrp  24996  clmvscl  25013  clmvsass  25014  clmvsdir  25016  clmvsdi  25017  clmvs1  25018  clmvs2  25019  clm0vs  25020  clmopfne  25021  clmvneg1  25024  clmvsneg  25025  clmsubdir  25027  clmvsubval  25034  zlmclm  25037  cmodscmulexp  25047  iscvs  25052  cvsi  25055  isncvsngp  25074  ttgbtwnid  28860  ttgcontlem1  28861
  Copyright terms: Public domain W3C validator