| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clmlmod | Structured version Visualization version GIF version | ||
| Description: A subcomplex module is a left module. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| Ref | Expression |
|---|---|
| clmlmod | ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ LMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 2 | eqid 2731 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 3 | 1, 2 | isclm 24989 | . 2 ⊢ (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ (Scalar‘𝑊) = (ℂfld ↾s (Base‘(Scalar‘𝑊))) ∧ (Base‘(Scalar‘𝑊)) ∈ (SubRing‘ℂfld))) |
| 4 | 3 | simp1bi 1145 | 1 ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ LMod) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 ↾s cress 17138 Scalarcsca 17161 SubRingcsubrg 20482 LModclmod 20791 ℂfldccnfld 21289 ℂModcclm 24987 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5244 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-ov 7349 df-clm 24988 |
| This theorem is referenced by: clmgrp 24993 clmabl 24994 clmring 24995 clmfgrp 24996 clmvscl 25013 clmvsass 25014 clmvsdir 25016 clmvsdi 25017 clmvs1 25018 clmvs2 25019 clm0vs 25020 clmopfne 25021 clmvneg1 25024 clmvsneg 25025 clmsubdir 25027 clmvsubval 25034 zlmclm 25037 cmodscmulexp 25047 iscvs 25052 cvsi 25055 isncvsngp 25074 ttgbtwnid 28860 ttgcontlem1 28861 |
| Copyright terms: Public domain | W3C validator |