![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clmlmod | Structured version Visualization version GIF version |
Description: A subcomplex module is a left module. (Contributed by Mario Carneiro, 16-Oct-2015.) |
Ref | Expression |
---|---|
clmlmod | ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ LMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
2 | eqid 2740 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
3 | 1, 2 | isclm 25116 | . 2 ⊢ (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ (Scalar‘𝑊) = (ℂfld ↾s (Base‘(Scalar‘𝑊))) ∧ (Base‘(Scalar‘𝑊)) ∈ (SubRing‘ℂfld))) |
4 | 3 | simp1bi 1145 | 1 ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ LMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 ↾s cress 17287 Scalarcsca 17314 SubRingcsubrg 20595 LModclmod 20880 ℂfldccnfld 21387 ℂModcclm 25114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-clm 25115 |
This theorem is referenced by: clmgrp 25120 clmabl 25121 clmring 25122 clmfgrp 25123 clmvscl 25140 clmvsass 25141 clmvsdir 25143 clmvsdi 25144 clmvs1 25145 clmvs2 25146 clm0vs 25147 clmopfne 25148 clmvneg1 25151 clmvsneg 25152 clmsubdir 25154 clmvsubval 25161 zlmclm 25164 cmodscmulexp 25174 iscvs 25179 cvsi 25182 isncvsngp 25202 ttgbtwnid 28916 ttgcontlem1 28917 |
Copyright terms: Public domain | W3C validator |