| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clmlmod | Structured version Visualization version GIF version | ||
| Description: A subcomplex module is a left module. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| Ref | Expression |
|---|---|
| clmlmod | ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ LMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 2 | eqid 2733 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 3 | 1, 2 | isclm 24992 | . 2 ⊢ (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ (Scalar‘𝑊) = (ℂfld ↾s (Base‘(Scalar‘𝑊))) ∧ (Base‘(Scalar‘𝑊)) ∈ (SubRing‘ℂfld))) |
| 4 | 3 | simp1bi 1145 | 1 ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ LMod) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 ↾s cress 17143 Scalarcsca 17166 SubRingcsubrg 20486 LModclmod 20795 ℂfldccnfld 21293 ℂModcclm 24990 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-ov 7355 df-clm 24991 |
| This theorem is referenced by: clmgrp 24996 clmabl 24997 clmring 24998 clmfgrp 24999 clmvscl 25016 clmvsass 25017 clmvsdir 25019 clmvsdi 25020 clmvs1 25021 clmvs2 25022 clm0vs 25023 clmopfne 25024 clmvneg1 25027 clmvsneg 25028 clmsubdir 25030 clmvsubval 25037 zlmclm 25040 cmodscmulexp 25050 iscvs 25055 cvsi 25058 isncvsngp 25077 ttgbtwnid 28863 ttgcontlem1 28864 |
| Copyright terms: Public domain | W3C validator |