| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clmlmod | Structured version Visualization version GIF version | ||
| Description: A subcomplex module is a left module. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| Ref | Expression |
|---|---|
| clmlmod | ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ LMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 2 | eqid 2729 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 3 | 1, 2 | isclm 24980 | . 2 ⊢ (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ (Scalar‘𝑊) = (ℂfld ↾s (Base‘(Scalar‘𝑊))) ∧ (Base‘(Scalar‘𝑊)) ∈ (SubRing‘ℂfld))) |
| 4 | 3 | simp1bi 1145 | 1 ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ LMod) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 ↾s cress 17159 Scalarcsca 17182 SubRingcsubrg 20472 LModclmod 20781 ℂfldccnfld 21279 ℂModcclm 24978 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-ov 7356 df-clm 24979 |
| This theorem is referenced by: clmgrp 24984 clmabl 24985 clmring 24986 clmfgrp 24987 clmvscl 25004 clmvsass 25005 clmvsdir 25007 clmvsdi 25008 clmvs1 25009 clmvs2 25010 clm0vs 25011 clmopfne 25012 clmvneg1 25015 clmvsneg 25016 clmsubdir 25018 clmvsubval 25025 zlmclm 25028 cmodscmulexp 25038 iscvs 25043 cvsi 25046 isncvsngp 25065 ttgbtwnid 28847 ttgcontlem1 28848 |
| Copyright terms: Public domain | W3C validator |