| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clmlmod | Structured version Visualization version GIF version | ||
| Description: A subcomplex module is a left module. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| Ref | Expression |
|---|---|
| clmlmod | ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ LMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 2 | eqid 2730 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 3 | 1, 2 | isclm 24971 | . 2 ⊢ (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ (Scalar‘𝑊) = (ℂfld ↾s (Base‘(Scalar‘𝑊))) ∧ (Base‘(Scalar‘𝑊)) ∈ (SubRing‘ℂfld))) |
| 4 | 3 | simp1bi 1145 | 1 ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ LMod) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 ↾s cress 17207 Scalarcsca 17230 SubRingcsubrg 20485 LModclmod 20773 ℂfldccnfld 21271 ℂModcclm 24969 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-clm 24970 |
| This theorem is referenced by: clmgrp 24975 clmabl 24976 clmring 24977 clmfgrp 24978 clmvscl 24995 clmvsass 24996 clmvsdir 24998 clmvsdi 24999 clmvs1 25000 clmvs2 25001 clm0vs 25002 clmopfne 25003 clmvneg1 25006 clmvsneg 25007 clmsubdir 25009 clmvsubval 25016 zlmclm 25019 cmodscmulexp 25029 iscvs 25034 cvsi 25037 isncvsngp 25056 ttgbtwnid 28818 ttgcontlem1 28819 |
| Copyright terms: Public domain | W3C validator |