| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clmvsubval | Structured version Visualization version GIF version | ||
| Description: Value of vector subtraction in terms of addition in a subcomplex module. Analogue of lmodvsubval2 20854. (Contributed by NM, 31-Mar-2014.) (Revised by AV, 7-Oct-2021.) |
| Ref | Expression |
|---|---|
| clmvsubval.v | ⊢ 𝑉 = (Base‘𝑊) |
| clmvsubval.p | ⊢ + = (+g‘𝑊) |
| clmvsubval.m | ⊢ − = (-g‘𝑊) |
| clmvsubval.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| clmvsubval.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| Ref | Expression |
|---|---|
| clmvsubval | ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 − 𝐵) = (𝐴 + (-1 · 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clmlmod 24997 | . . 3 ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ LMod) | |
| 2 | clmvsubval.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | clmvsubval.p | . . . 4 ⊢ + = (+g‘𝑊) | |
| 4 | clmvsubval.m | . . . 4 ⊢ − = (-g‘𝑊) | |
| 5 | clmvsubval.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 6 | clmvsubval.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 7 | eqid 2733 | . . . 4 ⊢ (invg‘𝐹) = (invg‘𝐹) | |
| 8 | eqid 2733 | . . . 4 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 9 | 2, 3, 4, 5, 6, 7, 8 | lmodvsubval2 20854 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 − 𝐵) = (𝐴 + (((invg‘𝐹)‘(1r‘𝐹)) · 𝐵))) |
| 10 | 1, 9 | syl3an1 1163 | . 2 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 − 𝐵) = (𝐴 + (((invg‘𝐹)‘(1r‘𝐹)) · 𝐵))) |
| 11 | 5 | clm1 25003 | . . . . . . . 8 ⊢ (𝑊 ∈ ℂMod → 1 = (1r‘𝐹)) |
| 12 | 11 | eqcomd 2739 | . . . . . . 7 ⊢ (𝑊 ∈ ℂMod → (1r‘𝐹) = 1) |
| 13 | 12 | fveq2d 6834 | . . . . . 6 ⊢ (𝑊 ∈ ℂMod → ((invg‘𝐹)‘(1r‘𝐹)) = ((invg‘𝐹)‘1)) |
| 14 | 5 | clmring 25000 | . . . . . . . . 9 ⊢ (𝑊 ∈ ℂMod → 𝐹 ∈ Ring) |
| 15 | eqid 2733 | . . . . . . . . . 10 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 16 | 15, 8 | ringidcl 20187 | . . . . . . . . 9 ⊢ (𝐹 ∈ Ring → (1r‘𝐹) ∈ (Base‘𝐹)) |
| 17 | 14, 16 | syl 17 | . . . . . . . 8 ⊢ (𝑊 ∈ ℂMod → (1r‘𝐹) ∈ (Base‘𝐹)) |
| 18 | 11, 17 | eqeltrd 2833 | . . . . . . 7 ⊢ (𝑊 ∈ ℂMod → 1 ∈ (Base‘𝐹)) |
| 19 | 5, 15 | clmneg 25011 | . . . . . . 7 ⊢ ((𝑊 ∈ ℂMod ∧ 1 ∈ (Base‘𝐹)) → -1 = ((invg‘𝐹)‘1)) |
| 20 | 18, 19 | mpdan 687 | . . . . . 6 ⊢ (𝑊 ∈ ℂMod → -1 = ((invg‘𝐹)‘1)) |
| 21 | 13, 20 | eqtr4d 2771 | . . . . 5 ⊢ (𝑊 ∈ ℂMod → ((invg‘𝐹)‘(1r‘𝐹)) = -1) |
| 22 | 21 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((invg‘𝐹)‘(1r‘𝐹)) = -1) |
| 23 | 22 | oveq1d 7369 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (((invg‘𝐹)‘(1r‘𝐹)) · 𝐵) = (-1 · 𝐵)) |
| 24 | 23 | oveq2d 7370 | . 2 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 + (((invg‘𝐹)‘(1r‘𝐹)) · 𝐵)) = (𝐴 + (-1 · 𝐵))) |
| 25 | 10, 24 | eqtrd 2768 | 1 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 − 𝐵) = (𝐴 + (-1 · 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ‘cfv 6488 (class class class)co 7354 1c1 11016 -cneg 11354 Basecbs 17124 +gcplusg 17165 Scalarcsca 17168 ·𝑠 cvsca 17169 invgcminusg 18851 -gcsg 18852 1rcur 20103 Ringcrg 20155 LModclmod 20797 ℂModcclm 24992 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-addf 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-7 12202 df-8 12203 df-9 12204 df-n0 12391 df-z 12478 df-dec 12597 df-uz 12741 df-fz 13412 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-ress 17146 df-plusg 17178 df-mulr 17179 df-starv 17180 df-tset 17184 df-ple 17185 df-ds 17187 df-unif 17188 df-0g 17349 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-grp 18853 df-minusg 18854 df-sbg 18855 df-subg 19040 df-cmn 19698 df-mgp 20063 df-ur 20104 df-ring 20157 df-cring 20158 df-subrg 20489 df-lmod 20799 df-cnfld 21296 df-clm 24993 |
| This theorem is referenced by: clmvsubval2 25040 ncvsdif 25085 ncvspds 25091 cphipval 25173 |
| Copyright terms: Public domain | W3C validator |