MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clmvsubval Structured version   Visualization version   GIF version

Theorem clmvsubval 25161
Description: Value of vector subtraction in terms of addition in a subcomplex module. Analogue of lmodvsubval2 20937. (Contributed by NM, 31-Mar-2014.) (Revised by AV, 7-Oct-2021.)
Hypotheses
Ref Expression
clmvsubval.v 𝑉 = (Base‘𝑊)
clmvsubval.p + = (+g𝑊)
clmvsubval.m = (-g𝑊)
clmvsubval.f 𝐹 = (Scalar‘𝑊)
clmvsubval.s · = ( ·𝑠𝑊)
Assertion
Ref Expression
clmvsubval ((𝑊 ∈ ℂMod ∧ 𝐴𝑉𝐵𝑉) → (𝐴 𝐵) = (𝐴 + (-1 · 𝐵)))

Proof of Theorem clmvsubval
StepHypRef Expression
1 clmlmod 25119 . . 3 (𝑊 ∈ ℂMod → 𝑊 ∈ LMod)
2 clmvsubval.v . . . 4 𝑉 = (Base‘𝑊)
3 clmvsubval.p . . . 4 + = (+g𝑊)
4 clmvsubval.m . . . 4 = (-g𝑊)
5 clmvsubval.f . . . 4 𝐹 = (Scalar‘𝑊)
6 clmvsubval.s . . . 4 · = ( ·𝑠𝑊)
7 eqid 2740 . . . 4 (invg𝐹) = (invg𝐹)
8 eqid 2740 . . . 4 (1r𝐹) = (1r𝐹)
92, 3, 4, 5, 6, 7, 8lmodvsubval2 20937 . . 3 ((𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉) → (𝐴 𝐵) = (𝐴 + (((invg𝐹)‘(1r𝐹)) · 𝐵)))
101, 9syl3an1 1163 . 2 ((𝑊 ∈ ℂMod ∧ 𝐴𝑉𝐵𝑉) → (𝐴 𝐵) = (𝐴 + (((invg𝐹)‘(1r𝐹)) · 𝐵)))
115clm1 25125 . . . . . . . 8 (𝑊 ∈ ℂMod → 1 = (1r𝐹))
1211eqcomd 2746 . . . . . . 7 (𝑊 ∈ ℂMod → (1r𝐹) = 1)
1312fveq2d 6924 . . . . . 6 (𝑊 ∈ ℂMod → ((invg𝐹)‘(1r𝐹)) = ((invg𝐹)‘1))
145clmring 25122 . . . . . . . . 9 (𝑊 ∈ ℂMod → 𝐹 ∈ Ring)
15 eqid 2740 . . . . . . . . . 10 (Base‘𝐹) = (Base‘𝐹)
1615, 8ringidcl 20289 . . . . . . . . 9 (𝐹 ∈ Ring → (1r𝐹) ∈ (Base‘𝐹))
1714, 16syl 17 . . . . . . . 8 (𝑊 ∈ ℂMod → (1r𝐹) ∈ (Base‘𝐹))
1811, 17eqeltrd 2844 . . . . . . 7 (𝑊 ∈ ℂMod → 1 ∈ (Base‘𝐹))
195, 15clmneg 25133 . . . . . . 7 ((𝑊 ∈ ℂMod ∧ 1 ∈ (Base‘𝐹)) → -1 = ((invg𝐹)‘1))
2018, 19mpdan 686 . . . . . 6 (𝑊 ∈ ℂMod → -1 = ((invg𝐹)‘1))
2113, 20eqtr4d 2783 . . . . 5 (𝑊 ∈ ℂMod → ((invg𝐹)‘(1r𝐹)) = -1)
22213ad2ant1 1133 . . . 4 ((𝑊 ∈ ℂMod ∧ 𝐴𝑉𝐵𝑉) → ((invg𝐹)‘(1r𝐹)) = -1)
2322oveq1d 7463 . . 3 ((𝑊 ∈ ℂMod ∧ 𝐴𝑉𝐵𝑉) → (((invg𝐹)‘(1r𝐹)) · 𝐵) = (-1 · 𝐵))
2423oveq2d 7464 . 2 ((𝑊 ∈ ℂMod ∧ 𝐴𝑉𝐵𝑉) → (𝐴 + (((invg𝐹)‘(1r𝐹)) · 𝐵)) = (𝐴 + (-1 · 𝐵)))
2510, 24eqtrd 2780 1 ((𝑊 ∈ ℂMod ∧ 𝐴𝑉𝐵𝑉) → (𝐴 𝐵) = (𝐴 + (-1 · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  1c1 11185  -cneg 11521  Basecbs 17258  +gcplusg 17311  Scalarcsca 17314   ·𝑠 cvsca 17315  invgcminusg 18974  -gcsg 18975  1rcur 20208  Ringcrg 20260  LModclmod 20880  ℂModcclm 25114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-cmn 19824  df-mgp 20162  df-ur 20209  df-ring 20262  df-cring 20263  df-subrg 20597  df-lmod 20882  df-cnfld 21388  df-clm 25115
This theorem is referenced by:  clmvsubval2  25162  ncvsdif  25208  ncvspds  25214  cphipval  25296
  Copyright terms: Public domain W3C validator