Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clmvsubval | Structured version Visualization version GIF version |
Description: Value of vector subtraction in terms of addition in a subcomplex module. Analogue of lmodvsubval2 20093. (Contributed by NM, 31-Mar-2014.) (Revised by AV, 7-Oct-2021.) |
Ref | Expression |
---|---|
clmvsubval.v | ⊢ 𝑉 = (Base‘𝑊) |
clmvsubval.p | ⊢ + = (+g‘𝑊) |
clmvsubval.m | ⊢ − = (-g‘𝑊) |
clmvsubval.f | ⊢ 𝐹 = (Scalar‘𝑊) |
clmvsubval.s | ⊢ · = ( ·𝑠 ‘𝑊) |
Ref | Expression |
---|---|
clmvsubval | ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 − 𝐵) = (𝐴 + (-1 · 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clmlmod 24136 | . . 3 ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ LMod) | |
2 | clmvsubval.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
3 | clmvsubval.p | . . . 4 ⊢ + = (+g‘𝑊) | |
4 | clmvsubval.m | . . . 4 ⊢ − = (-g‘𝑊) | |
5 | clmvsubval.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
6 | clmvsubval.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
7 | eqid 2738 | . . . 4 ⊢ (invg‘𝐹) = (invg‘𝐹) | |
8 | eqid 2738 | . . . 4 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
9 | 2, 3, 4, 5, 6, 7, 8 | lmodvsubval2 20093 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 − 𝐵) = (𝐴 + (((invg‘𝐹)‘(1r‘𝐹)) · 𝐵))) |
10 | 1, 9 | syl3an1 1161 | . 2 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 − 𝐵) = (𝐴 + (((invg‘𝐹)‘(1r‘𝐹)) · 𝐵))) |
11 | 5 | clm1 24142 | . . . . . . . 8 ⊢ (𝑊 ∈ ℂMod → 1 = (1r‘𝐹)) |
12 | 11 | eqcomd 2744 | . . . . . . 7 ⊢ (𝑊 ∈ ℂMod → (1r‘𝐹) = 1) |
13 | 12 | fveq2d 6760 | . . . . . 6 ⊢ (𝑊 ∈ ℂMod → ((invg‘𝐹)‘(1r‘𝐹)) = ((invg‘𝐹)‘1)) |
14 | 5 | clmring 24139 | . . . . . . . . 9 ⊢ (𝑊 ∈ ℂMod → 𝐹 ∈ Ring) |
15 | eqid 2738 | . . . . . . . . . 10 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
16 | 15, 8 | ringidcl 19722 | . . . . . . . . 9 ⊢ (𝐹 ∈ Ring → (1r‘𝐹) ∈ (Base‘𝐹)) |
17 | 14, 16 | syl 17 | . . . . . . . 8 ⊢ (𝑊 ∈ ℂMod → (1r‘𝐹) ∈ (Base‘𝐹)) |
18 | 11, 17 | eqeltrd 2839 | . . . . . . 7 ⊢ (𝑊 ∈ ℂMod → 1 ∈ (Base‘𝐹)) |
19 | 5, 15 | clmneg 24150 | . . . . . . 7 ⊢ ((𝑊 ∈ ℂMod ∧ 1 ∈ (Base‘𝐹)) → -1 = ((invg‘𝐹)‘1)) |
20 | 18, 19 | mpdan 683 | . . . . . 6 ⊢ (𝑊 ∈ ℂMod → -1 = ((invg‘𝐹)‘1)) |
21 | 13, 20 | eqtr4d 2781 | . . . . 5 ⊢ (𝑊 ∈ ℂMod → ((invg‘𝐹)‘(1r‘𝐹)) = -1) |
22 | 21 | 3ad2ant1 1131 | . . . 4 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((invg‘𝐹)‘(1r‘𝐹)) = -1) |
23 | 22 | oveq1d 7270 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (((invg‘𝐹)‘(1r‘𝐹)) · 𝐵) = (-1 · 𝐵)) |
24 | 23 | oveq2d 7271 | . 2 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 + (((invg‘𝐹)‘(1r‘𝐹)) · 𝐵)) = (𝐴 + (-1 · 𝐵))) |
25 | 10, 24 | eqtrd 2778 | 1 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 − 𝐵) = (𝐴 + (-1 · 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 1c1 10803 -cneg 11136 Basecbs 16840 +gcplusg 16888 Scalarcsca 16891 ·𝑠 cvsca 16892 invgcminusg 18493 -gcsg 18494 1rcur 19652 Ringcrg 19698 LModclmod 20038 ℂModcclm 24131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-cmn 19303 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-subrg 19937 df-lmod 20040 df-cnfld 20511 df-clm 24132 |
This theorem is referenced by: clmvsubval2 24179 ncvsdif 24224 ncvspds 24230 cphipval 24312 |
Copyright terms: Public domain | W3C validator |