![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clmvsubval | Structured version Visualization version GIF version |
Description: Value of vector subtraction in terms of addition in a subcomplex module. Analogue of lmodvsubval2 20886. (Contributed by NM, 31-Mar-2014.) (Revised by AV, 7-Oct-2021.) |
Ref | Expression |
---|---|
clmvsubval.v | ⊢ 𝑉 = (Base‘𝑊) |
clmvsubval.p | ⊢ + = (+g‘𝑊) |
clmvsubval.m | ⊢ − = (-g‘𝑊) |
clmvsubval.f | ⊢ 𝐹 = (Scalar‘𝑊) |
clmvsubval.s | ⊢ · = ( ·𝑠 ‘𝑊) |
Ref | Expression |
---|---|
clmvsubval | ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 − 𝐵) = (𝐴 + (-1 · 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clmlmod 25079 | . . 3 ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ LMod) | |
2 | clmvsubval.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
3 | clmvsubval.p | . . . 4 ⊢ + = (+g‘𝑊) | |
4 | clmvsubval.m | . . . 4 ⊢ − = (-g‘𝑊) | |
5 | clmvsubval.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
6 | clmvsubval.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
7 | eqid 2726 | . . . 4 ⊢ (invg‘𝐹) = (invg‘𝐹) | |
8 | eqid 2726 | . . . 4 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
9 | 2, 3, 4, 5, 6, 7, 8 | lmodvsubval2 20886 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 − 𝐵) = (𝐴 + (((invg‘𝐹)‘(1r‘𝐹)) · 𝐵))) |
10 | 1, 9 | syl3an1 1160 | . 2 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 − 𝐵) = (𝐴 + (((invg‘𝐹)‘(1r‘𝐹)) · 𝐵))) |
11 | 5 | clm1 25085 | . . . . . . . 8 ⊢ (𝑊 ∈ ℂMod → 1 = (1r‘𝐹)) |
12 | 11 | eqcomd 2732 | . . . . . . 7 ⊢ (𝑊 ∈ ℂMod → (1r‘𝐹) = 1) |
13 | 12 | fveq2d 6894 | . . . . . 6 ⊢ (𝑊 ∈ ℂMod → ((invg‘𝐹)‘(1r‘𝐹)) = ((invg‘𝐹)‘1)) |
14 | 5 | clmring 25082 | . . . . . . . . 9 ⊢ (𝑊 ∈ ℂMod → 𝐹 ∈ Ring) |
15 | eqid 2726 | . . . . . . . . . 10 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
16 | 15, 8 | ringidcl 20238 | . . . . . . . . 9 ⊢ (𝐹 ∈ Ring → (1r‘𝐹) ∈ (Base‘𝐹)) |
17 | 14, 16 | syl 17 | . . . . . . . 8 ⊢ (𝑊 ∈ ℂMod → (1r‘𝐹) ∈ (Base‘𝐹)) |
18 | 11, 17 | eqeltrd 2826 | . . . . . . 7 ⊢ (𝑊 ∈ ℂMod → 1 ∈ (Base‘𝐹)) |
19 | 5, 15 | clmneg 25093 | . . . . . . 7 ⊢ ((𝑊 ∈ ℂMod ∧ 1 ∈ (Base‘𝐹)) → -1 = ((invg‘𝐹)‘1)) |
20 | 18, 19 | mpdan 685 | . . . . . 6 ⊢ (𝑊 ∈ ℂMod → -1 = ((invg‘𝐹)‘1)) |
21 | 13, 20 | eqtr4d 2769 | . . . . 5 ⊢ (𝑊 ∈ ℂMod → ((invg‘𝐹)‘(1r‘𝐹)) = -1) |
22 | 21 | 3ad2ant1 1130 | . . . 4 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((invg‘𝐹)‘(1r‘𝐹)) = -1) |
23 | 22 | oveq1d 7428 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (((invg‘𝐹)‘(1r‘𝐹)) · 𝐵) = (-1 · 𝐵)) |
24 | 23 | oveq2d 7429 | . 2 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 + (((invg‘𝐹)‘(1r‘𝐹)) · 𝐵)) = (𝐴 + (-1 · 𝐵))) |
25 | 10, 24 | eqtrd 2766 | 1 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 − 𝐵) = (𝐴 + (-1 · 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ‘cfv 6543 (class class class)co 7413 1c1 11147 -cneg 11483 Basecbs 17205 +gcplusg 17258 Scalarcsca 17261 ·𝑠 cvsca 17262 invgcminusg 18921 -gcsg 18922 1rcur 20157 Ringcrg 20209 LModclmod 20829 ℂModcclm 25074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7735 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-addf 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4906 df-iun 4995 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6302 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-1st 7992 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12256 df-2 12318 df-3 12319 df-4 12320 df-5 12321 df-6 12322 df-7 12323 df-8 12324 df-9 12325 df-n0 12516 df-z 12602 df-dec 12721 df-uz 12866 df-fz 13530 df-struct 17141 df-sets 17158 df-slot 17176 df-ndx 17188 df-base 17206 df-ress 17235 df-plusg 17271 df-mulr 17272 df-starv 17273 df-tset 17277 df-ple 17278 df-ds 17280 df-unif 17281 df-0g 17448 df-mgm 18625 df-sgrp 18704 df-mnd 18720 df-grp 18923 df-minusg 18924 df-sbg 18925 df-subg 19110 df-cmn 19773 df-mgp 20111 df-ur 20158 df-ring 20211 df-cring 20212 df-subrg 20546 df-lmod 20831 df-cnfld 21337 df-clm 25075 |
This theorem is referenced by: clmvsubval2 25122 ncvsdif 25168 ncvspds 25174 cphipval 25256 |
Copyright terms: Public domain | W3C validator |