![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clmfgrp | Structured version Visualization version GIF version |
Description: The scalar ring of a subcomplex module is a group. (Contributed by Mario Carneiro, 16-Oct-2015.) |
Ref | Expression |
---|---|
clm0.f | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
clmfgrp | ⊢ (𝑊 ∈ ℂMod → 𝐹 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clmlmod 24968 | . 2 ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ LMod) | |
2 | clm0.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | 2 | lmodfgrp 20734 | . 2 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
4 | 1, 3 | syl 17 | 1 ⊢ (𝑊 ∈ ℂMod → 𝐹 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ‘cfv 6542 Scalarcsca 17221 Grpcgrp 18875 LModclmod 20725 ℂModcclm 24963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 ax-nul 5300 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-ne 2936 df-ral 3057 df-rab 3428 df-v 3471 df-sbc 3775 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-iota 6494 df-fv 6550 df-ov 7417 df-ring 20159 df-lmod 20727 df-clm 24964 |
This theorem is referenced by: ncvspi 25058 |
Copyright terms: Public domain | W3C validator |