Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clmfgrp | Structured version Visualization version GIF version |
Description: The scalar ring of a subcomplex module is a group. (Contributed by Mario Carneiro, 16-Oct-2015.) |
Ref | Expression |
---|---|
clm0.f | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
clmfgrp | ⊢ (𝑊 ∈ ℂMod → 𝐹 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clmlmod 24258 | . 2 ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ LMod) | |
2 | clm0.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | 2 | lmodfgrp 20160 | . 2 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
4 | 1, 3 | syl 17 | 1 ⊢ (𝑊 ∈ ℂMod → 𝐹 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2101 ‘cfv 6447 Scalarcsca 16993 Grpcgrp 18605 LModclmod 20151 ℂModcclm 24253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-ext 2704 ax-nul 5233 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2063 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2939 df-ral 3060 df-rab 3224 df-v 3436 df-sbc 3719 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-br 5078 df-iota 6399 df-fv 6455 df-ov 7298 df-ring 19813 df-lmod 20153 df-clm 24254 |
This theorem is referenced by: ncvspi 24348 |
Copyright terms: Public domain | W3C validator |