MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clmfgrp Structured version   Visualization version   GIF version

Theorem clmfgrp 24262
Description: The scalar ring of a subcomplex module is a group. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypothesis
Ref Expression
clm0.f 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
clmfgrp (𝑊 ∈ ℂMod → 𝐹 ∈ Grp)

Proof of Theorem clmfgrp
StepHypRef Expression
1 clmlmod 24258 . 2 (𝑊 ∈ ℂMod → 𝑊 ∈ LMod)
2 clm0.f . . 3 𝐹 = (Scalar‘𝑊)
32lmodfgrp 20160 . 2 (𝑊 ∈ LMod → 𝐹 ∈ Grp)
41, 3syl 17 1 (𝑊 ∈ ℂMod → 𝐹 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2101  cfv 6447  Scalarcsca 16993  Grpcgrp 18605  LModclmod 20151  ℂModcclm 24253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-ext 2704  ax-nul 5233
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2063  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2939  df-ral 3060  df-rab 3224  df-v 3436  df-sbc 3719  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-nul 4260  df-if 4463  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-br 5078  df-iota 6399  df-fv 6455  df-ov 7298  df-ring 19813  df-lmod 20153  df-clm 24254
This theorem is referenced by:  ncvspi  24348
  Copyright terms: Public domain W3C validator