| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cvsmuleqdivd | Structured version Visualization version GIF version | ||
| Description: An equality involving ratios in a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019.) |
| Ref | Expression |
|---|---|
| cvsdiveqd.v | ⊢ 𝑉 = (Base‘𝑊) |
| cvsdiveqd.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| cvsdiveqd.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| cvsdiveqd.k | ⊢ 𝐾 = (Base‘𝐹) |
| cvsdiveqd.w | ⊢ (𝜑 → 𝑊 ∈ ℂVec) |
| cvsdiveqd.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
| cvsdiveqd.b | ⊢ (𝜑 → 𝐵 ∈ 𝐾) |
| cvsdiveqd.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| cvsdiveqd.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| cvsdiveqd.1 | ⊢ (𝜑 → 𝐴 ≠ 0) |
| cvsmuleqdivd.1 | ⊢ (𝜑 → (𝐴 · 𝑋) = (𝐵 · 𝑌)) |
| Ref | Expression |
|---|---|
| cvsmuleqdivd | ⊢ (𝜑 → 𝑋 = ((𝐵 / 𝐴) · 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvsmuleqdivd.1 | . . 3 ⊢ (𝜑 → (𝐴 · 𝑋) = (𝐵 · 𝑌)) | |
| 2 | 1 | oveq2d 7403 | . 2 ⊢ (𝜑 → ((1 / 𝐴) · (𝐴 · 𝑋)) = ((1 / 𝐴) · (𝐵 · 𝑌))) |
| 3 | cvsdiveqd.w | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ ℂVec) | |
| 4 | 3 | cvsclm 25026 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ ℂMod) |
| 5 | cvsdiveqd.f | . . . . . . . 8 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 6 | cvsdiveqd.k | . . . . . . . 8 ⊢ 𝐾 = (Base‘𝐹) | |
| 7 | 5, 6 | clmsscn 24979 | . . . . . . 7 ⊢ (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ) |
| 8 | 4, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐾 ⊆ ℂ) |
| 9 | cvsdiveqd.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
| 10 | 8, 9 | sseldd 3947 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 11 | cvsdiveqd.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ 0) | |
| 12 | 10, 11 | recid2d 11954 | . . . 4 ⊢ (𝜑 → ((1 / 𝐴) · 𝐴) = 1) |
| 13 | 12 | oveq1d 7402 | . . 3 ⊢ (𝜑 → (((1 / 𝐴) · 𝐴) · 𝑋) = (1 · 𝑋)) |
| 14 | 5 | clm1 24973 | . . . . . . 7 ⊢ (𝑊 ∈ ℂMod → 1 = (1r‘𝐹)) |
| 15 | 4, 14 | syl 17 | . . . . . 6 ⊢ (𝜑 → 1 = (1r‘𝐹)) |
| 16 | 5 | clmring 24970 | . . . . . . 7 ⊢ (𝑊 ∈ ℂMod → 𝐹 ∈ Ring) |
| 17 | eqid 2729 | . . . . . . . 8 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 18 | 6, 17 | ringidcl 20174 | . . . . . . 7 ⊢ (𝐹 ∈ Ring → (1r‘𝐹) ∈ 𝐾) |
| 19 | 4, 16, 18 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → (1r‘𝐹) ∈ 𝐾) |
| 20 | 15, 19 | eqeltrd 2828 | . . . . 5 ⊢ (𝜑 → 1 ∈ 𝐾) |
| 21 | 5, 6 | cvsdivcl 25033 | . . . . 5 ⊢ ((𝑊 ∈ ℂVec ∧ (1 ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0)) → (1 / 𝐴) ∈ 𝐾) |
| 22 | 3, 20, 9, 11, 21 | syl13anc 1374 | . . . 4 ⊢ (𝜑 → (1 / 𝐴) ∈ 𝐾) |
| 23 | cvsdiveqd.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 24 | cvsdiveqd.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 25 | cvsdiveqd.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 26 | 24, 5, 25, 6 | clmvsass 24989 | . . . 4 ⊢ ((𝑊 ∈ ℂMod ∧ ((1 / 𝐴) ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (((1 / 𝐴) · 𝐴) · 𝑋) = ((1 / 𝐴) · (𝐴 · 𝑋))) |
| 27 | 4, 22, 9, 23, 26 | syl13anc 1374 | . . 3 ⊢ (𝜑 → (((1 / 𝐴) · 𝐴) · 𝑋) = ((1 / 𝐴) · (𝐴 · 𝑋))) |
| 28 | 24, 25 | clmvs1 24993 | . . . 4 ⊢ ((𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉) → (1 · 𝑋) = 𝑋) |
| 29 | 4, 23, 28 | syl2anc 584 | . . 3 ⊢ (𝜑 → (1 · 𝑋) = 𝑋) |
| 30 | 13, 27, 29 | 3eqtr3d 2772 | . 2 ⊢ (𝜑 → ((1 / 𝐴) · (𝐴 · 𝑋)) = 𝑋) |
| 31 | cvsdiveqd.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝐾) | |
| 32 | 8, 31 | sseldd 3947 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 33 | 32, 10, 11 | divrec2d 11962 | . . . 4 ⊢ (𝜑 → (𝐵 / 𝐴) = ((1 / 𝐴) · 𝐵)) |
| 34 | 33 | oveq1d 7402 | . . 3 ⊢ (𝜑 → ((𝐵 / 𝐴) · 𝑌) = (((1 / 𝐴) · 𝐵) · 𝑌)) |
| 35 | cvsdiveqd.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 36 | 24, 5, 25, 6 | clmvsass 24989 | . . . 4 ⊢ ((𝑊 ∈ ℂMod ∧ ((1 / 𝐴) ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉)) → (((1 / 𝐴) · 𝐵) · 𝑌) = ((1 / 𝐴) · (𝐵 · 𝑌))) |
| 37 | 4, 22, 31, 35, 36 | syl13anc 1374 | . . 3 ⊢ (𝜑 → (((1 / 𝐴) · 𝐵) · 𝑌) = ((1 / 𝐴) · (𝐵 · 𝑌))) |
| 38 | 34, 37 | eqtr2d 2765 | . 2 ⊢ (𝜑 → ((1 / 𝐴) · (𝐵 · 𝑌)) = ((𝐵 / 𝐴) · 𝑌)) |
| 39 | 2, 30, 38 | 3eqtr3d 2772 | 1 ⊢ (𝜑 → 𝑋 = ((𝐵 / 𝐴) · 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ⊆ wss 3914 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 0cc0 11068 1c1 11069 · cmul 11073 / cdiv 11835 Basecbs 17179 Scalarcsca 17223 ·𝑠 cvsca 17224 1rcur 20090 Ringcrg 20142 ℂModcclm 24962 ℂVecccvs 25023 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-subg 19055 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-dvr 20310 df-subrg 20479 df-drng 20640 df-lmod 20768 df-lvec 21010 df-cnfld 21265 df-clm 24963 df-cvs 25024 |
| This theorem is referenced by: ttgcontlem1 28812 |
| Copyright terms: Public domain | W3C validator |