MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cvsmuleqdivd Structured version   Visualization version   GIF version

Theorem cvsmuleqdivd 25090
Description: An equality involving ratios in a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019.)
Hypotheses
Ref Expression
cvsdiveqd.v 𝑉 = (Base‘𝑊)
cvsdiveqd.t · = ( ·𝑠𝑊)
cvsdiveqd.f 𝐹 = (Scalar‘𝑊)
cvsdiveqd.k 𝐾 = (Base‘𝐹)
cvsdiveqd.w (𝜑𝑊 ∈ ℂVec)
cvsdiveqd.a (𝜑𝐴𝐾)
cvsdiveqd.b (𝜑𝐵𝐾)
cvsdiveqd.x (𝜑𝑋𝑉)
cvsdiveqd.y (𝜑𝑌𝑉)
cvsdiveqd.1 (𝜑𝐴 ≠ 0)
cvsmuleqdivd.1 (𝜑 → (𝐴 · 𝑋) = (𝐵 · 𝑌))
Assertion
Ref Expression
cvsmuleqdivd (𝜑𝑋 = ((𝐵 / 𝐴) · 𝑌))

Proof of Theorem cvsmuleqdivd
StepHypRef Expression
1 cvsmuleqdivd.1 . . 3 (𝜑 → (𝐴 · 𝑋) = (𝐵 · 𝑌))
21oveq2d 7426 . 2 (𝜑 → ((1 / 𝐴) · (𝐴 · 𝑋)) = ((1 / 𝐴) · (𝐵 · 𝑌)))
3 cvsdiveqd.w . . . . . . . 8 (𝜑𝑊 ∈ ℂVec)
43cvsclm 25082 . . . . . . 7 (𝜑𝑊 ∈ ℂMod)
5 cvsdiveqd.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
6 cvsdiveqd.k . . . . . . . 8 𝐾 = (Base‘𝐹)
75, 6clmsscn 25035 . . . . . . 7 (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ)
84, 7syl 17 . . . . . 6 (𝜑𝐾 ⊆ ℂ)
9 cvsdiveqd.a . . . . . 6 (𝜑𝐴𝐾)
108, 9sseldd 3964 . . . . 5 (𝜑𝐴 ∈ ℂ)
11 cvsdiveqd.1 . . . . 5 (𝜑𝐴 ≠ 0)
1210, 11recid2d 12018 . . . 4 (𝜑 → ((1 / 𝐴) · 𝐴) = 1)
1312oveq1d 7425 . . 3 (𝜑 → (((1 / 𝐴) · 𝐴) · 𝑋) = (1 · 𝑋))
145clm1 25029 . . . . . . 7 (𝑊 ∈ ℂMod → 1 = (1r𝐹))
154, 14syl 17 . . . . . 6 (𝜑 → 1 = (1r𝐹))
165clmring 25026 . . . . . . 7 (𝑊 ∈ ℂMod → 𝐹 ∈ Ring)
17 eqid 2736 . . . . . . . 8 (1r𝐹) = (1r𝐹)
186, 17ringidcl 20230 . . . . . . 7 (𝐹 ∈ Ring → (1r𝐹) ∈ 𝐾)
194, 16, 183syl 18 . . . . . 6 (𝜑 → (1r𝐹) ∈ 𝐾)
2015, 19eqeltrd 2835 . . . . 5 (𝜑 → 1 ∈ 𝐾)
215, 6cvsdivcl 25089 . . . . 5 ((𝑊 ∈ ℂVec ∧ (1 ∈ 𝐾𝐴𝐾𝐴 ≠ 0)) → (1 / 𝐴) ∈ 𝐾)
223, 20, 9, 11, 21syl13anc 1374 . . . 4 (𝜑 → (1 / 𝐴) ∈ 𝐾)
23 cvsdiveqd.x . . . 4 (𝜑𝑋𝑉)
24 cvsdiveqd.v . . . . 5 𝑉 = (Base‘𝑊)
25 cvsdiveqd.t . . . . 5 · = ( ·𝑠𝑊)
2624, 5, 25, 6clmvsass 25045 . . . 4 ((𝑊 ∈ ℂMod ∧ ((1 / 𝐴) ∈ 𝐾𝐴𝐾𝑋𝑉)) → (((1 / 𝐴) · 𝐴) · 𝑋) = ((1 / 𝐴) · (𝐴 · 𝑋)))
274, 22, 9, 23, 26syl13anc 1374 . . 3 (𝜑 → (((1 / 𝐴) · 𝐴) · 𝑋) = ((1 / 𝐴) · (𝐴 · 𝑋)))
2824, 25clmvs1 25049 . . . 4 ((𝑊 ∈ ℂMod ∧ 𝑋𝑉) → (1 · 𝑋) = 𝑋)
294, 23, 28syl2anc 584 . . 3 (𝜑 → (1 · 𝑋) = 𝑋)
3013, 27, 293eqtr3d 2779 . 2 (𝜑 → ((1 / 𝐴) · (𝐴 · 𝑋)) = 𝑋)
31 cvsdiveqd.b . . . . . 6 (𝜑𝐵𝐾)
328, 31sseldd 3964 . . . . 5 (𝜑𝐵 ∈ ℂ)
3332, 10, 11divrec2d 12026 . . . 4 (𝜑 → (𝐵 / 𝐴) = ((1 / 𝐴) · 𝐵))
3433oveq1d 7425 . . 3 (𝜑 → ((𝐵 / 𝐴) · 𝑌) = (((1 / 𝐴) · 𝐵) · 𝑌))
35 cvsdiveqd.y . . . 4 (𝜑𝑌𝑉)
3624, 5, 25, 6clmvsass 25045 . . . 4 ((𝑊 ∈ ℂMod ∧ ((1 / 𝐴) ∈ 𝐾𝐵𝐾𝑌𝑉)) → (((1 / 𝐴) · 𝐵) · 𝑌) = ((1 / 𝐴) · (𝐵 · 𝑌)))
374, 22, 31, 35, 36syl13anc 1374 . . 3 (𝜑 → (((1 / 𝐴) · 𝐵) · 𝑌) = ((1 / 𝐴) · (𝐵 · 𝑌)))
3834, 37eqtr2d 2772 . 2 (𝜑 → ((1 / 𝐴) · (𝐵 · 𝑌)) = ((𝐵 / 𝐴) · 𝑌))
392, 30, 383eqtr3d 2779 1 (𝜑𝑋 = ((𝐵 / 𝐴) · 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2933  wss 3931  cfv 6536  (class class class)co 7410  cc 11132  0cc0 11134  1c1 11135   · cmul 11139   / cdiv 11899  Basecbs 17233  Scalarcsca 17279   ·𝑠 cvsca 17280  1rcur 20146  Ringcrg 20198  ℂModcclm 25018  ℂVecccvs 25079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-addf 11213  ax-mulf 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-subg 19111  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-dvr 20366  df-subrg 20535  df-drng 20696  df-lmod 20824  df-lvec 21066  df-cnfld 21321  df-clm 25019  df-cvs 25080
This theorem is referenced by:  ttgcontlem1  28869
  Copyright terms: Public domain W3C validator