MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cvsmuleqdivd Structured version   Visualization version   GIF version

Theorem cvsmuleqdivd 25071
Description: An equality involving ratios in a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019.)
Hypotheses
Ref Expression
cvsdiveqd.v 𝑉 = (Base‘𝑊)
cvsdiveqd.t · = ( ·𝑠𝑊)
cvsdiveqd.f 𝐹 = (Scalar‘𝑊)
cvsdiveqd.k 𝐾 = (Base‘𝐹)
cvsdiveqd.w (𝜑𝑊 ∈ ℂVec)
cvsdiveqd.a (𝜑𝐴𝐾)
cvsdiveqd.b (𝜑𝐵𝐾)
cvsdiveqd.x (𝜑𝑋𝑉)
cvsdiveqd.y (𝜑𝑌𝑉)
cvsdiveqd.1 (𝜑𝐴 ≠ 0)
cvsmuleqdivd.1 (𝜑 → (𝐴 · 𝑋) = (𝐵 · 𝑌))
Assertion
Ref Expression
cvsmuleqdivd (𝜑𝑋 = ((𝐵 / 𝐴) · 𝑌))

Proof of Theorem cvsmuleqdivd
StepHypRef Expression
1 cvsmuleqdivd.1 . . 3 (𝜑 → (𝐴 · 𝑋) = (𝐵 · 𝑌))
21oveq2d 7371 . 2 (𝜑 → ((1 / 𝐴) · (𝐴 · 𝑋)) = ((1 / 𝐴) · (𝐵 · 𝑌)))
3 cvsdiveqd.w . . . . . . . 8 (𝜑𝑊 ∈ ℂVec)
43cvsclm 25063 . . . . . . 7 (𝜑𝑊 ∈ ℂMod)
5 cvsdiveqd.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
6 cvsdiveqd.k . . . . . . . 8 𝐾 = (Base‘𝐹)
75, 6clmsscn 25016 . . . . . . 7 (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ)
84, 7syl 17 . . . . . 6 (𝜑𝐾 ⊆ ℂ)
9 cvsdiveqd.a . . . . . 6 (𝜑𝐴𝐾)
108, 9sseldd 3932 . . . . 5 (𝜑𝐴 ∈ ℂ)
11 cvsdiveqd.1 . . . . 5 (𝜑𝐴 ≠ 0)
1210, 11recid2d 11903 . . . 4 (𝜑 → ((1 / 𝐴) · 𝐴) = 1)
1312oveq1d 7370 . . 3 (𝜑 → (((1 / 𝐴) · 𝐴) · 𝑋) = (1 · 𝑋))
145clm1 25010 . . . . . . 7 (𝑊 ∈ ℂMod → 1 = (1r𝐹))
154, 14syl 17 . . . . . 6 (𝜑 → 1 = (1r𝐹))
165clmring 25007 . . . . . . 7 (𝑊 ∈ ℂMod → 𝐹 ∈ Ring)
17 eqid 2733 . . . . . . . 8 (1r𝐹) = (1r𝐹)
186, 17ringidcl 20193 . . . . . . 7 (𝐹 ∈ Ring → (1r𝐹) ∈ 𝐾)
194, 16, 183syl 18 . . . . . 6 (𝜑 → (1r𝐹) ∈ 𝐾)
2015, 19eqeltrd 2833 . . . . 5 (𝜑 → 1 ∈ 𝐾)
215, 6cvsdivcl 25070 . . . . 5 ((𝑊 ∈ ℂVec ∧ (1 ∈ 𝐾𝐴𝐾𝐴 ≠ 0)) → (1 / 𝐴) ∈ 𝐾)
223, 20, 9, 11, 21syl13anc 1374 . . . 4 (𝜑 → (1 / 𝐴) ∈ 𝐾)
23 cvsdiveqd.x . . . 4 (𝜑𝑋𝑉)
24 cvsdiveqd.v . . . . 5 𝑉 = (Base‘𝑊)
25 cvsdiveqd.t . . . . 5 · = ( ·𝑠𝑊)
2624, 5, 25, 6clmvsass 25026 . . . 4 ((𝑊 ∈ ℂMod ∧ ((1 / 𝐴) ∈ 𝐾𝐴𝐾𝑋𝑉)) → (((1 / 𝐴) · 𝐴) · 𝑋) = ((1 / 𝐴) · (𝐴 · 𝑋)))
274, 22, 9, 23, 26syl13anc 1374 . . 3 (𝜑 → (((1 / 𝐴) · 𝐴) · 𝑋) = ((1 / 𝐴) · (𝐴 · 𝑋)))
2824, 25clmvs1 25030 . . . 4 ((𝑊 ∈ ℂMod ∧ 𝑋𝑉) → (1 · 𝑋) = 𝑋)
294, 23, 28syl2anc 584 . . 3 (𝜑 → (1 · 𝑋) = 𝑋)
3013, 27, 293eqtr3d 2776 . 2 (𝜑 → ((1 / 𝐴) · (𝐴 · 𝑋)) = 𝑋)
31 cvsdiveqd.b . . . . . 6 (𝜑𝐵𝐾)
328, 31sseldd 3932 . . . . 5 (𝜑𝐵 ∈ ℂ)
3332, 10, 11divrec2d 11911 . . . 4 (𝜑 → (𝐵 / 𝐴) = ((1 / 𝐴) · 𝐵))
3433oveq1d 7370 . . 3 (𝜑 → ((𝐵 / 𝐴) · 𝑌) = (((1 / 𝐴) · 𝐵) · 𝑌))
35 cvsdiveqd.y . . . 4 (𝜑𝑌𝑉)
3624, 5, 25, 6clmvsass 25026 . . . 4 ((𝑊 ∈ ℂMod ∧ ((1 / 𝐴) ∈ 𝐾𝐵𝐾𝑌𝑉)) → (((1 / 𝐴) · 𝐵) · 𝑌) = ((1 / 𝐴) · (𝐵 · 𝑌)))
374, 22, 31, 35, 36syl13anc 1374 . . 3 (𝜑 → (((1 / 𝐴) · 𝐵) · 𝑌) = ((1 / 𝐴) · (𝐵 · 𝑌)))
3834, 37eqtr2d 2769 . 2 (𝜑 → ((1 / 𝐴) · (𝐵 · 𝑌)) = ((𝐵 / 𝐴) · 𝑌))
392, 30, 383eqtr3d 2776 1 (𝜑𝑋 = ((𝐵 / 𝐴) · 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  wne 2930  wss 3899  cfv 6489  (class class class)co 7355  cc 11014  0cc0 11016  1c1 11017   · cmul 11021   / cdiv 11784  Basecbs 17130  Scalarcsca 17174   ·𝑠 cvsca 17175  1rcur 20109  Ringcrg 20161  ℂModcclm 24999  ℂVecccvs 25060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-addf 11095  ax-mulf 11096
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-tpos 8165  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-7 12203  df-8 12204  df-9 12205  df-n0 12392  df-z 12479  df-dec 12599  df-uz 12743  df-fz 13418  df-struct 17068  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-ress 17152  df-plusg 17184  df-mulr 17185  df-starv 17186  df-tset 17190  df-ple 17191  df-ds 17193  df-unif 17194  df-0g 17355  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-grp 18859  df-minusg 18860  df-subg 19046  df-cmn 19704  df-abl 19705  df-mgp 20069  df-rng 20081  df-ur 20110  df-ring 20163  df-cring 20164  df-oppr 20265  df-dvdsr 20285  df-unit 20286  df-invr 20316  df-dvr 20329  df-subrg 20495  df-drng 20656  df-lmod 20805  df-lvec 21047  df-cnfld 21302  df-clm 25000  df-cvs 25061
This theorem is referenced by:  ttgcontlem1  28873
  Copyright terms: Public domain W3C validator