Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cvsmuleqdivd | Structured version Visualization version GIF version |
Description: An equality involving ratios in a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019.) |
Ref | Expression |
---|---|
cvsdiveqd.v | ⊢ 𝑉 = (Base‘𝑊) |
cvsdiveqd.t | ⊢ · = ( ·𝑠 ‘𝑊) |
cvsdiveqd.f | ⊢ 𝐹 = (Scalar‘𝑊) |
cvsdiveqd.k | ⊢ 𝐾 = (Base‘𝐹) |
cvsdiveqd.w | ⊢ (𝜑 → 𝑊 ∈ ℂVec) |
cvsdiveqd.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
cvsdiveqd.b | ⊢ (𝜑 → 𝐵 ∈ 𝐾) |
cvsdiveqd.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
cvsdiveqd.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
cvsdiveqd.1 | ⊢ (𝜑 → 𝐴 ≠ 0) |
cvsmuleqdivd.1 | ⊢ (𝜑 → (𝐴 · 𝑋) = (𝐵 · 𝑌)) |
Ref | Expression |
---|---|
cvsmuleqdivd | ⊢ (𝜑 → 𝑋 = ((𝐵 / 𝐴) · 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvsmuleqdivd.1 | . . 3 ⊢ (𝜑 → (𝐴 · 𝑋) = (𝐵 · 𝑌)) | |
2 | 1 | oveq2d 7291 | . 2 ⊢ (𝜑 → ((1 / 𝐴) · (𝐴 · 𝑋)) = ((1 / 𝐴) · (𝐵 · 𝑌))) |
3 | cvsdiveqd.w | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ ℂVec) | |
4 | 3 | cvsclm 24289 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ ℂMod) |
5 | cvsdiveqd.f | . . . . . . . 8 ⊢ 𝐹 = (Scalar‘𝑊) | |
6 | cvsdiveqd.k | . . . . . . . 8 ⊢ 𝐾 = (Base‘𝐹) | |
7 | 5, 6 | clmsscn 24242 | . . . . . . 7 ⊢ (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ) |
8 | 4, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐾 ⊆ ℂ) |
9 | cvsdiveqd.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
10 | 8, 9 | sseldd 3922 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
11 | cvsdiveqd.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ 0) | |
12 | 10, 11 | recid2d 11747 | . . . 4 ⊢ (𝜑 → ((1 / 𝐴) · 𝐴) = 1) |
13 | 12 | oveq1d 7290 | . . 3 ⊢ (𝜑 → (((1 / 𝐴) · 𝐴) · 𝑋) = (1 · 𝑋)) |
14 | 5 | clm1 24236 | . . . . . . 7 ⊢ (𝑊 ∈ ℂMod → 1 = (1r‘𝐹)) |
15 | 4, 14 | syl 17 | . . . . . 6 ⊢ (𝜑 → 1 = (1r‘𝐹)) |
16 | 5 | clmring 24233 | . . . . . . 7 ⊢ (𝑊 ∈ ℂMod → 𝐹 ∈ Ring) |
17 | eqid 2738 | . . . . . . . 8 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
18 | 6, 17 | ringidcl 19807 | . . . . . . 7 ⊢ (𝐹 ∈ Ring → (1r‘𝐹) ∈ 𝐾) |
19 | 4, 16, 18 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → (1r‘𝐹) ∈ 𝐾) |
20 | 15, 19 | eqeltrd 2839 | . . . . 5 ⊢ (𝜑 → 1 ∈ 𝐾) |
21 | 5, 6 | cvsdivcl 24296 | . . . . 5 ⊢ ((𝑊 ∈ ℂVec ∧ (1 ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0)) → (1 / 𝐴) ∈ 𝐾) |
22 | 3, 20, 9, 11, 21 | syl13anc 1371 | . . . 4 ⊢ (𝜑 → (1 / 𝐴) ∈ 𝐾) |
23 | cvsdiveqd.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
24 | cvsdiveqd.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
25 | cvsdiveqd.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
26 | 24, 5, 25, 6 | clmvsass 24252 | . . . 4 ⊢ ((𝑊 ∈ ℂMod ∧ ((1 / 𝐴) ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (((1 / 𝐴) · 𝐴) · 𝑋) = ((1 / 𝐴) · (𝐴 · 𝑋))) |
27 | 4, 22, 9, 23, 26 | syl13anc 1371 | . . 3 ⊢ (𝜑 → (((1 / 𝐴) · 𝐴) · 𝑋) = ((1 / 𝐴) · (𝐴 · 𝑋))) |
28 | 24, 25 | clmvs1 24256 | . . . 4 ⊢ ((𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉) → (1 · 𝑋) = 𝑋) |
29 | 4, 23, 28 | syl2anc 584 | . . 3 ⊢ (𝜑 → (1 · 𝑋) = 𝑋) |
30 | 13, 27, 29 | 3eqtr3d 2786 | . 2 ⊢ (𝜑 → ((1 / 𝐴) · (𝐴 · 𝑋)) = 𝑋) |
31 | cvsdiveqd.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝐾) | |
32 | 8, 31 | sseldd 3922 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
33 | 32, 10, 11 | divrec2d 11755 | . . . 4 ⊢ (𝜑 → (𝐵 / 𝐴) = ((1 / 𝐴) · 𝐵)) |
34 | 33 | oveq1d 7290 | . . 3 ⊢ (𝜑 → ((𝐵 / 𝐴) · 𝑌) = (((1 / 𝐴) · 𝐵) · 𝑌)) |
35 | cvsdiveqd.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
36 | 24, 5, 25, 6 | clmvsass 24252 | . . . 4 ⊢ ((𝑊 ∈ ℂMod ∧ ((1 / 𝐴) ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉)) → (((1 / 𝐴) · 𝐵) · 𝑌) = ((1 / 𝐴) · (𝐵 · 𝑌))) |
37 | 4, 22, 31, 35, 36 | syl13anc 1371 | . . 3 ⊢ (𝜑 → (((1 / 𝐴) · 𝐵) · 𝑌) = ((1 / 𝐴) · (𝐵 · 𝑌))) |
38 | 34, 37 | eqtr2d 2779 | . 2 ⊢ (𝜑 → ((1 / 𝐴) · (𝐵 · 𝑌)) = ((𝐵 / 𝐴) · 𝑌)) |
39 | 2, 30, 38 | 3eqtr3d 2786 | 1 ⊢ (𝜑 → 𝑋 = ((𝐵 / 𝐴) · 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ⊆ wss 3887 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 0cc0 10871 1c1 10872 · cmul 10876 / cdiv 11632 Basecbs 16912 Scalarcsca 16965 ·𝑠 cvsca 16966 1rcur 19737 Ringcrg 19783 ℂModcclm 24225 ℂVecccvs 24286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-tpos 8042 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-subg 18752 df-cmn 19388 df-mgp 19721 df-ur 19738 df-ring 19785 df-cring 19786 df-oppr 19862 df-dvdsr 19883 df-unit 19884 df-invr 19914 df-dvr 19925 df-drng 19993 df-subrg 20022 df-lmod 20125 df-lvec 20365 df-cnfld 20598 df-clm 24226 df-cvs 24287 |
This theorem is referenced by: ttgcontlem1 27252 |
Copyright terms: Public domain | W3C validator |