![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cvsmuleqdivd | Structured version Visualization version GIF version |
Description: An equality involving ratios in a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019.) |
Ref | Expression |
---|---|
cvsdiveqd.v | β’ π = (Baseβπ) |
cvsdiveqd.t | β’ Β· = ( Β·π βπ) |
cvsdiveqd.f | β’ πΉ = (Scalarβπ) |
cvsdiveqd.k | β’ πΎ = (BaseβπΉ) |
cvsdiveqd.w | β’ (π β π β βVec) |
cvsdiveqd.a | β’ (π β π΄ β πΎ) |
cvsdiveqd.b | β’ (π β π΅ β πΎ) |
cvsdiveqd.x | β’ (π β π β π) |
cvsdiveqd.y | β’ (π β π β π) |
cvsdiveqd.1 | β’ (π β π΄ β 0) |
cvsmuleqdivd.1 | β’ (π β (π΄ Β· π) = (π΅ Β· π)) |
Ref | Expression |
---|---|
cvsmuleqdivd | β’ (π β π = ((π΅ / π΄) Β· π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvsmuleqdivd.1 | . . 3 β’ (π β (π΄ Β· π) = (π΅ Β· π)) | |
2 | 1 | oveq2d 7432 | . 2 β’ (π β ((1 / π΄) Β· (π΄ Β· π)) = ((1 / π΄) Β· (π΅ Β· π))) |
3 | cvsdiveqd.w | . . . . . . . 8 β’ (π β π β βVec) | |
4 | 3 | cvsclm 25071 | . . . . . . 7 β’ (π β π β βMod) |
5 | cvsdiveqd.f | . . . . . . . 8 β’ πΉ = (Scalarβπ) | |
6 | cvsdiveqd.k | . . . . . . . 8 β’ πΎ = (BaseβπΉ) | |
7 | 5, 6 | clmsscn 25024 | . . . . . . 7 β’ (π β βMod β πΎ β β) |
8 | 4, 7 | syl 17 | . . . . . 6 β’ (π β πΎ β β) |
9 | cvsdiveqd.a | . . . . . 6 β’ (π β π΄ β πΎ) | |
10 | 8, 9 | sseldd 3973 | . . . . 5 β’ (π β π΄ β β) |
11 | cvsdiveqd.1 | . . . . 5 β’ (π β π΄ β 0) | |
12 | 10, 11 | recid2d 12016 | . . . 4 β’ (π β ((1 / π΄) Β· π΄) = 1) |
13 | 12 | oveq1d 7431 | . . 3 β’ (π β (((1 / π΄) Β· π΄) Β· π) = (1 Β· π)) |
14 | 5 | clm1 25018 | . . . . . . 7 β’ (π β βMod β 1 = (1rβπΉ)) |
15 | 4, 14 | syl 17 | . . . . . 6 β’ (π β 1 = (1rβπΉ)) |
16 | 5 | clmring 25015 | . . . . . . 7 β’ (π β βMod β πΉ β Ring) |
17 | eqid 2725 | . . . . . . . 8 β’ (1rβπΉ) = (1rβπΉ) | |
18 | 6, 17 | ringidcl 20206 | . . . . . . 7 β’ (πΉ β Ring β (1rβπΉ) β πΎ) |
19 | 4, 16, 18 | 3syl 18 | . . . . . 6 β’ (π β (1rβπΉ) β πΎ) |
20 | 15, 19 | eqeltrd 2825 | . . . . 5 β’ (π β 1 β πΎ) |
21 | 5, 6 | cvsdivcl 25078 | . . . . 5 β’ ((π β βVec β§ (1 β πΎ β§ π΄ β πΎ β§ π΄ β 0)) β (1 / π΄) β πΎ) |
22 | 3, 20, 9, 11, 21 | syl13anc 1369 | . . . 4 β’ (π β (1 / π΄) β πΎ) |
23 | cvsdiveqd.x | . . . 4 β’ (π β π β π) | |
24 | cvsdiveqd.v | . . . . 5 β’ π = (Baseβπ) | |
25 | cvsdiveqd.t | . . . . 5 β’ Β· = ( Β·π βπ) | |
26 | 24, 5, 25, 6 | clmvsass 25034 | . . . 4 β’ ((π β βMod β§ ((1 / π΄) β πΎ β§ π΄ β πΎ β§ π β π)) β (((1 / π΄) Β· π΄) Β· π) = ((1 / π΄) Β· (π΄ Β· π))) |
27 | 4, 22, 9, 23, 26 | syl13anc 1369 | . . 3 β’ (π β (((1 / π΄) Β· π΄) Β· π) = ((1 / π΄) Β· (π΄ Β· π))) |
28 | 24, 25 | clmvs1 25038 | . . . 4 β’ ((π β βMod β§ π β π) β (1 Β· π) = π) |
29 | 4, 23, 28 | syl2anc 582 | . . 3 β’ (π β (1 Β· π) = π) |
30 | 13, 27, 29 | 3eqtr3d 2773 | . 2 β’ (π β ((1 / π΄) Β· (π΄ Β· π)) = π) |
31 | cvsdiveqd.b | . . . . . 6 β’ (π β π΅ β πΎ) | |
32 | 8, 31 | sseldd 3973 | . . . . 5 β’ (π β π΅ β β) |
33 | 32, 10, 11 | divrec2d 12024 | . . . 4 β’ (π β (π΅ / π΄) = ((1 / π΄) Β· π΅)) |
34 | 33 | oveq1d 7431 | . . 3 β’ (π β ((π΅ / π΄) Β· π) = (((1 / π΄) Β· π΅) Β· π)) |
35 | cvsdiveqd.y | . . . 4 β’ (π β π β π) | |
36 | 24, 5, 25, 6 | clmvsass 25034 | . . . 4 β’ ((π β βMod β§ ((1 / π΄) β πΎ β§ π΅ β πΎ β§ π β π)) β (((1 / π΄) Β· π΅) Β· π) = ((1 / π΄) Β· (π΅ Β· π))) |
37 | 4, 22, 31, 35, 36 | syl13anc 1369 | . . 3 β’ (π β (((1 / π΄) Β· π΅) Β· π) = ((1 / π΄) Β· (π΅ Β· π))) |
38 | 34, 37 | eqtr2d 2766 | . 2 β’ (π β ((1 / π΄) Β· (π΅ Β· π)) = ((π΅ / π΄) Β· π)) |
39 | 2, 30, 38 | 3eqtr3d 2773 | 1 β’ (π β π = ((π΅ / π΄) Β· π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 β wne 2930 β wss 3939 βcfv 6543 (class class class)co 7416 βcc 11136 0cc0 11138 1c1 11139 Β· cmul 11143 / cdiv 11901 Basecbs 17179 Scalarcsca 17235 Β·π cvsca 17236 1rcur 20125 Ringcrg 20177 βModcclm 25007 βVecccvs 25068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-addf 11217 ax-mulf 11218 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7991 df-2nd 7992 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-z 12589 df-dec 12708 df-uz 12853 df-fz 13517 df-struct 17115 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-ress 17209 df-plusg 17245 df-mulr 17246 df-starv 17247 df-tset 17251 df-ple 17252 df-ds 17254 df-unif 17255 df-0g 17422 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-grp 18897 df-minusg 18898 df-subg 19082 df-cmn 19741 df-abl 19742 df-mgp 20079 df-rng 20097 df-ur 20126 df-ring 20179 df-cring 20180 df-oppr 20277 df-dvdsr 20300 df-unit 20301 df-invr 20331 df-dvr 20344 df-subrg 20512 df-drng 20630 df-lmod 20749 df-lvec 20992 df-cnfld 21284 df-clm 25008 df-cvs 25069 |
This theorem is referenced by: ttgcontlem1 28739 |
Copyright terms: Public domain | W3C validator |