![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodring | Structured version Visualization version GIF version |
Description: The scalar component of a left module is a ring. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmodring.1 | β’ πΉ = (Scalarβπ) |
Ref | Expression |
---|---|
lmodring | β’ (π β LMod β πΉ β Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . 3 β’ (Baseβπ) = (Baseβπ) | |
2 | eqid 2732 | . . 3 β’ (+gβπ) = (+gβπ) | |
3 | eqid 2732 | . . 3 β’ ( Β·π βπ) = ( Β·π βπ) | |
4 | lmodring.1 | . . 3 β’ πΉ = (Scalarβπ) | |
5 | eqid 2732 | . . 3 β’ (BaseβπΉ) = (BaseβπΉ) | |
6 | eqid 2732 | . . 3 β’ (+gβπΉ) = (+gβπΉ) | |
7 | eqid 2732 | . . 3 β’ (.rβπΉ) = (.rβπΉ) | |
8 | eqid 2732 | . . 3 β’ (1rβπΉ) = (1rβπΉ) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | islmod 20467 | . 2 β’ (π β LMod β (π β Grp β§ πΉ β Ring β§ βπ β (BaseβπΉ)βπ β (BaseβπΉ)βπ₯ β (Baseβπ)βπ€ β (Baseβπ)(((π( Β·π βπ)π€) β (Baseβπ) β§ (π( Β·π βπ)(π€(+gβπ)π₯)) = ((π( Β·π βπ)π€)(+gβπ)(π( Β·π βπ)π₯)) β§ ((π(+gβπΉ)π)( Β·π βπ)π€) = ((π( Β·π βπ)π€)(+gβπ)(π( Β·π βπ)π€))) β§ (((π(.rβπΉ)π)( Β·π βπ)π€) = (π( Β·π βπ)(π( Β·π βπ)π€)) β§ ((1rβπΉ)( Β·π βπ)π€) = π€)))) |
10 | 9 | simp2bi 1146 | 1 β’ (π β LMod β πΉ β Ring) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 βwral 3061 βcfv 6540 (class class class)co 7405 Basecbs 17140 +gcplusg 17193 .rcmulr 17194 Scalarcsca 17196 Β·π cvsca 17197 Grpcgrp 18815 1rcur 19998 Ringcrg 20049 LModclmod 20463 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-nul 5305 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rab 3433 df-v 3476 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-iota 6492 df-fv 6548 df-ov 7408 df-lmod 20465 |
This theorem is referenced by: lmodfgrp 20472 lmodmcl 20476 lmod0cl 20490 lmod1cl 20491 lmod0vs 20497 lmodvs0 20498 lmodvsmmulgdi 20499 lmodvsneg 20508 lmodsubvs 20520 lmodsubdi 20521 lmodsubdir 20522 lssvnegcl 20559 islss3 20562 pwslmod 20573 lmodvsinv 20639 islmhm2 20641 lbsind2 20684 lspsneq 20727 lspexch 20734 ip2subdi 21188 isphld 21198 ocvlss 21216 frlmup1 21344 frlmup2 21345 frlmup3 21346 frlmup4 21347 islindf5 21385 lmisfree 21388 assasca 21408 asclghm 21428 ascl1 21430 ascldimul 21433 tlmtgp 23691 clmring 24577 lmodslmd 32336 imaslmod 32456 linds2eq 32485 lindsadd 36469 lfl0 37923 lfladd 37924 lflsub 37925 lfl0f 37927 lfladdcl 37929 lfladdcom 37930 lfladdass 37931 lfladd0l 37932 lflnegcl 37933 lflnegl 37934 lflvscl 37935 lflvsdi1 37936 lflvsdi2 37937 lflvsass 37939 lfl0sc 37940 lflsc0N 37941 lfl1sc 37942 lkrlss 37953 eqlkr 37957 eqlkr3 37959 lkrlsp 37960 ldualvsass 37999 lduallmodlem 38010 ldualvsubcl 38014 ldualvsubval 38015 lkrin 38022 dochfl1 40335 lcfl7lem 40358 lclkrlem2m 40378 lclkrlem2o 40380 lclkrlem2p 40381 lcfrlem1 40401 lcfrlem2 40402 lcfrlem3 40403 lcfrlem29 40430 lcfrlem33 40434 lcdvsubval 40477 mapdpglem30 40561 baerlem3lem1 40566 baerlem5alem1 40567 baerlem5blem1 40568 baerlem5blem2 40571 hgmapval1 40752 hdmapinvlem3 40779 hdmapinvlem4 40780 hdmapglem5 40781 hgmapvvlem1 40782 hdmapglem7b 40787 hdmapglem7 40788 lvecring 41105 prjspertr 41343 lmod0rng 46628 linc0scn0 47057 linc1 47059 lincscm 47064 lincscmcl 47066 el0ldep 47100 lindsrng01 47102 lindszr 47103 ldepsprlem 47106 ldepspr 47107 lincresunit3lem3 47108 lincresunitlem1 47109 lincresunitlem2 47110 lincresunit2 47112 lincresunit3lem1 47113 |
Copyright terms: Public domain | W3C validator |