| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodring | Structured version Visualization version GIF version | ||
| Description: The scalar component of a left module is a ring. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodring.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| lmodring | ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2730 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 3 | eqid 2730 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 4 | lmodring.1 | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 5 | eqid 2730 | . . 3 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 6 | eqid 2730 | . . 3 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
| 7 | eqid 2730 | . . 3 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
| 8 | eqid 2730 | . . 3 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | islmod 20790 | . 2 ⊢ (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞 ∈ (Base‘𝐹)∀𝑟 ∈ (Base‘𝐹)∀𝑥 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑟( ·𝑠 ‘𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠 ‘𝑊)(𝑤(+g‘𝑊)𝑥)) = ((𝑟( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑥)) ∧ ((𝑞(+g‘𝐹)𝑟)( ·𝑠 ‘𝑊)𝑤) = ((𝑞( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤))) ∧ (((𝑞(.r‘𝐹)𝑟)( ·𝑠 ‘𝑊)𝑤) = (𝑞( ·𝑠 ‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤)) ∧ ((1r‘𝐹)( ·𝑠 ‘𝑊)𝑤) = 𝑤)))) |
| 10 | 9 | simp2bi 1146 | 1 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 ∀wral 3045 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 +gcplusg 17153 .rcmulr 17154 Scalarcsca 17156 ·𝑠 cvsca 17157 Grpcgrp 18838 1rcur 20092 Ringcrg 20144 LModclmod 20786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-nul 5242 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rab 3394 df-v 3436 df-sbc 3740 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-iota 6433 df-fv 6485 df-ov 7344 df-lmod 20788 |
| This theorem is referenced by: lmodfgrp 20795 lmodmcl 20799 lmod0cl 20814 lmod1cl 20815 lmod0vs 20821 lmodvs0 20822 lmodvsmmulgdi 20823 lmodvsneg 20832 lmodsubvs 20844 lmodsubdi 20845 lmodsubdir 20846 lssvnegcl 20882 islss3 20885 pwslmod 20896 lmodvsinv 20963 islmhm2 20965 lbsind2 21008 lspsneq 21052 lspexch 21059 ip2subdi 21574 isphld 21584 ocvlss 21602 frlmup1 21728 frlmup2 21729 frlmup3 21730 frlmup4 21731 islindf5 21769 lmisfree 21772 assasca 21792 asclghm 21813 ascl1 21815 ascldimul 21818 tlmtgp 24104 clmring 24990 lmodslmd 33163 imaslmod 33308 linds2eq 33336 lindsadd 37632 lfl0 39083 lfladd 39084 lflsub 39085 lfl0f 39087 lfladdcl 39089 lfladdcom 39090 lfladdass 39091 lfladd0l 39092 lflnegcl 39093 lflnegl 39094 lflvscl 39095 lflvsdi1 39096 lflvsdi2 39097 lflvsass 39099 lfl0sc 39100 lflsc0N 39101 lfl1sc 39102 lkrlss 39113 eqlkr 39117 eqlkr3 39119 lkrlsp 39120 ldualvsass 39159 lduallmodlem 39170 ldualvsubcl 39174 ldualvsubval 39175 lkrin 39182 dochfl1 41494 lcfl7lem 41517 lclkrlem2m 41537 lclkrlem2o 41539 lclkrlem2p 41540 lcfrlem1 41560 lcfrlem2 41561 lcfrlem3 41562 lcfrlem29 41589 lcfrlem33 41593 lcdvsubval 41636 mapdpglem30 41720 baerlem3lem1 41725 baerlem5alem1 41726 baerlem5blem1 41727 baerlem5blem2 41730 hgmapval1 41911 hdmapinvlem3 41938 hdmapinvlem4 41939 hdmapglem5 41940 hgmapvvlem1 41941 hdmapglem7b 41946 hdmapglem7 41947 lvecring 42550 prjspertr 42617 lmod0rng 48239 linc0scn0 48434 linc1 48436 lincscm 48441 lincscmcl 48443 el0ldep 48477 lindsrng01 48479 lindszr 48480 ldepsprlem 48483 ldepspr 48484 lincresunit3lem3 48485 lincresunitlem1 48486 lincresunitlem2 48487 lincresunit2 48489 lincresunit3lem1 48490 |
| Copyright terms: Public domain | W3C validator |