| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodring | Structured version Visualization version GIF version | ||
| Description: The scalar component of a left module is a ring. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodring.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| lmodring | ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2730 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 3 | eqid 2730 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 4 | lmodring.1 | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 5 | eqid 2730 | . . 3 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 6 | eqid 2730 | . . 3 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
| 7 | eqid 2730 | . . 3 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
| 8 | eqid 2730 | . . 3 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | islmod 20777 | . 2 ⊢ (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞 ∈ (Base‘𝐹)∀𝑟 ∈ (Base‘𝐹)∀𝑥 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑟( ·𝑠 ‘𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠 ‘𝑊)(𝑤(+g‘𝑊)𝑥)) = ((𝑟( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑥)) ∧ ((𝑞(+g‘𝐹)𝑟)( ·𝑠 ‘𝑊)𝑤) = ((𝑞( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤))) ∧ (((𝑞(.r‘𝐹)𝑟)( ·𝑠 ‘𝑊)𝑤) = (𝑞( ·𝑠 ‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤)) ∧ ((1r‘𝐹)( ·𝑠 ‘𝑊)𝑤) = 𝑤)))) |
| 10 | 9 | simp2bi 1146 | 1 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 .rcmulr 17228 Scalarcsca 17230 ·𝑠 cvsca 17231 Grpcgrp 18872 1rcur 20097 Ringcrg 20149 LModclmod 20773 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-lmod 20775 |
| This theorem is referenced by: lmodfgrp 20782 lmodmcl 20786 lmod0cl 20801 lmod1cl 20802 lmod0vs 20808 lmodvs0 20809 lmodvsmmulgdi 20810 lmodvsneg 20819 lmodsubvs 20831 lmodsubdi 20832 lmodsubdir 20833 lssvnegcl 20869 islss3 20872 pwslmod 20883 lmodvsinv 20950 islmhm2 20952 lbsind2 20995 lspsneq 21039 lspexch 21046 ip2subdi 21560 isphld 21570 ocvlss 21588 frlmup1 21714 frlmup2 21715 frlmup3 21716 frlmup4 21717 islindf5 21755 lmisfree 21758 assasca 21778 asclghm 21799 ascl1 21801 ascldimul 21804 tlmtgp 24090 clmring 24977 lmodslmd 33164 imaslmod 33331 linds2eq 33359 lindsadd 37614 lfl0 39065 lfladd 39066 lflsub 39067 lfl0f 39069 lfladdcl 39071 lfladdcom 39072 lfladdass 39073 lfladd0l 39074 lflnegcl 39075 lflnegl 39076 lflvscl 39077 lflvsdi1 39078 lflvsdi2 39079 lflvsass 39081 lfl0sc 39082 lflsc0N 39083 lfl1sc 39084 lkrlss 39095 eqlkr 39099 eqlkr3 39101 lkrlsp 39102 ldualvsass 39141 lduallmodlem 39152 ldualvsubcl 39156 ldualvsubval 39157 lkrin 39164 dochfl1 41477 lcfl7lem 41500 lclkrlem2m 41520 lclkrlem2o 41522 lclkrlem2p 41523 lcfrlem1 41543 lcfrlem2 41544 lcfrlem3 41545 lcfrlem29 41572 lcfrlem33 41576 lcdvsubval 41619 mapdpglem30 41703 baerlem3lem1 41708 baerlem5alem1 41709 baerlem5blem1 41710 baerlem5blem2 41713 hgmapval1 41894 hdmapinvlem3 41921 hdmapinvlem4 41922 hdmapglem5 41923 hgmapvvlem1 41924 hdmapglem7b 41929 hdmapglem7 41930 lvecring 42533 prjspertr 42600 lmod0rng 48221 linc0scn0 48416 linc1 48418 lincscm 48423 lincscmcl 48425 el0ldep 48459 lindsrng01 48461 lindszr 48462 ldepsprlem 48465 ldepspr 48466 lincresunit3lem3 48467 lincresunitlem1 48468 lincresunitlem2 48469 lincresunit2 48471 lincresunit3lem1 48472 |
| Copyright terms: Public domain | W3C validator |