![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodring | Structured version Visualization version GIF version |
Description: The scalar component of a left module is a ring. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmodring.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
lmodring | ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2734 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | eqid 2734 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
3 | eqid 2734 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
4 | lmodring.1 | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
5 | eqid 2734 | . . 3 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
6 | eqid 2734 | . . 3 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
7 | eqid 2734 | . . 3 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
8 | eqid 2734 | . . 3 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | islmod 20878 | . 2 ⊢ (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞 ∈ (Base‘𝐹)∀𝑟 ∈ (Base‘𝐹)∀𝑥 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑟( ·𝑠 ‘𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠 ‘𝑊)(𝑤(+g‘𝑊)𝑥)) = ((𝑟( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑥)) ∧ ((𝑞(+g‘𝐹)𝑟)( ·𝑠 ‘𝑊)𝑤) = ((𝑞( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤))) ∧ (((𝑞(.r‘𝐹)𝑟)( ·𝑠 ‘𝑊)𝑤) = (𝑞( ·𝑠 ‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤)) ∧ ((1r‘𝐹)( ·𝑠 ‘𝑊)𝑤) = 𝑤)))) |
10 | 9 | simp2bi 1145 | 1 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ∀wral 3058 ‘cfv 6562 (class class class)co 7430 Basecbs 17244 +gcplusg 17297 .rcmulr 17298 Scalarcsca 17300 ·𝑠 cvsca 17301 Grpcgrp 18963 1rcur 20198 Ringcrg 20250 LModclmod 20874 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-nul 5311 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-ral 3059 df-rab 3433 df-v 3479 df-sbc 3791 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-iota 6515 df-fv 6570 df-ov 7433 df-lmod 20876 |
This theorem is referenced by: lmodfgrp 20883 lmodmcl 20887 lmod0cl 20902 lmod1cl 20903 lmod0vs 20909 lmodvs0 20910 lmodvsmmulgdi 20911 lmodvsneg 20920 lmodsubvs 20932 lmodsubdi 20933 lmodsubdir 20934 lssvnegcl 20971 islss3 20974 pwslmod 20985 lmodvsinv 21052 islmhm2 21054 lbsind2 21097 lspsneq 21141 lspexch 21148 ip2subdi 21679 isphld 21689 ocvlss 21707 frlmup1 21835 frlmup2 21836 frlmup3 21837 frlmup4 21838 islindf5 21876 lmisfree 21879 assasca 21899 asclghm 21920 ascl1 21922 ascldimul 21925 tlmtgp 24219 clmring 25116 lmodslmd 33192 imaslmod 33360 linds2eq 33388 lindsadd 37599 lfl0 39046 lfladd 39047 lflsub 39048 lfl0f 39050 lfladdcl 39052 lfladdcom 39053 lfladdass 39054 lfladd0l 39055 lflnegcl 39056 lflnegl 39057 lflvscl 39058 lflvsdi1 39059 lflvsdi2 39060 lflvsass 39062 lfl0sc 39063 lflsc0N 39064 lfl1sc 39065 lkrlss 39076 eqlkr 39080 eqlkr3 39082 lkrlsp 39083 ldualvsass 39122 lduallmodlem 39133 ldualvsubcl 39137 ldualvsubval 39138 lkrin 39145 dochfl1 41458 lcfl7lem 41481 lclkrlem2m 41501 lclkrlem2o 41503 lclkrlem2p 41504 lcfrlem1 41524 lcfrlem2 41525 lcfrlem3 41526 lcfrlem29 41553 lcfrlem33 41557 lcdvsubval 41600 mapdpglem30 41684 baerlem3lem1 41689 baerlem5alem1 41690 baerlem5blem1 41691 baerlem5blem2 41694 hgmapval1 41875 hdmapinvlem3 41902 hdmapinvlem4 41903 hdmapglem5 41904 hgmapvvlem1 41905 hdmapglem7b 41910 hdmapglem7 41911 lvecring 42524 prjspertr 42591 lmod0rng 48072 linc0scn0 48268 linc1 48270 lincscm 48275 lincscmcl 48277 el0ldep 48311 lindsrng01 48313 lindszr 48314 ldepsprlem 48317 ldepspr 48318 lincresunit3lem3 48319 lincresunitlem1 48320 lincresunitlem2 48321 lincresunit2 48323 lincresunit3lem1 48324 |
Copyright terms: Public domain | W3C validator |