![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodring | Structured version Visualization version GIF version |
Description: The scalar component of a left module is a ring. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmodring.1 | β’ πΉ = (Scalarβπ) |
Ref | Expression |
---|---|
lmodring | β’ (π β LMod β πΉ β Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2730 | . . 3 β’ (Baseβπ) = (Baseβπ) | |
2 | eqid 2730 | . . 3 β’ (+gβπ) = (+gβπ) | |
3 | eqid 2730 | . . 3 β’ ( Β·π βπ) = ( Β·π βπ) | |
4 | lmodring.1 | . . 3 β’ πΉ = (Scalarβπ) | |
5 | eqid 2730 | . . 3 β’ (BaseβπΉ) = (BaseβπΉ) | |
6 | eqid 2730 | . . 3 β’ (+gβπΉ) = (+gβπΉ) | |
7 | eqid 2730 | . . 3 β’ (.rβπΉ) = (.rβπΉ) | |
8 | eqid 2730 | . . 3 β’ (1rβπΉ) = (1rβπΉ) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | islmod 20618 | . 2 β’ (π β LMod β (π β Grp β§ πΉ β Ring β§ βπ β (BaseβπΉ)βπ β (BaseβπΉ)βπ₯ β (Baseβπ)βπ€ β (Baseβπ)(((π( Β·π βπ)π€) β (Baseβπ) β§ (π( Β·π βπ)(π€(+gβπ)π₯)) = ((π( Β·π βπ)π€)(+gβπ)(π( Β·π βπ)π₯)) β§ ((π(+gβπΉ)π)( Β·π βπ)π€) = ((π( Β·π βπ)π€)(+gβπ)(π( Β·π βπ)π€))) β§ (((π(.rβπΉ)π)( Β·π βπ)π€) = (π( Β·π βπ)(π( Β·π βπ)π€)) β§ ((1rβπΉ)( Β·π βπ)π€) = π€)))) |
10 | 9 | simp2bi 1144 | 1 β’ (π β LMod β πΉ β Ring) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β§ w3a 1085 = wceq 1539 β wcel 2104 βwral 3059 βcfv 6542 (class class class)co 7411 Basecbs 17148 +gcplusg 17201 .rcmulr 17202 Scalarcsca 17204 Β·π cvsca 17205 Grpcgrp 18855 1rcur 20075 Ringcrg 20127 LModclmod 20614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-nul 5305 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-ral 3060 df-rab 3431 df-v 3474 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-iota 6494 df-fv 6550 df-ov 7414 df-lmod 20616 |
This theorem is referenced by: lmodfgrp 20623 lmodmcl 20627 lmod0cl 20642 lmod1cl 20643 lmod0vs 20649 lmodvs0 20650 lmodvsmmulgdi 20651 lmodvsneg 20660 lmodsubvs 20672 lmodsubdi 20673 lmodsubdir 20674 lssvnegcl 20711 islss3 20714 pwslmod 20725 lmodvsinv 20791 islmhm2 20793 lbsind2 20836 lspsneq 20880 lspexch 20887 ip2subdi 21416 isphld 21426 ocvlss 21444 frlmup1 21572 frlmup2 21573 frlmup3 21574 frlmup4 21575 islindf5 21613 lmisfree 21616 assasca 21636 asclghm 21656 ascl1 21658 ascldimul 21661 tlmtgp 23920 clmring 24817 lmodslmd 32619 imaslmod 32738 linds2eq 32771 lindsadd 36784 lfl0 38238 lfladd 38239 lflsub 38240 lfl0f 38242 lfladdcl 38244 lfladdcom 38245 lfladdass 38246 lfladd0l 38247 lflnegcl 38248 lflnegl 38249 lflvscl 38250 lflvsdi1 38251 lflvsdi2 38252 lflvsass 38254 lfl0sc 38255 lflsc0N 38256 lfl1sc 38257 lkrlss 38268 eqlkr 38272 eqlkr3 38274 lkrlsp 38275 ldualvsass 38314 lduallmodlem 38325 ldualvsubcl 38329 ldualvsubval 38330 lkrin 38337 dochfl1 40650 lcfl7lem 40673 lclkrlem2m 40693 lclkrlem2o 40695 lclkrlem2p 40696 lcfrlem1 40716 lcfrlem2 40717 lcfrlem3 40718 lcfrlem29 40745 lcfrlem33 40749 lcdvsubval 40792 mapdpglem30 40876 baerlem3lem1 40881 baerlem5alem1 40882 baerlem5blem1 40883 baerlem5blem2 40886 hgmapval1 41067 hdmapinvlem3 41094 hdmapinvlem4 41095 hdmapglem5 41096 hgmapvvlem1 41097 hdmapglem7b 41102 hdmapglem7 41103 lvecring 41410 prjspertr 41649 lmod0rng 46908 linc0scn0 47191 linc1 47193 lincscm 47198 lincscmcl 47200 el0ldep 47234 lindsrng01 47236 lindszr 47237 ldepsprlem 47240 ldepspr 47241 lincresunit3lem3 47242 lincresunitlem1 47243 lincresunitlem2 47244 lincresunit2 47246 lincresunit3lem1 47247 |
Copyright terms: Public domain | W3C validator |