| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodring | Structured version Visualization version GIF version | ||
| Description: The scalar component of a left module is a ring. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodring.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| lmodring | ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2735 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 3 | eqid 2735 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 4 | lmodring.1 | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 5 | eqid 2735 | . . 3 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 6 | eqid 2735 | . . 3 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
| 7 | eqid 2735 | . . 3 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
| 8 | eqid 2735 | . . 3 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | islmod 20819 | . 2 ⊢ (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞 ∈ (Base‘𝐹)∀𝑟 ∈ (Base‘𝐹)∀𝑥 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑟( ·𝑠 ‘𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠 ‘𝑊)(𝑤(+g‘𝑊)𝑥)) = ((𝑟( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑥)) ∧ ((𝑞(+g‘𝐹)𝑟)( ·𝑠 ‘𝑊)𝑤) = ((𝑞( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤))) ∧ (((𝑞(.r‘𝐹)𝑟)( ·𝑠 ‘𝑊)𝑤) = (𝑞( ·𝑠 ‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤)) ∧ ((1r‘𝐹)( ·𝑠 ‘𝑊)𝑤) = 𝑤)))) |
| 10 | 9 | simp2bi 1146 | 1 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ‘cfv 6530 (class class class)co 7403 Basecbs 17226 +gcplusg 17269 .rcmulr 17270 Scalarcsca 17272 ·𝑠 cvsca 17273 Grpcgrp 18914 1rcur 20139 Ringcrg 20191 LModclmod 20815 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6483 df-fv 6538 df-ov 7406 df-lmod 20817 |
| This theorem is referenced by: lmodfgrp 20824 lmodmcl 20828 lmod0cl 20843 lmod1cl 20844 lmod0vs 20850 lmodvs0 20851 lmodvsmmulgdi 20852 lmodvsneg 20861 lmodsubvs 20873 lmodsubdi 20874 lmodsubdir 20875 lssvnegcl 20911 islss3 20914 pwslmod 20925 lmodvsinv 20992 islmhm2 20994 lbsind2 21037 lspsneq 21081 lspexch 21088 ip2subdi 21602 isphld 21612 ocvlss 21630 frlmup1 21756 frlmup2 21757 frlmup3 21758 frlmup4 21759 islindf5 21797 lmisfree 21800 assasca 21820 asclghm 21841 ascl1 21843 ascldimul 21846 tlmtgp 24132 clmring 25019 lmodslmd 33147 imaslmod 33314 linds2eq 33342 lindsadd 37583 lfl0 39029 lfladd 39030 lflsub 39031 lfl0f 39033 lfladdcl 39035 lfladdcom 39036 lfladdass 39037 lfladd0l 39038 lflnegcl 39039 lflnegl 39040 lflvscl 39041 lflvsdi1 39042 lflvsdi2 39043 lflvsass 39045 lfl0sc 39046 lflsc0N 39047 lfl1sc 39048 lkrlss 39059 eqlkr 39063 eqlkr3 39065 lkrlsp 39066 ldualvsass 39105 lduallmodlem 39116 ldualvsubcl 39120 ldualvsubval 39121 lkrin 39128 dochfl1 41441 lcfl7lem 41464 lclkrlem2m 41484 lclkrlem2o 41486 lclkrlem2p 41487 lcfrlem1 41507 lcfrlem2 41508 lcfrlem3 41509 lcfrlem29 41536 lcfrlem33 41540 lcdvsubval 41583 mapdpglem30 41667 baerlem3lem1 41672 baerlem5alem1 41673 baerlem5blem1 41674 baerlem5blem2 41677 hgmapval1 41858 hdmapinvlem3 41885 hdmapinvlem4 41886 hdmapglem5 41887 hgmapvvlem1 41888 hdmapglem7b 41893 hdmapglem7 41894 lvecring 42508 prjspertr 42575 lmod0rng 48152 linc0scn0 48347 linc1 48349 lincscm 48354 lincscmcl 48356 el0ldep 48390 lindsrng01 48392 lindszr 48393 ldepsprlem 48396 ldepspr 48397 lincresunit3lem3 48398 lincresunitlem1 48399 lincresunitlem2 48400 lincresunit2 48402 lincresunit3lem1 48403 |
| Copyright terms: Public domain | W3C validator |