![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodring | Structured version Visualization version GIF version |
Description: The scalar component of a left module is a ring. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmodring.1 | β’ πΉ = (Scalarβπ) |
Ref | Expression |
---|---|
lmodring | β’ (π β LMod β πΉ β Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2731 | . . 3 β’ (Baseβπ) = (Baseβπ) | |
2 | eqid 2731 | . . 3 β’ (+gβπ) = (+gβπ) | |
3 | eqid 2731 | . . 3 β’ ( Β·π βπ) = ( Β·π βπ) | |
4 | lmodring.1 | . . 3 β’ πΉ = (Scalarβπ) | |
5 | eqid 2731 | . . 3 β’ (BaseβπΉ) = (BaseβπΉ) | |
6 | eqid 2731 | . . 3 β’ (+gβπΉ) = (+gβπΉ) | |
7 | eqid 2731 | . . 3 β’ (.rβπΉ) = (.rβπΉ) | |
8 | eqid 2731 | . . 3 β’ (1rβπΉ) = (1rβπΉ) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | islmod 20619 | . 2 β’ (π β LMod β (π β Grp β§ πΉ β Ring β§ βπ β (BaseβπΉ)βπ β (BaseβπΉ)βπ₯ β (Baseβπ)βπ€ β (Baseβπ)(((π( Β·π βπ)π€) β (Baseβπ) β§ (π( Β·π βπ)(π€(+gβπ)π₯)) = ((π( Β·π βπ)π€)(+gβπ)(π( Β·π βπ)π₯)) β§ ((π(+gβπΉ)π)( Β·π βπ)π€) = ((π( Β·π βπ)π€)(+gβπ)(π( Β·π βπ)π€))) β§ (((π(.rβπΉ)π)( Β·π βπ)π€) = (π( Β·π βπ)(π( Β·π βπ)π€)) β§ ((1rβπΉ)( Β·π βπ)π€) = π€)))) |
10 | 9 | simp2bi 1145 | 1 β’ (π β LMod β πΉ β Ring) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 βwral 3060 βcfv 6543 (class class class)co 7412 Basecbs 17149 +gcplusg 17202 .rcmulr 17203 Scalarcsca 17205 Β·π cvsca 17206 Grpcgrp 18856 1rcur 20076 Ringcrg 20128 LModclmod 20615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ov 7415 df-lmod 20617 |
This theorem is referenced by: lmodfgrp 20624 lmodmcl 20628 lmod0cl 20643 lmod1cl 20644 lmod0vs 20650 lmodvs0 20651 lmodvsmmulgdi 20652 lmodvsneg 20661 lmodsubvs 20673 lmodsubdi 20674 lmodsubdir 20675 lssvnegcl 20712 islss3 20715 pwslmod 20726 lmodvsinv 20792 islmhm2 20794 lbsind2 20837 lspsneq 20881 lspexch 20888 ip2subdi 21417 isphld 21427 ocvlss 21445 frlmup1 21573 frlmup2 21574 frlmup3 21575 frlmup4 21576 islindf5 21614 lmisfree 21617 assasca 21637 asclghm 21657 ascl1 21659 ascldimul 21662 tlmtgp 23921 clmring 24818 lmodslmd 32620 imaslmod 32739 linds2eq 32772 lindsadd 36785 lfl0 38239 lfladd 38240 lflsub 38241 lfl0f 38243 lfladdcl 38245 lfladdcom 38246 lfladdass 38247 lfladd0l 38248 lflnegcl 38249 lflnegl 38250 lflvscl 38251 lflvsdi1 38252 lflvsdi2 38253 lflvsass 38255 lfl0sc 38256 lflsc0N 38257 lfl1sc 38258 lkrlss 38269 eqlkr 38273 eqlkr3 38275 lkrlsp 38276 ldualvsass 38315 lduallmodlem 38326 ldualvsubcl 38330 ldualvsubval 38331 lkrin 38338 dochfl1 40651 lcfl7lem 40674 lclkrlem2m 40694 lclkrlem2o 40696 lclkrlem2p 40697 lcfrlem1 40717 lcfrlem2 40718 lcfrlem3 40719 lcfrlem29 40746 lcfrlem33 40750 lcdvsubval 40793 mapdpglem30 40877 baerlem3lem1 40882 baerlem5alem1 40883 baerlem5blem1 40884 baerlem5blem2 40887 hgmapval1 41068 hdmapinvlem3 41095 hdmapinvlem4 41096 hdmapglem5 41097 hgmapvvlem1 41098 hdmapglem7b 41103 hdmapglem7 41104 lvecring 41411 prjspertr 41650 lmod0rng 46909 linc0scn0 47192 linc1 47194 lincscm 47199 lincscmcl 47201 el0ldep 47235 lindsrng01 47237 lindszr 47238 ldepsprlem 47241 ldepspr 47242 lincresunit3lem3 47243 lincresunitlem1 47244 lincresunitlem2 47245 lincresunit2 47247 lincresunit3lem1 47248 |
Copyright terms: Public domain | W3C validator |