Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmodring | Structured version Visualization version GIF version |
Description: The scalar component of a left module is a ring. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmodring.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
lmodring | ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | eqid 2737 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
3 | eqid 2737 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
4 | lmodring.1 | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
5 | eqid 2737 | . . 3 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
6 | eqid 2737 | . . 3 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
7 | eqid 2737 | . . 3 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
8 | eqid 2737 | . . 3 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | islmod 20237 | . 2 ⊢ (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞 ∈ (Base‘𝐹)∀𝑟 ∈ (Base‘𝐹)∀𝑥 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑟( ·𝑠 ‘𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠 ‘𝑊)(𝑤(+g‘𝑊)𝑥)) = ((𝑟( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑥)) ∧ ((𝑞(+g‘𝐹)𝑟)( ·𝑠 ‘𝑊)𝑤) = ((𝑞( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤))) ∧ (((𝑞(.r‘𝐹)𝑟)( ·𝑠 ‘𝑊)𝑤) = (𝑞( ·𝑠 ‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤)) ∧ ((1r‘𝐹)( ·𝑠 ‘𝑊)𝑤) = 𝑤)))) |
10 | 9 | simp2bi 1146 | 1 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3062 ‘cfv 6488 (class class class)co 7346 Basecbs 17014 +gcplusg 17064 .rcmulr 17065 Scalarcsca 17067 ·𝑠 cvsca 17068 Grpcgrp 18678 1rcur 19836 Ringcrg 19882 LModclmod 20233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 ax-nul 5258 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2942 df-ral 3063 df-rab 3406 df-v 3445 df-sbc 3735 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4278 df-if 4482 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-br 5101 df-iota 6440 df-fv 6496 df-ov 7349 df-lmod 20235 |
This theorem is referenced by: lmodfgrp 20242 lmodmcl 20245 lmod0cl 20259 lmod1cl 20260 lmod0vs 20266 lmodvs0 20267 lmodvsmmulgdi 20268 lmodvsneg 20277 lmodsubvs 20289 lmodsubdi 20290 lmodsubdir 20291 lssvnegcl 20328 islss3 20331 pwslmod 20342 lmodvsinv 20408 islmhm2 20410 lbsind2 20453 lspsneq 20494 lspexch 20501 ip2subdi 20959 isphld 20969 ocvlss 20987 frlmup1 21115 frlmup2 21116 frlmup3 21117 frlmup4 21118 islindf5 21156 lmisfree 21159 asclghm 21197 ascl1 21199 ascldimul 21202 tlmtgp 23457 clmring 24343 lmodslmd 31808 imaslmod 31913 linds2eq 31936 lindsadd 35926 lfl0 37383 lfladd 37384 lflsub 37385 lfl0f 37387 lfladdcl 37389 lfladdcom 37390 lfladdass 37391 lfladd0l 37392 lflnegcl 37393 lflnegl 37394 lflvscl 37395 lflvsdi1 37396 lflvsdi2 37397 lflvsass 37399 lfl0sc 37400 lflsc0N 37401 lfl1sc 37402 lkrlss 37413 eqlkr 37417 eqlkr3 37419 lkrlsp 37420 ldualvsass 37459 lduallmodlem 37470 ldualvsubcl 37474 ldualvsubval 37475 lkrin 37482 dochfl1 39795 lcfl7lem 39818 lclkrlem2m 39838 lclkrlem2o 39840 lclkrlem2p 39841 lcfrlem1 39861 lcfrlem2 39862 lcfrlem3 39863 lcfrlem29 39890 lcfrlem33 39894 lcdvsubval 39937 mapdpglem30 40021 baerlem3lem1 40026 baerlem5alem1 40027 baerlem5blem1 40028 baerlem5blem2 40031 hgmapval1 40212 hdmapinvlem3 40239 hdmapinvlem4 40240 hdmapglem5 40241 hgmapvvlem1 40242 hdmapglem7b 40247 hdmapglem7 40248 lvecring 40571 prjspertr 40755 lmod0rng 45844 linc0scn0 46182 linc1 46184 lincscm 46189 lincscmcl 46191 el0ldep 46225 lindsrng01 46227 lindszr 46228 ldepsprlem 46231 ldepspr 46232 lincresunit3lem3 46233 lincresunitlem1 46234 lincresunitlem2 46235 lincresunit2 46237 lincresunit3lem1 46238 |
Copyright terms: Public domain | W3C validator |