Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmodring | Structured version Visualization version GIF version |
Description: The scalar component of a left module is a ring. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmodring.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
lmodring | ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | eqid 2738 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
3 | eqid 2738 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
4 | lmodring.1 | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
5 | eqid 2738 | . . 3 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
6 | eqid 2738 | . . 3 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
7 | eqid 2738 | . . 3 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
8 | eqid 2738 | . . 3 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | islmod 20042 | . 2 ⊢ (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞 ∈ (Base‘𝐹)∀𝑟 ∈ (Base‘𝐹)∀𝑥 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑟( ·𝑠 ‘𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠 ‘𝑊)(𝑤(+g‘𝑊)𝑥)) = ((𝑟( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑥)) ∧ ((𝑞(+g‘𝐹)𝑟)( ·𝑠 ‘𝑊)𝑤) = ((𝑞( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤))) ∧ (((𝑞(.r‘𝐹)𝑟)( ·𝑠 ‘𝑊)𝑤) = (𝑞( ·𝑠 ‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤)) ∧ ((1r‘𝐹)( ·𝑠 ‘𝑊)𝑤) = 𝑤)))) |
10 | 9 | simp2bi 1144 | 1 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 .rcmulr 16889 Scalarcsca 16891 ·𝑠 cvsca 16892 Grpcgrp 18492 1rcur 19652 Ringcrg 19698 LModclmod 20038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-lmod 20040 |
This theorem is referenced by: lmodfgrp 20047 lmodmcl 20050 lmod0cl 20064 lmod1cl 20065 lmod0vs 20071 lmodvs0 20072 lmodvsmmulgdi 20073 lmodvsneg 20082 lmodsubvs 20094 lmodsubdi 20095 lmodsubdir 20096 lssvnegcl 20133 islss3 20136 pwslmod 20147 lmodvsinv 20213 islmhm2 20215 lbsind2 20258 lspsneq 20299 lspexch 20306 ip2subdi 20761 isphld 20771 ocvlss 20789 frlmup1 20915 frlmup2 20916 frlmup3 20917 frlmup4 20918 islindf5 20956 lmisfree 20959 asclghm 20997 ascl1 20999 ascldimul 21002 tlmtgp 23255 clmring 24139 lmodslmd 31359 imaslmod 31455 linds2eq 31477 lindsadd 35697 lfl0 37006 lfladd 37007 lflsub 37008 lfl0f 37010 lfladdcl 37012 lfladdcom 37013 lfladdass 37014 lfladd0l 37015 lflnegcl 37016 lflnegl 37017 lflvscl 37018 lflvsdi1 37019 lflvsdi2 37020 lflvsass 37022 lfl0sc 37023 lflsc0N 37024 lfl1sc 37025 lkrlss 37036 eqlkr 37040 eqlkr3 37042 lkrlsp 37043 ldualvsass 37082 lduallmodlem 37093 ldualvsubcl 37097 ldualvsubval 37098 lkrin 37105 dochfl1 39417 lcfl7lem 39440 lclkrlem2m 39460 lclkrlem2o 39462 lclkrlem2p 39463 lcfrlem1 39483 lcfrlem2 39484 lcfrlem3 39485 lcfrlem29 39512 lcfrlem33 39516 lcdvsubval 39559 mapdpglem30 39643 baerlem3lem1 39648 baerlem5alem1 39649 baerlem5blem1 39650 baerlem5blem2 39653 hgmapval1 39834 hdmapinvlem3 39861 hdmapinvlem4 39862 hdmapglem5 39863 hgmapvvlem1 39864 hdmapglem7b 39869 hdmapglem7 39870 lvecring 40185 prjspertr 40365 lmod0rng 45314 linc0scn0 45652 linc1 45654 lincscm 45659 lincscmcl 45661 el0ldep 45695 lindsrng01 45697 lindszr 45698 ldepsprlem 45701 ldepspr 45702 lincresunit3lem3 45703 lincresunitlem1 45704 lincresunitlem2 45705 lincresunit2 45707 lincresunit3lem1 45708 |
Copyright terms: Public domain | W3C validator |