| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodring | Structured version Visualization version GIF version | ||
| Description: The scalar component of a left module is a ring. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodring.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| lmodring | ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2729 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 3 | eqid 2729 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 4 | lmodring.1 | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 5 | eqid 2729 | . . 3 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 6 | eqid 2729 | . . 3 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
| 7 | eqid 2729 | . . 3 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
| 8 | eqid 2729 | . . 3 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | islmod 20770 | . 2 ⊢ (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞 ∈ (Base‘𝐹)∀𝑟 ∈ (Base‘𝐹)∀𝑥 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑟( ·𝑠 ‘𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠 ‘𝑊)(𝑤(+g‘𝑊)𝑥)) = ((𝑟( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑥)) ∧ ((𝑞(+g‘𝐹)𝑟)( ·𝑠 ‘𝑊)𝑤) = ((𝑞( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤))) ∧ (((𝑞(.r‘𝐹)𝑟)( ·𝑠 ‘𝑊)𝑤) = (𝑞( ·𝑠 ‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤)) ∧ ((1r‘𝐹)( ·𝑠 ‘𝑊)𝑤) = 𝑤)))) |
| 10 | 9 | simp2bi 1146 | 1 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 .rcmulr 17221 Scalarcsca 17223 ·𝑠 cvsca 17224 Grpcgrp 18865 1rcur 20090 Ringcrg 20142 LModclmod 20766 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-lmod 20768 |
| This theorem is referenced by: lmodfgrp 20775 lmodmcl 20779 lmod0cl 20794 lmod1cl 20795 lmod0vs 20801 lmodvs0 20802 lmodvsmmulgdi 20803 lmodvsneg 20812 lmodsubvs 20824 lmodsubdi 20825 lmodsubdir 20826 lssvnegcl 20862 islss3 20865 pwslmod 20876 lmodvsinv 20943 islmhm2 20945 lbsind2 20988 lspsneq 21032 lspexch 21039 ip2subdi 21553 isphld 21563 ocvlss 21581 frlmup1 21707 frlmup2 21708 frlmup3 21709 frlmup4 21710 islindf5 21748 lmisfree 21751 assasca 21771 asclghm 21792 ascl1 21794 ascldimul 21797 tlmtgp 24083 clmring 24970 lmodslmd 33157 imaslmod 33324 linds2eq 33352 lindsadd 37607 lfl0 39058 lfladd 39059 lflsub 39060 lfl0f 39062 lfladdcl 39064 lfladdcom 39065 lfladdass 39066 lfladd0l 39067 lflnegcl 39068 lflnegl 39069 lflvscl 39070 lflvsdi1 39071 lflvsdi2 39072 lflvsass 39074 lfl0sc 39075 lflsc0N 39076 lfl1sc 39077 lkrlss 39088 eqlkr 39092 eqlkr3 39094 lkrlsp 39095 ldualvsass 39134 lduallmodlem 39145 ldualvsubcl 39149 ldualvsubval 39150 lkrin 39157 dochfl1 41470 lcfl7lem 41493 lclkrlem2m 41513 lclkrlem2o 41515 lclkrlem2p 41516 lcfrlem1 41536 lcfrlem2 41537 lcfrlem3 41538 lcfrlem29 41565 lcfrlem33 41569 lcdvsubval 41612 mapdpglem30 41696 baerlem3lem1 41701 baerlem5alem1 41702 baerlem5blem1 41703 baerlem5blem2 41706 hgmapval1 41887 hdmapinvlem3 41914 hdmapinvlem4 41915 hdmapglem5 41916 hgmapvvlem1 41917 hdmapglem7b 41922 hdmapglem7 41923 lvecring 42526 prjspertr 42593 lmod0rng 48217 linc0scn0 48412 linc1 48414 lincscm 48419 lincscmcl 48421 el0ldep 48455 lindsrng01 48457 lindszr 48458 ldepsprlem 48461 ldepspr 48462 lincresunit3lem3 48463 lincresunitlem1 48464 lincresunitlem2 48465 lincresunit2 48467 lincresunit3lem1 48468 |
| Copyright terms: Public domain | W3C validator |