| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodring | Structured version Visualization version GIF version | ||
| Description: The scalar component of a left module is a ring. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodring.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| lmodring | ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2733 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 3 | eqid 2733 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 4 | lmodring.1 | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 5 | eqid 2733 | . . 3 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 6 | eqid 2733 | . . 3 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
| 7 | eqid 2733 | . . 3 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
| 8 | eqid 2733 | . . 3 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | islmod 20807 | . 2 ⊢ (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞 ∈ (Base‘𝐹)∀𝑟 ∈ (Base‘𝐹)∀𝑥 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑟( ·𝑠 ‘𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠 ‘𝑊)(𝑤(+g‘𝑊)𝑥)) = ((𝑟( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑥)) ∧ ((𝑞(+g‘𝐹)𝑟)( ·𝑠 ‘𝑊)𝑤) = ((𝑞( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤))) ∧ (((𝑞(.r‘𝐹)𝑟)( ·𝑠 ‘𝑊)𝑤) = (𝑞( ·𝑠 ‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤)) ∧ ((1r‘𝐹)( ·𝑠 ‘𝑊)𝑤) = 𝑤)))) |
| 10 | 9 | simp2bi 1146 | 1 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3049 ‘cfv 6489 (class class class)co 7355 Basecbs 17130 +gcplusg 17171 .rcmulr 17172 Scalarcsca 17174 ·𝑠 cvsca 17175 Grpcgrp 18856 1rcur 20109 Ringcrg 20161 LModclmod 20803 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2931 df-ral 3050 df-rab 3398 df-v 3440 df-sbc 3739 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 df-ov 7358 df-lmod 20805 |
| This theorem is referenced by: lmodfgrp 20812 lmodmcl 20816 lmod0cl 20831 lmod1cl 20832 lmod0vs 20838 lmodvs0 20839 lmodvsmmulgdi 20840 lmodvsneg 20849 lmodsubvs 20861 lmodsubdi 20862 lmodsubdir 20863 lssvnegcl 20899 islss3 20902 pwslmod 20913 lmodvsinv 20980 islmhm2 20982 lbsind2 21025 lspsneq 21069 lspexch 21076 ip2subdi 21591 isphld 21601 ocvlss 21619 frlmup1 21745 frlmup2 21746 frlmup3 21747 frlmup4 21748 islindf5 21786 lmisfree 21789 assasca 21809 asclghm 21830 ascl1 21832 ascldimul 21835 tlmtgp 24121 clmring 25007 lmodslmd 33184 imaslmod 33329 linds2eq 33357 lindsadd 37663 lfl0 39174 lfladd 39175 lflsub 39176 lfl0f 39178 lfladdcl 39180 lfladdcom 39181 lfladdass 39182 lfladd0l 39183 lflnegcl 39184 lflnegl 39185 lflvscl 39186 lflvsdi1 39187 lflvsdi2 39188 lflvsass 39190 lfl0sc 39191 lflsc0N 39192 lfl1sc 39193 lkrlss 39204 eqlkr 39208 eqlkr3 39210 lkrlsp 39211 ldualvsass 39250 lduallmodlem 39261 ldualvsubcl 39265 ldualvsubval 39266 lkrin 39273 dochfl1 41585 lcfl7lem 41608 lclkrlem2m 41628 lclkrlem2o 41630 lclkrlem2p 41631 lcfrlem1 41651 lcfrlem2 41652 lcfrlem3 41653 lcfrlem29 41680 lcfrlem33 41684 lcdvsubval 41727 mapdpglem30 41811 baerlem3lem1 41816 baerlem5alem1 41817 baerlem5blem1 41818 baerlem5blem2 41821 hgmapval1 42002 hdmapinvlem3 42029 hdmapinvlem4 42030 hdmapglem5 42031 hgmapvvlem1 42032 hdmapglem7b 42037 hdmapglem7 42038 lvecring 42646 prjspertr 42713 lmod0rng 48343 linc0scn0 48538 linc1 48540 lincscm 48545 lincscmcl 48547 el0ldep 48581 lindsrng01 48583 lindszr 48584 ldepsprlem 48587 ldepspr 48588 lincresunit3lem3 48589 lincresunitlem1 48590 lincresunitlem2 48591 lincresunit2 48593 lincresunit3lem1 48594 |
| Copyright terms: Public domain | W3C validator |