| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodring | Structured version Visualization version GIF version | ||
| Description: The scalar component of a left module is a ring. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodring.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| lmodring | ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2729 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 3 | eqid 2729 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 4 | lmodring.1 | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 5 | eqid 2729 | . . 3 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 6 | eqid 2729 | . . 3 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
| 7 | eqid 2729 | . . 3 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
| 8 | eqid 2729 | . . 3 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | islmod 20785 | . 2 ⊢ (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞 ∈ (Base‘𝐹)∀𝑟 ∈ (Base‘𝐹)∀𝑥 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑟( ·𝑠 ‘𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠 ‘𝑊)(𝑤(+g‘𝑊)𝑥)) = ((𝑟( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑥)) ∧ ((𝑞(+g‘𝐹)𝑟)( ·𝑠 ‘𝑊)𝑤) = ((𝑞( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤))) ∧ (((𝑞(.r‘𝐹)𝑟)( ·𝑠 ‘𝑊)𝑤) = (𝑞( ·𝑠 ‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤)) ∧ ((1r‘𝐹)( ·𝑠 ‘𝑊)𝑤) = 𝑤)))) |
| 10 | 9 | simp2bi 1146 | 1 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 +gcplusg 17179 .rcmulr 17180 Scalarcsca 17182 ·𝑠 cvsca 17183 Grpcgrp 18830 1rcur 20084 Ringcrg 20136 LModclmod 20781 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-ov 7356 df-lmod 20783 |
| This theorem is referenced by: lmodfgrp 20790 lmodmcl 20794 lmod0cl 20809 lmod1cl 20810 lmod0vs 20816 lmodvs0 20817 lmodvsmmulgdi 20818 lmodvsneg 20827 lmodsubvs 20839 lmodsubdi 20840 lmodsubdir 20841 lssvnegcl 20877 islss3 20880 pwslmod 20891 lmodvsinv 20958 islmhm2 20960 lbsind2 21003 lspsneq 21047 lspexch 21054 ip2subdi 21569 isphld 21579 ocvlss 21597 frlmup1 21723 frlmup2 21724 frlmup3 21725 frlmup4 21726 islindf5 21764 lmisfree 21767 assasca 21787 asclghm 21808 ascl1 21810 ascldimul 21813 tlmtgp 24099 clmring 24986 lmodslmd 33156 imaslmod 33300 linds2eq 33328 lindsadd 37592 lfl0 39043 lfladd 39044 lflsub 39045 lfl0f 39047 lfladdcl 39049 lfladdcom 39050 lfladdass 39051 lfladd0l 39052 lflnegcl 39053 lflnegl 39054 lflvscl 39055 lflvsdi1 39056 lflvsdi2 39057 lflvsass 39059 lfl0sc 39060 lflsc0N 39061 lfl1sc 39062 lkrlss 39073 eqlkr 39077 eqlkr3 39079 lkrlsp 39080 ldualvsass 39119 lduallmodlem 39130 ldualvsubcl 39134 ldualvsubval 39135 lkrin 39142 dochfl1 41455 lcfl7lem 41478 lclkrlem2m 41498 lclkrlem2o 41500 lclkrlem2p 41501 lcfrlem1 41521 lcfrlem2 41522 lcfrlem3 41523 lcfrlem29 41550 lcfrlem33 41554 lcdvsubval 41597 mapdpglem30 41681 baerlem3lem1 41686 baerlem5alem1 41687 baerlem5blem1 41688 baerlem5blem2 41691 hgmapval1 41872 hdmapinvlem3 41899 hdmapinvlem4 41900 hdmapglem5 41901 hgmapvvlem1 41902 hdmapglem7b 41907 hdmapglem7 41908 lvecring 42511 prjspertr 42578 lmod0rng 48201 linc0scn0 48396 linc1 48398 lincscm 48403 lincscmcl 48405 el0ldep 48439 lindsrng01 48441 lindszr 48442 ldepsprlem 48445 ldepspr 48446 lincresunit3lem3 48447 lincresunitlem1 48448 lincresunitlem2 48449 lincresunit2 48451 lincresunit3lem1 48452 |
| Copyright terms: Public domain | W3C validator |