Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmodring | Structured version Visualization version GIF version |
Description: The scalar component of a left module is a ring. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmodring.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
lmodring | ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | eqid 2738 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
3 | eqid 2738 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
4 | lmodring.1 | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
5 | eqid 2738 | . . 3 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
6 | eqid 2738 | . . 3 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
7 | eqid 2738 | . . 3 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
8 | eqid 2738 | . . 3 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | islmod 20127 | . 2 ⊢ (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞 ∈ (Base‘𝐹)∀𝑟 ∈ (Base‘𝐹)∀𝑥 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑟( ·𝑠 ‘𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠 ‘𝑊)(𝑤(+g‘𝑊)𝑥)) = ((𝑟( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑥)) ∧ ((𝑞(+g‘𝐹)𝑟)( ·𝑠 ‘𝑊)𝑤) = ((𝑞( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤))) ∧ (((𝑞(.r‘𝐹)𝑟)( ·𝑠 ‘𝑊)𝑤) = (𝑞( ·𝑠 ‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤)) ∧ ((1r‘𝐹)( ·𝑠 ‘𝑊)𝑤) = 𝑤)))) |
10 | 9 | simp2bi 1145 | 1 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 .rcmulr 16963 Scalarcsca 16965 ·𝑠 cvsca 16966 Grpcgrp 18577 1rcur 19737 Ringcrg 19783 LModclmod 20123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-lmod 20125 |
This theorem is referenced by: lmodfgrp 20132 lmodmcl 20135 lmod0cl 20149 lmod1cl 20150 lmod0vs 20156 lmodvs0 20157 lmodvsmmulgdi 20158 lmodvsneg 20167 lmodsubvs 20179 lmodsubdi 20180 lmodsubdir 20181 lssvnegcl 20218 islss3 20221 pwslmod 20232 lmodvsinv 20298 islmhm2 20300 lbsind2 20343 lspsneq 20384 lspexch 20391 ip2subdi 20849 isphld 20859 ocvlss 20877 frlmup1 21005 frlmup2 21006 frlmup3 21007 frlmup4 21008 islindf5 21046 lmisfree 21049 asclghm 21087 ascl1 21089 ascldimul 21092 tlmtgp 23347 clmring 24233 lmodslmd 31457 imaslmod 31553 linds2eq 31575 lindsadd 35770 lfl0 37079 lfladd 37080 lflsub 37081 lfl0f 37083 lfladdcl 37085 lfladdcom 37086 lfladdass 37087 lfladd0l 37088 lflnegcl 37089 lflnegl 37090 lflvscl 37091 lflvsdi1 37092 lflvsdi2 37093 lflvsass 37095 lfl0sc 37096 lflsc0N 37097 lfl1sc 37098 lkrlss 37109 eqlkr 37113 eqlkr3 37115 lkrlsp 37116 ldualvsass 37155 lduallmodlem 37166 ldualvsubcl 37170 ldualvsubval 37171 lkrin 37178 dochfl1 39490 lcfl7lem 39513 lclkrlem2m 39533 lclkrlem2o 39535 lclkrlem2p 39536 lcfrlem1 39556 lcfrlem2 39557 lcfrlem3 39558 lcfrlem29 39585 lcfrlem33 39589 lcdvsubval 39632 mapdpglem30 39716 baerlem3lem1 39721 baerlem5alem1 39722 baerlem5blem1 39723 baerlem5blem2 39726 hgmapval1 39907 hdmapinvlem3 39934 hdmapinvlem4 39935 hdmapglem5 39936 hgmapvvlem1 39937 hdmapglem7b 39942 hdmapglem7 39943 lvecring 40260 prjspertr 40444 lmod0rng 45426 linc0scn0 45764 linc1 45766 lincscm 45771 lincscmcl 45773 el0ldep 45807 lindsrng01 45809 lindszr 45810 ldepsprlem 45813 ldepspr 45814 lincresunit3lem3 45815 lincresunitlem1 45816 lincresunitlem2 45817 lincresunit2 45819 lincresunit3lem1 45820 |
Copyright terms: Public domain | W3C validator |