![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodring | Structured version Visualization version GIF version |
Description: The scalar component of a left module is a ring. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmodring.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
lmodring | ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | eqid 2740 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
3 | eqid 2740 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
4 | lmodring.1 | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
5 | eqid 2740 | . . 3 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
6 | eqid 2740 | . . 3 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
7 | eqid 2740 | . . 3 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
8 | eqid 2740 | . . 3 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | islmod 20884 | . 2 ⊢ (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞 ∈ (Base‘𝐹)∀𝑟 ∈ (Base‘𝐹)∀𝑥 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑟( ·𝑠 ‘𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠 ‘𝑊)(𝑤(+g‘𝑊)𝑥)) = ((𝑟( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑥)) ∧ ((𝑞(+g‘𝐹)𝑟)( ·𝑠 ‘𝑊)𝑤) = ((𝑞( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤))) ∧ (((𝑞(.r‘𝐹)𝑟)( ·𝑠 ‘𝑊)𝑤) = (𝑞( ·𝑠 ‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤)) ∧ ((1r‘𝐹)( ·𝑠 ‘𝑊)𝑤) = 𝑤)))) |
10 | 9 | simp2bi 1146 | 1 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 .rcmulr 17312 Scalarcsca 17314 ·𝑠 cvsca 17315 Grpcgrp 18973 1rcur 20208 Ringcrg 20260 LModclmod 20880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-lmod 20882 |
This theorem is referenced by: lmodfgrp 20889 lmodmcl 20893 lmod0cl 20908 lmod1cl 20909 lmod0vs 20915 lmodvs0 20916 lmodvsmmulgdi 20917 lmodvsneg 20926 lmodsubvs 20938 lmodsubdi 20939 lmodsubdir 20940 lssvnegcl 20977 islss3 20980 pwslmod 20991 lmodvsinv 21058 islmhm2 21060 lbsind2 21103 lspsneq 21147 lspexch 21154 ip2subdi 21685 isphld 21695 ocvlss 21713 frlmup1 21841 frlmup2 21842 frlmup3 21843 frlmup4 21844 islindf5 21882 lmisfree 21885 assasca 21905 asclghm 21926 ascl1 21928 ascldimul 21931 tlmtgp 24225 clmring 25122 lmodslmd 33183 imaslmod 33346 linds2eq 33374 lindsadd 37573 lfl0 39021 lfladd 39022 lflsub 39023 lfl0f 39025 lfladdcl 39027 lfladdcom 39028 lfladdass 39029 lfladd0l 39030 lflnegcl 39031 lflnegl 39032 lflvscl 39033 lflvsdi1 39034 lflvsdi2 39035 lflvsass 39037 lfl0sc 39038 lflsc0N 39039 lfl1sc 39040 lkrlss 39051 eqlkr 39055 eqlkr3 39057 lkrlsp 39058 ldualvsass 39097 lduallmodlem 39108 ldualvsubcl 39112 ldualvsubval 39113 lkrin 39120 dochfl1 41433 lcfl7lem 41456 lclkrlem2m 41476 lclkrlem2o 41478 lclkrlem2p 41479 lcfrlem1 41499 lcfrlem2 41500 lcfrlem3 41501 lcfrlem29 41528 lcfrlem33 41532 lcdvsubval 41575 mapdpglem30 41659 baerlem3lem1 41664 baerlem5alem1 41665 baerlem5blem1 41666 baerlem5blem2 41669 hgmapval1 41850 hdmapinvlem3 41877 hdmapinvlem4 41878 hdmapglem5 41879 hgmapvvlem1 41880 hdmapglem7b 41885 hdmapglem7 41886 lvecring 42493 prjspertr 42560 lmod0rng 47952 linc0scn0 48152 linc1 48154 lincscm 48159 lincscmcl 48161 el0ldep 48195 lindsrng01 48197 lindszr 48198 ldepsprlem 48201 ldepspr 48202 lincresunit3lem3 48203 lincresunitlem1 48204 lincresunitlem2 48205 lincresunit2 48207 lincresunit3lem1 48208 |
Copyright terms: Public domain | W3C validator |