Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cplgruvtxb | Structured version Visualization version GIF version |
Description: A graph 𝐺 is complete iff each vertex is a universal vertex. (Contributed by Alexander van der Vekens, 14-Oct-2017.) (Revised by AV, 15-Feb-2022.) |
Ref | Expression |
---|---|
cplgruvtxb.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
cplgruvtxb | ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ (UnivVtx‘𝐺) = 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6756 | . . 3 ⊢ (𝑔 = 𝐺 → (UnivVtx‘𝑔) = (UnivVtx‘𝐺)) | |
2 | fveq2 6756 | . . . 4 ⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺)) | |
3 | cplgruvtxb.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
4 | 2, 3 | eqtr4di 2797 | . . 3 ⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉) |
5 | 1, 4 | eqeq12d 2754 | . 2 ⊢ (𝑔 = 𝐺 → ((UnivVtx‘𝑔) = (Vtx‘𝑔) ↔ (UnivVtx‘𝐺) = 𝑉)) |
6 | df-cplgr 27681 | . 2 ⊢ ComplGraph = {𝑔 ∣ (UnivVtx‘𝑔) = (Vtx‘𝑔)} | |
7 | 5, 6 | elab2g 3604 | 1 ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ (UnivVtx‘𝐺) = 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 Vtxcvtx 27269 UnivVtxcuvtx 27655 ComplGraphccplgr 27679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-cplgr 27681 |
This theorem is referenced by: iscplgr 27685 cusgruvtxb 27692 nbcplgr 27704 |
Copyright terms: Public domain | W3C validator |