![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cplgruvtxb | Structured version Visualization version GIF version |
Description: A graph 𝐺 is complete iff each vertex is a universal vertex. (Contributed by Alexander van der Vekens, 14-Oct-2017.) (Revised by AV, 15-Feb-2022.) |
Ref | Expression |
---|---|
cplgruvtxb.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
cplgruvtxb | ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ (UnivVtx‘𝐺) = 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6920 | . . 3 ⊢ (𝑔 = 𝐺 → (UnivVtx‘𝑔) = (UnivVtx‘𝐺)) | |
2 | fveq2 6920 | . . . 4 ⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺)) | |
3 | cplgruvtxb.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
4 | 2, 3 | eqtr4di 2798 | . . 3 ⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉) |
5 | 1, 4 | eqeq12d 2756 | . 2 ⊢ (𝑔 = 𝐺 → ((UnivVtx‘𝑔) = (Vtx‘𝑔) ↔ (UnivVtx‘𝐺) = 𝑉)) |
6 | df-cplgr 29446 | . 2 ⊢ ComplGraph = {𝑔 ∣ (UnivVtx‘𝑔) = (Vtx‘𝑔)} | |
7 | 5, 6 | elab2g 3696 | 1 ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ (UnivVtx‘𝐺) = 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 Vtxcvtx 29031 UnivVtxcuvtx 29420 ComplGraphccplgr 29444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-cplgr 29446 |
This theorem is referenced by: iscplgr 29450 cusgruvtxb 29457 nbcplgr 29469 |
Copyright terms: Public domain | W3C validator |