MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cplgruvtxb Structured version   Visualization version   GIF version

Theorem cplgruvtxb 27683
Description: A graph 𝐺 is complete iff each vertex is a universal vertex. (Contributed by Alexander van der Vekens, 14-Oct-2017.) (Revised by AV, 15-Feb-2022.)
Hypothesis
Ref Expression
cplgruvtxb.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
cplgruvtxb (𝐺𝑊 → (𝐺 ∈ ComplGraph ↔ (UnivVtx‘𝐺) = 𝑉))

Proof of Theorem cplgruvtxb
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6756 . . 3 (𝑔 = 𝐺 → (UnivVtx‘𝑔) = (UnivVtx‘𝐺))
2 fveq2 6756 . . . 4 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
3 cplgruvtxb.v . . . 4 𝑉 = (Vtx‘𝐺)
42, 3eqtr4di 2797 . . 3 (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉)
51, 4eqeq12d 2754 . 2 (𝑔 = 𝐺 → ((UnivVtx‘𝑔) = (Vtx‘𝑔) ↔ (UnivVtx‘𝐺) = 𝑉))
6 df-cplgr 27681 . 2 ComplGraph = {𝑔 ∣ (UnivVtx‘𝑔) = (Vtx‘𝑔)}
75, 6elab2g 3604 1 (𝐺𝑊 → (𝐺 ∈ ComplGraph ↔ (UnivVtx‘𝐺) = 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  cfv 6418  Vtxcvtx 27269  UnivVtxcuvtx 27655  ComplGraphccplgr 27679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-cplgr 27681
This theorem is referenced by:  iscplgr  27685  cusgruvtxb  27692  nbcplgr  27704
  Copyright terms: Public domain W3C validator