MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cplgruvtxb Structured version   Visualization version   GIF version

Theorem cplgruvtxb 29376
Description: A graph 𝐺 is complete iff each vertex is a universal vertex. (Contributed by Alexander van der Vekens, 14-Oct-2017.) (Revised by AV, 15-Feb-2022.)
Hypothesis
Ref Expression
cplgruvtxb.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
cplgruvtxb (𝐺𝑊 → (𝐺 ∈ ComplGraph ↔ (UnivVtx‘𝐺) = 𝑉))

Proof of Theorem cplgruvtxb
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6826 . . 3 (𝑔 = 𝐺 → (UnivVtx‘𝑔) = (UnivVtx‘𝐺))
2 fveq2 6826 . . . 4 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
3 cplgruvtxb.v . . . 4 𝑉 = (Vtx‘𝐺)
42, 3eqtr4di 2782 . . 3 (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉)
51, 4eqeq12d 2745 . 2 (𝑔 = 𝐺 → ((UnivVtx‘𝑔) = (Vtx‘𝑔) ↔ (UnivVtx‘𝐺) = 𝑉))
6 df-cplgr 29374 . 2 ComplGraph = {𝑔 ∣ (UnivVtx‘𝑔) = (Vtx‘𝑔)}
75, 6elab2g 3638 1 (𝐺𝑊 → (𝐺 ∈ ComplGraph ↔ (UnivVtx‘𝐺) = 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  cfv 6486  Vtxcvtx 28959  UnivVtxcuvtx 29348  ComplGraphccplgr 29372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-iota 6442  df-fv 6494  df-cplgr 29374
This theorem is referenced by:  iscplgr  29378  cusgruvtxb  29385  nbcplgr  29397
  Copyright terms: Public domain W3C validator