| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscplgr | Structured version Visualization version GIF version | ||
| Description: The property of being a complete graph. (Contributed by AV, 1-Nov-2020.) |
| Ref | Expression |
|---|---|
| cplgruvtxb.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| iscplgr | ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cplgruvtxb.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | cplgruvtxb 29340 | . 2 ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ (UnivVtx‘𝐺) = 𝑉)) |
| 3 | eqss 3962 | . . 3 ⊢ ((UnivVtx‘𝐺) = 𝑉 ↔ ((UnivVtx‘𝐺) ⊆ 𝑉 ∧ 𝑉 ⊆ (UnivVtx‘𝐺))) | |
| 4 | 1 | uvtxssvtx 29317 | . . . 4 ⊢ (UnivVtx‘𝐺) ⊆ 𝑉 |
| 5 | dfss3 3935 | . . . . 5 ⊢ (𝑉 ⊆ (UnivVtx‘𝐺) ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺)) | |
| 6 | 5 | anbi2i 623 | . . . 4 ⊢ (((UnivVtx‘𝐺) ⊆ 𝑉 ∧ 𝑉 ⊆ (UnivVtx‘𝐺)) ↔ ((UnivVtx‘𝐺) ⊆ 𝑉 ∧ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) |
| 7 | 4, 6 | mpbiran 709 | . . 3 ⊢ (((UnivVtx‘𝐺) ⊆ 𝑉 ∧ 𝑉 ⊆ (UnivVtx‘𝐺)) ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺)) |
| 8 | 3, 7 | bitri 275 | . 2 ⊢ ((UnivVtx‘𝐺) = 𝑉 ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺)) |
| 9 | 2, 8 | bitrdi 287 | 1 ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3914 ‘cfv 6511 Vtxcvtx 28923 UnivVtxcuvtx 29312 ComplGraphccplgr 29336 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-uvtx 29313 df-cplgr 29338 |
| This theorem is referenced by: iscplgrnb 29343 iscusgrvtx 29348 cplgr0 29352 cplgr0v 29354 cplgr1v 29357 cplgr2v 29359 cusgrexi 29370 structtocusgr 29373 cusgrres 29376 |
| Copyright terms: Public domain | W3C validator |