MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscplgr Structured version   Visualization version   GIF version

Theorem iscplgr 27199
Description: The property of being a complete graph. (Contributed by AV, 1-Nov-2020.)
Hypothesis
Ref Expression
cplgruvtxb.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
iscplgr (𝐺𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺)))
Distinct variable groups:   𝑣,𝐺   𝑣,𝑉
Allowed substitution hint:   𝑊(𝑣)

Proof of Theorem iscplgr
StepHypRef Expression
1 cplgruvtxb.v . . 3 𝑉 = (Vtx‘𝐺)
21cplgruvtxb 27197 . 2 (𝐺𝑊 → (𝐺 ∈ ComplGraph ↔ (UnivVtx‘𝐺) = 𝑉))
3 eqss 3984 . . 3 ((UnivVtx‘𝐺) = 𝑉 ↔ ((UnivVtx‘𝐺) ⊆ 𝑉𝑉 ⊆ (UnivVtx‘𝐺)))
41uvtxssvtx 27174 . . . 4 (UnivVtx‘𝐺) ⊆ 𝑉
5 dfss3 3958 . . . . 5 (𝑉 ⊆ (UnivVtx‘𝐺) ↔ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺))
65anbi2i 624 . . . 4 (((UnivVtx‘𝐺) ⊆ 𝑉𝑉 ⊆ (UnivVtx‘𝐺)) ↔ ((UnivVtx‘𝐺) ⊆ 𝑉 ∧ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺)))
74, 6mpbiran 707 . . 3 (((UnivVtx‘𝐺) ⊆ 𝑉𝑉 ⊆ (UnivVtx‘𝐺)) ↔ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺))
83, 7bitri 277 . 2 ((UnivVtx‘𝐺) = 𝑉 ↔ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺))
92, 8syl6bb 289 1 (𝐺𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3140  wss 3938  cfv 6357  Vtxcvtx 26783  UnivVtxcuvtx 27169  ComplGraphccplgr 27193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-iota 6316  df-fun 6359  df-fv 6365  df-ov 7161  df-uvtx 27170  df-cplgr 27195
This theorem is referenced by:  iscplgrnb  27200  iscusgrvtx  27205  cplgr0  27209  cplgr0v  27211  cplgr1v  27214  cplgr2v  27216  cusgrexi  27227  structtocusgr  27230  cusgrres  27232
  Copyright terms: Public domain W3C validator