![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscplgr | Structured version Visualization version GIF version |
Description: The property of being a complete graph. (Contributed by AV, 1-Nov-2020.) |
Ref | Expression |
---|---|
cplgruvtxb.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
iscplgr | ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cplgruvtxb.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | cplgruvtxb 26718 | . 2 ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ (UnivVtx‘𝐺) = 𝑉)) |
3 | eqss 3842 | . . 3 ⊢ ((UnivVtx‘𝐺) = 𝑉 ↔ ((UnivVtx‘𝐺) ⊆ 𝑉 ∧ 𝑉 ⊆ (UnivVtx‘𝐺))) | |
4 | 1 | uvtxssvtx 26695 | . . . 4 ⊢ (UnivVtx‘𝐺) ⊆ 𝑉 |
5 | dfss3 3816 | . . . . 5 ⊢ (𝑉 ⊆ (UnivVtx‘𝐺) ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺)) | |
6 | 5 | anbi2i 616 | . . . 4 ⊢ (((UnivVtx‘𝐺) ⊆ 𝑉 ∧ 𝑉 ⊆ (UnivVtx‘𝐺)) ↔ ((UnivVtx‘𝐺) ⊆ 𝑉 ∧ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) |
7 | 4, 6 | mpbiran 700 | . . 3 ⊢ (((UnivVtx‘𝐺) ⊆ 𝑉 ∧ 𝑉 ⊆ (UnivVtx‘𝐺)) ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺)) |
8 | 3, 7 | bitri 267 | . 2 ⊢ ((UnivVtx‘𝐺) = 𝑉 ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺)) |
9 | 2, 8 | syl6bb 279 | 1 ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ∀wral 3117 ⊆ wss 3798 ‘cfv 6127 Vtxcvtx 26301 UnivVtxcuvtx 26690 ComplGraphccplgr 26714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-iota 6090 df-fun 6129 df-fv 6135 df-ov 6913 df-uvtx 26691 df-cplgr 26716 |
This theorem is referenced by: iscplgrnb 26721 iscusgrvtx 26726 cplgr0 26730 cplgr0v 26732 cplgr1v 26735 cplgr2v 26737 cusgrexi 26748 structtocusgr 26751 cusgrres 26753 |
Copyright terms: Public domain | W3C validator |