| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscplgr | Structured version Visualization version GIF version | ||
| Description: The property of being a complete graph. (Contributed by AV, 1-Nov-2020.) |
| Ref | Expression |
|---|---|
| cplgruvtxb.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| iscplgr | ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cplgruvtxb.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | cplgruvtxb 29392 | . 2 ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ (UnivVtx‘𝐺) = 𝑉)) |
| 3 | eqss 3974 | . . 3 ⊢ ((UnivVtx‘𝐺) = 𝑉 ↔ ((UnivVtx‘𝐺) ⊆ 𝑉 ∧ 𝑉 ⊆ (UnivVtx‘𝐺))) | |
| 4 | 1 | uvtxssvtx 29369 | . . . 4 ⊢ (UnivVtx‘𝐺) ⊆ 𝑉 |
| 5 | dfss3 3947 | . . . . 5 ⊢ (𝑉 ⊆ (UnivVtx‘𝐺) ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺)) | |
| 6 | 5 | anbi2i 623 | . . . 4 ⊢ (((UnivVtx‘𝐺) ⊆ 𝑉 ∧ 𝑉 ⊆ (UnivVtx‘𝐺)) ↔ ((UnivVtx‘𝐺) ⊆ 𝑉 ∧ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) |
| 7 | 4, 6 | mpbiran 709 | . . 3 ⊢ (((UnivVtx‘𝐺) ⊆ 𝑉 ∧ 𝑉 ⊆ (UnivVtx‘𝐺)) ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺)) |
| 8 | 3, 7 | bitri 275 | . 2 ⊢ ((UnivVtx‘𝐺) = 𝑉 ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺)) |
| 9 | 2, 8 | bitrdi 287 | 1 ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ⊆ wss 3926 ‘cfv 6531 Vtxcvtx 28975 UnivVtxcuvtx 29364 ComplGraphccplgr 29388 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-uvtx 29365 df-cplgr 29390 |
| This theorem is referenced by: iscplgrnb 29395 iscusgrvtx 29400 cplgr0 29404 cplgr0v 29406 cplgr1v 29409 cplgr2v 29411 cusgrexi 29422 structtocusgr 29425 cusgrres 29428 |
| Copyright terms: Public domain | W3C validator |