![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscplgr | Structured version Visualization version GIF version |
Description: The property of being a complete graph. (Contributed by AV, 1-Nov-2020.) |
Ref | Expression |
---|---|
cplgruvtxb.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
iscplgr | ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cplgruvtxb.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | cplgruvtxb 29448 | . 2 ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ (UnivVtx‘𝐺) = 𝑉)) |
3 | eqss 4024 | . . 3 ⊢ ((UnivVtx‘𝐺) = 𝑉 ↔ ((UnivVtx‘𝐺) ⊆ 𝑉 ∧ 𝑉 ⊆ (UnivVtx‘𝐺))) | |
4 | 1 | uvtxssvtx 29425 | . . . 4 ⊢ (UnivVtx‘𝐺) ⊆ 𝑉 |
5 | dfss3 3997 | . . . . 5 ⊢ (𝑉 ⊆ (UnivVtx‘𝐺) ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺)) | |
6 | 5 | anbi2i 622 | . . . 4 ⊢ (((UnivVtx‘𝐺) ⊆ 𝑉 ∧ 𝑉 ⊆ (UnivVtx‘𝐺)) ↔ ((UnivVtx‘𝐺) ⊆ 𝑉 ∧ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) |
7 | 4, 6 | mpbiran 708 | . . 3 ⊢ (((UnivVtx‘𝐺) ⊆ 𝑉 ∧ 𝑉 ⊆ (UnivVtx‘𝐺)) ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺)) |
8 | 3, 7 | bitri 275 | . 2 ⊢ ((UnivVtx‘𝐺) = 𝑉 ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺)) |
9 | 2, 8 | bitrdi 287 | 1 ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ⊆ wss 3976 ‘cfv 6573 Vtxcvtx 29031 UnivVtxcuvtx 29420 ComplGraphccplgr 29444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-uvtx 29421 df-cplgr 29446 |
This theorem is referenced by: iscplgrnb 29451 iscusgrvtx 29456 cplgr0 29460 cplgr0v 29462 cplgr1v 29465 cplgr2v 29467 cusgrexi 29478 structtocusgr 29481 cusgrres 29484 |
Copyright terms: Public domain | W3C validator |