MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscplgr Structured version   Visualization version   GIF version

Theorem iscplgr 27205
Description: The property of being a complete graph. (Contributed by AV, 1-Nov-2020.)
Hypothesis
Ref Expression
cplgruvtxb.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
iscplgr (𝐺𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺)))
Distinct variable groups:   𝑣,𝐺   𝑣,𝑉
Allowed substitution hint:   𝑊(𝑣)

Proof of Theorem iscplgr
StepHypRef Expression
1 cplgruvtxb.v . . 3 𝑉 = (Vtx‘𝐺)
21cplgruvtxb 27203 . 2 (𝐺𝑊 → (𝐺 ∈ ComplGraph ↔ (UnivVtx‘𝐺) = 𝑉))
3 eqss 3930 . . 3 ((UnivVtx‘𝐺) = 𝑉 ↔ ((UnivVtx‘𝐺) ⊆ 𝑉𝑉 ⊆ (UnivVtx‘𝐺)))
41uvtxssvtx 27180 . . . 4 (UnivVtx‘𝐺) ⊆ 𝑉
5 dfss3 3903 . . . . 5 (𝑉 ⊆ (UnivVtx‘𝐺) ↔ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺))
65anbi2i 625 . . . 4 (((UnivVtx‘𝐺) ⊆ 𝑉𝑉 ⊆ (UnivVtx‘𝐺)) ↔ ((UnivVtx‘𝐺) ⊆ 𝑉 ∧ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺)))
74, 6mpbiran 708 . . 3 (((UnivVtx‘𝐺) ⊆ 𝑉𝑉 ⊆ (UnivVtx‘𝐺)) ↔ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺))
83, 7bitri 278 . 2 ((UnivVtx‘𝐺) = 𝑉 ↔ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺))
92, 8syl6bb 290 1 (𝐺𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  wss 3881  cfv 6324  Vtxcvtx 26789  UnivVtxcuvtx 27175  ComplGraphccplgr 27199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-iota 6283  df-fun 6326  df-fv 6332  df-ov 7138  df-uvtx 27176  df-cplgr 27201
This theorem is referenced by:  iscplgrnb  27206  iscusgrvtx  27211  cplgr0  27215  cplgr0v  27217  cplgr1v  27220  cplgr2v  27222  cusgrexi  27233  structtocusgr  27236  cusgrres  27238
  Copyright terms: Public domain W3C validator