MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscplgr Structured version   Visualization version   GIF version

Theorem iscplgr 29450
Description: The property of being a complete graph. (Contributed by AV, 1-Nov-2020.)
Hypothesis
Ref Expression
cplgruvtxb.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
iscplgr (𝐺𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺)))
Distinct variable groups:   𝑣,𝐺   𝑣,𝑉
Allowed substitution hint:   𝑊(𝑣)

Proof of Theorem iscplgr
StepHypRef Expression
1 cplgruvtxb.v . . 3 𝑉 = (Vtx‘𝐺)
21cplgruvtxb 29448 . 2 (𝐺𝑊 → (𝐺 ∈ ComplGraph ↔ (UnivVtx‘𝐺) = 𝑉))
3 eqss 4024 . . 3 ((UnivVtx‘𝐺) = 𝑉 ↔ ((UnivVtx‘𝐺) ⊆ 𝑉𝑉 ⊆ (UnivVtx‘𝐺)))
41uvtxssvtx 29425 . . . 4 (UnivVtx‘𝐺) ⊆ 𝑉
5 dfss3 3997 . . . . 5 (𝑉 ⊆ (UnivVtx‘𝐺) ↔ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺))
65anbi2i 622 . . . 4 (((UnivVtx‘𝐺) ⊆ 𝑉𝑉 ⊆ (UnivVtx‘𝐺)) ↔ ((UnivVtx‘𝐺) ⊆ 𝑉 ∧ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺)))
74, 6mpbiran 708 . . 3 (((UnivVtx‘𝐺) ⊆ 𝑉𝑉 ⊆ (UnivVtx‘𝐺)) ↔ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺))
83, 7bitri 275 . 2 ((UnivVtx‘𝐺) = 𝑉 ↔ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺))
92, 8bitrdi 287 1 (𝐺𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wss 3976  cfv 6573  Vtxcvtx 29031  UnivVtxcuvtx 29420  ComplGraphccplgr 29444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-uvtx 29421  df-cplgr 29446
This theorem is referenced by:  iscplgrnb  29451  iscusgrvtx  29456  cplgr0  29460  cplgr0v  29462  cplgr1v  29465  cplgr2v  29467  cusgrexi  29478  structtocusgr  29481  cusgrres  29484
  Copyright terms: Public domain W3C validator