MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscplgr Structured version   Visualization version   GIF version

Theorem iscplgr 29391
Description: The property of being a complete graph. (Contributed by AV, 1-Nov-2020.)
Hypothesis
Ref Expression
cplgruvtxb.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
iscplgr (𝐺𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺)))
Distinct variable groups:   𝑣,𝐺   𝑣,𝑉
Allowed substitution hint:   𝑊(𝑣)

Proof of Theorem iscplgr
StepHypRef Expression
1 cplgruvtxb.v . . 3 𝑉 = (Vtx‘𝐺)
21cplgruvtxb 29389 . 2 (𝐺𝑊 → (𝐺 ∈ ComplGraph ↔ (UnivVtx‘𝐺) = 𝑉))
3 eqss 3950 . . 3 ((UnivVtx‘𝐺) = 𝑉 ↔ ((UnivVtx‘𝐺) ⊆ 𝑉𝑉 ⊆ (UnivVtx‘𝐺)))
41uvtxssvtx 29366 . . . 4 (UnivVtx‘𝐺) ⊆ 𝑉
5 dfss3 3923 . . . . 5 (𝑉 ⊆ (UnivVtx‘𝐺) ↔ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺))
65anbi2i 623 . . . 4 (((UnivVtx‘𝐺) ⊆ 𝑉𝑉 ⊆ (UnivVtx‘𝐺)) ↔ ((UnivVtx‘𝐺) ⊆ 𝑉 ∧ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺)))
74, 6mpbiran 709 . . 3 (((UnivVtx‘𝐺) ⊆ 𝑉𝑉 ⊆ (UnivVtx‘𝐺)) ↔ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺))
83, 7bitri 275 . 2 ((UnivVtx‘𝐺) = 𝑉 ↔ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺))
92, 8bitrdi 287 1 (𝐺𝑊 → (𝐺 ∈ ComplGraph ↔ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wss 3902  cfv 6481  Vtxcvtx 28972  UnivVtxcuvtx 29361  ComplGraphccplgr 29385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-uvtx 29362  df-cplgr 29387
This theorem is referenced by:  iscplgrnb  29392  iscusgrvtx  29397  cplgr0  29401  cplgr0v  29403  cplgr1v  29406  cplgr2v  29408  cusgrexi  29419  structtocusgr  29422  cusgrres  29425
  Copyright terms: Public domain W3C validator