Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prcliscplgr | Structured version Visualization version GIF version |
Description: A proper class (representing a null graph, see vtxvalprc 27415) has the property of a complete graph (see also cplgr0v 27794), but cannot be an element of ComplGraph, of course. Because of this, a sethood antecedent like 𝐺 ∈ 𝑊 is necessary in the following theorems like iscplgr 27782. (Contributed by AV, 14-Feb-2022.) |
Ref | Expression |
---|---|
cplgruvtxb.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
prcliscplgr | ⊢ (¬ 𝐺 ∈ V → ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvprc 6766 | . 2 ⊢ (¬ 𝐺 ∈ V → (Vtx‘𝐺) = ∅) | |
2 | cplgruvtxb.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | 2 | eqeq1i 2743 | . . 3 ⊢ (𝑉 = ∅ ↔ (Vtx‘𝐺) = ∅) |
4 | rzal 4439 | . . 3 ⊢ (𝑉 = ∅ → ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺)) | |
5 | 3, 4 | sylbir 234 | . 2 ⊢ ((Vtx‘𝐺) = ∅ → ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺)) |
6 | 1, 5 | syl 17 | 1 ⊢ (¬ 𝐺 ∈ V → ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 ∅c0 4256 ‘cfv 6433 Vtxcvtx 27366 UnivVtxcuvtx 27752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |