MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prcliscplgr Structured version   Visualization version   GIF version

Theorem prcliscplgr 29449
Description: A proper class (representing a null graph, see vtxvalprc 29080) has the property of a complete graph (see also cplgr0v 29462), but cannot be an element of ComplGraph, of course. Because of this, a sethood antecedent like 𝐺𝑊 is necessary in the following theorems like iscplgr 29450. (Contributed by AV, 14-Feb-2022.)
Hypothesis
Ref Expression
cplgruvtxb.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
prcliscplgr 𝐺 ∈ V → ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺))
Distinct variable groups:   𝑣,𝐺   𝑣,𝑉

Proof of Theorem prcliscplgr
StepHypRef Expression
1 fvprc 6912 . 2 𝐺 ∈ V → (Vtx‘𝐺) = ∅)
2 cplgruvtxb.v . . . 4 𝑉 = (Vtx‘𝐺)
32eqeq1i 2745 . . 3 (𝑉 = ∅ ↔ (Vtx‘𝐺) = ∅)
4 rzal 4532 . . 3 (𝑉 = ∅ → ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺))
53, 4sylbir 235 . 2 ((Vtx‘𝐺) = ∅ → ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺))
61, 5syl 17 1 𝐺 ∈ V → ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  c0 4352  cfv 6573  Vtxcvtx 29031  UnivVtxcuvtx 29420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator