Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prcliscplgr | Structured version Visualization version GIF version |
Description: A proper class (representing a null graph, see vtxvalprc 27318) has the property of a complete graph (see also cplgr0v 27697), but cannot be an element of ComplGraph, of course. Because of this, a sethood antecedent like 𝐺 ∈ 𝑊 is necessary in the following theorems like iscplgr 27685. (Contributed by AV, 14-Feb-2022.) |
Ref | Expression |
---|---|
cplgruvtxb.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
prcliscplgr | ⊢ (¬ 𝐺 ∈ V → ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvprc 6748 | . 2 ⊢ (¬ 𝐺 ∈ V → (Vtx‘𝐺) = ∅) | |
2 | cplgruvtxb.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | 2 | eqeq1i 2743 | . . 3 ⊢ (𝑉 = ∅ ↔ (Vtx‘𝐺) = ∅) |
4 | rzal 4436 | . . 3 ⊢ (𝑉 = ∅ → ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺)) | |
5 | 3, 4 | sylbir 234 | . 2 ⊢ ((Vtx‘𝐺) = ∅ → ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺)) |
6 | 1, 5 | syl 17 | 1 ⊢ (¬ 𝐺 ∈ V → ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ∅c0 4253 ‘cfv 6418 Vtxcvtx 27269 UnivVtxcuvtx 27655 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |