MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prcliscplgr Structured version   Visualization version   GIF version

Theorem prcliscplgr 27781
Description: A proper class (representing a null graph, see vtxvalprc 27415) has the property of a complete graph (see also cplgr0v 27794), but cannot be an element of ComplGraph, of course. Because of this, a sethood antecedent like 𝐺𝑊 is necessary in the following theorems like iscplgr 27782. (Contributed by AV, 14-Feb-2022.)
Hypothesis
Ref Expression
cplgruvtxb.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
prcliscplgr 𝐺 ∈ V → ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺))
Distinct variable groups:   𝑣,𝐺   𝑣,𝑉

Proof of Theorem prcliscplgr
StepHypRef Expression
1 fvprc 6766 . 2 𝐺 ∈ V → (Vtx‘𝐺) = ∅)
2 cplgruvtxb.v . . . 4 𝑉 = (Vtx‘𝐺)
32eqeq1i 2743 . . 3 (𝑉 = ∅ ↔ (Vtx‘𝐺) = ∅)
4 rzal 4439 . . 3 (𝑉 = ∅ → ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺))
53, 4sylbir 234 . 2 ((Vtx‘𝐺) = ∅ → ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺))
61, 5syl 17 1 𝐺 ∈ V → ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  c0 4256  cfv 6433  Vtxcvtx 27366  UnivVtxcuvtx 27752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator