MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prcliscplgr Structured version   Visualization version   GIF version

Theorem prcliscplgr 27198
Description: A proper class (representing a null graph, see vtxvalprc 26832) has the property of a complete graph (see also cplgr0v 27211), but cannot be an element of ComplGraph, of course. Because of this, a sethood antecedent like 𝐺𝑊 is necessary in the following theorems like iscplgr 27199. (Contributed by AV, 14-Feb-2022.)
Hypothesis
Ref Expression
cplgruvtxb.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
prcliscplgr 𝐺 ∈ V → ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺))
Distinct variable groups:   𝑣,𝐺   𝑣,𝑉

Proof of Theorem prcliscplgr
StepHypRef Expression
1 fvprc 6665 . 2 𝐺 ∈ V → (Vtx‘𝐺) = ∅)
2 cplgruvtxb.v . . . 4 𝑉 = (Vtx‘𝐺)
32eqeq1i 2828 . . 3 (𝑉 = ∅ ↔ (Vtx‘𝐺) = ∅)
4 rzal 4455 . . 3 (𝑉 = ∅ → ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺))
53, 4sylbir 237 . 2 ((Vtx‘𝐺) = ∅ → ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺))
61, 5syl 17 1 𝐺 ∈ V → ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wcel 2114  wral 3140  Vcvv 3496  c0 4293  cfv 6357  Vtxcvtx 26783  UnivVtxcuvtx 27169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-nul 5212  ax-pow 5268
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-iota 6316  df-fv 6365
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator