| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prcliscplgr | Structured version Visualization version GIF version | ||
| Description: A proper class (representing a null graph, see vtxvalprc 29021) has the property of a complete graph (see also cplgr0v 29403), but cannot be an element of ComplGraph, of course. Because of this, a sethood antecedent like 𝐺 ∈ 𝑊 is necessary in the following theorems like iscplgr 29391. (Contributed by AV, 14-Feb-2022.) |
| Ref | Expression |
|---|---|
| cplgruvtxb.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| prcliscplgr | ⊢ (¬ 𝐺 ∈ V → ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvprc 6814 | . 2 ⊢ (¬ 𝐺 ∈ V → (Vtx‘𝐺) = ∅) | |
| 2 | cplgruvtxb.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | 2 | eqeq1i 2736 | . . 3 ⊢ (𝑉 = ∅ ↔ (Vtx‘𝐺) = ∅) |
| 4 | rzal 4459 | . . 3 ⊢ (𝑉 = ∅ → ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺)) | |
| 5 | 3, 4 | sylbir 235 | . 2 ⊢ ((Vtx‘𝐺) = ∅ → ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺)) |
| 6 | 1, 5 | syl 17 | 1 ⊢ (¬ 𝐺 ∈ V → ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ∅c0 4283 ‘cfv 6481 Vtxcvtx 28972 UnivVtxcuvtx 29361 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |