MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prcliscplgr Structured version   Visualization version   GIF version

Theorem prcliscplgr 29446
Description: A proper class (representing a null graph, see vtxvalprc 29077) has the property of a complete graph (see also cplgr0v 29459), but cannot be an element of ComplGraph, of course. Because of this, a sethood antecedent like 𝐺𝑊 is necessary in the following theorems like iscplgr 29447. (Contributed by AV, 14-Feb-2022.)
Hypothesis
Ref Expression
cplgruvtxb.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
prcliscplgr 𝐺 ∈ V → ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺))
Distinct variable groups:   𝑣,𝐺   𝑣,𝑉

Proof of Theorem prcliscplgr
StepHypRef Expression
1 fvprc 6899 . 2 𝐺 ∈ V → (Vtx‘𝐺) = ∅)
2 cplgruvtxb.v . . . 4 𝑉 = (Vtx‘𝐺)
32eqeq1i 2740 . . 3 (𝑉 = ∅ ↔ (Vtx‘𝐺) = ∅)
4 rzal 4515 . . 3 (𝑉 = ∅ → ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺))
53, 4sylbir 235 . 2 ((Vtx‘𝐺) = ∅ → ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺))
61, 5syl 17 1 𝐺 ∈ V → ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478  c0 4339  cfv 6563  Vtxcvtx 29028  UnivVtxcuvtx 29417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-iota 6516  df-fv 6571
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator