![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nbcplgr | Structured version Visualization version GIF version |
Description: In a complete graph, each vertex has all other vertices as neighbors. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 3-Nov-2020.) |
Ref | Expression |
---|---|
nbcplgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
nbcplgr | ⊢ ((𝐺 ∈ ComplGraph ∧ 𝑁 ∈ 𝑉) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nbcplgr.v | . . . . . . 7 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | cplgruvtxb 29456 | . . . . . 6 ⊢ (𝐺 ∈ ComplGraph → (𝐺 ∈ ComplGraph ↔ (UnivVtx‘𝐺) = 𝑉)) |
3 | 2 | ibi 267 | . . . . 5 ⊢ (𝐺 ∈ ComplGraph → (UnivVtx‘𝐺) = 𝑉) |
4 | 3 | eqcomd 2743 | . . . 4 ⊢ (𝐺 ∈ ComplGraph → 𝑉 = (UnivVtx‘𝐺)) |
5 | 4 | eleq2d 2827 | . . 3 ⊢ (𝐺 ∈ ComplGraph → (𝑁 ∈ 𝑉 ↔ 𝑁 ∈ (UnivVtx‘𝐺))) |
6 | 5 | biimpa 476 | . 2 ⊢ ((𝐺 ∈ ComplGraph ∧ 𝑁 ∈ 𝑉) → 𝑁 ∈ (UnivVtx‘𝐺)) |
7 | 1 | uvtxnbgrb 29444 | . . 3 ⊢ (𝑁 ∈ 𝑉 → (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁}))) |
8 | 7 | adantl 481 | . 2 ⊢ ((𝐺 ∈ ComplGraph ∧ 𝑁 ∈ 𝑉) → (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁}))) |
9 | 6, 8 | mpbid 232 | 1 ⊢ ((𝐺 ∈ ComplGraph ∧ 𝑁 ∈ 𝑉) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∖ cdif 3963 {csn 4634 ‘cfv 6569 (class class class)co 7438 Vtxcvtx 29039 NeighbVtx cnbgr 29375 UnivVtxcuvtx 29428 ComplGraphccplgr 29452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-1st 8022 df-2nd 8023 df-nbgr 29376 df-uvtx 29429 df-cplgr 29454 |
This theorem is referenced by: cusgrsizeindslem 29495 cusgrrusgr 29625 |
Copyright terms: Public domain | W3C validator |