Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nbcplgr | Structured version Visualization version GIF version |
Description: In a complete graph, each vertex has all other vertices as neighbors. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 3-Nov-2020.) |
Ref | Expression |
---|---|
nbcplgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
nbcplgr | ⊢ ((𝐺 ∈ ComplGraph ∧ 𝑁 ∈ 𝑉) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nbcplgr.v | . . . . . . 7 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | cplgruvtxb 27357 | . . . . . 6 ⊢ (𝐺 ∈ ComplGraph → (𝐺 ∈ ComplGraph ↔ (UnivVtx‘𝐺) = 𝑉)) |
3 | 2 | ibi 270 | . . . . 5 ⊢ (𝐺 ∈ ComplGraph → (UnivVtx‘𝐺) = 𝑉) |
4 | 3 | eqcomd 2744 | . . . 4 ⊢ (𝐺 ∈ ComplGraph → 𝑉 = (UnivVtx‘𝐺)) |
5 | 4 | eleq2d 2818 | . . 3 ⊢ (𝐺 ∈ ComplGraph → (𝑁 ∈ 𝑉 ↔ 𝑁 ∈ (UnivVtx‘𝐺))) |
6 | 5 | biimpa 480 | . 2 ⊢ ((𝐺 ∈ ComplGraph ∧ 𝑁 ∈ 𝑉) → 𝑁 ∈ (UnivVtx‘𝐺)) |
7 | 1 | uvtxnbgrb 27345 | . . 3 ⊢ (𝑁 ∈ 𝑉 → (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁}))) |
8 | 7 | adantl 485 | . 2 ⊢ ((𝐺 ∈ ComplGraph ∧ 𝑁 ∈ 𝑉) → (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁}))) |
9 | 6, 8 | mpbid 235 | 1 ⊢ ((𝐺 ∈ ComplGraph ∧ 𝑁 ∈ 𝑉) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∖ cdif 3840 {csn 4516 ‘cfv 6339 (class class class)co 7172 Vtxcvtx 26943 NeighbVtx cnbgr 27276 UnivVtxcuvtx 27329 ComplGraphccplgr 27353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 ax-un 7481 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6297 df-fun 6341 df-fv 6347 df-ov 7175 df-oprab 7176 df-mpo 7177 df-1st 7716 df-2nd 7717 df-nbgr 27277 df-uvtx 27330 df-cplgr 27355 |
This theorem is referenced by: cusgrsizeindslem 27395 cusgrrusgr 27525 |
Copyright terms: Public domain | W3C validator |