MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbcplgr Structured version   Visualization version   GIF version

Theorem nbcplgr 28946
Description: In a complete graph, each vertex has all other vertices as neighbors. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 3-Nov-2020.)
Hypothesis
Ref Expression
nbcplgr.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
nbcplgr ((𝐺 ∈ ComplGraph ∧ 𝑁𝑉) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁}))

Proof of Theorem nbcplgr
StepHypRef Expression
1 nbcplgr.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
21cplgruvtxb 28925 . . . . . 6 (𝐺 ∈ ComplGraph → (𝐺 ∈ ComplGraph ↔ (UnivVtx‘𝐺) = 𝑉))
32ibi 266 . . . . 5 (𝐺 ∈ ComplGraph → (UnivVtx‘𝐺) = 𝑉)
43eqcomd 2738 . . . 4 (𝐺 ∈ ComplGraph → 𝑉 = (UnivVtx‘𝐺))
54eleq2d 2819 . . 3 (𝐺 ∈ ComplGraph → (𝑁𝑉𝑁 ∈ (UnivVtx‘𝐺)))
65biimpa 477 . 2 ((𝐺 ∈ ComplGraph ∧ 𝑁𝑉) → 𝑁 ∈ (UnivVtx‘𝐺))
71uvtxnbgrb 28913 . . 3 (𝑁𝑉 → (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})))
87adantl 482 . 2 ((𝐺 ∈ ComplGraph ∧ 𝑁𝑉) → (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})))
96, 8mpbid 231 1 ((𝐺 ∈ ComplGraph ∧ 𝑁𝑉) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  cdif 3945  {csn 4628  cfv 6543  (class class class)co 7411  Vtxcvtx 28511   NeighbVtx cnbgr 28844  UnivVtxcuvtx 28897  ComplGraphccplgr 28921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-nbgr 28845  df-uvtx 28898  df-cplgr 28923
This theorem is referenced by:  cusgrsizeindslem  28963  cusgrrusgr  29093
  Copyright terms: Public domain W3C validator