Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nbcplgr | Structured version Visualization version GIF version |
Description: In a complete graph, each vertex has all other vertices as neighbors. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 3-Nov-2020.) |
Ref | Expression |
---|---|
nbcplgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
nbcplgr | ⊢ ((𝐺 ∈ ComplGraph ∧ 𝑁 ∈ 𝑉) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nbcplgr.v | . . . . . . 7 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | cplgruvtxb 27761 | . . . . . 6 ⊢ (𝐺 ∈ ComplGraph → (𝐺 ∈ ComplGraph ↔ (UnivVtx‘𝐺) = 𝑉)) |
3 | 2 | ibi 266 | . . . . 5 ⊢ (𝐺 ∈ ComplGraph → (UnivVtx‘𝐺) = 𝑉) |
4 | 3 | eqcomd 2745 | . . . 4 ⊢ (𝐺 ∈ ComplGraph → 𝑉 = (UnivVtx‘𝐺)) |
5 | 4 | eleq2d 2825 | . . 3 ⊢ (𝐺 ∈ ComplGraph → (𝑁 ∈ 𝑉 ↔ 𝑁 ∈ (UnivVtx‘𝐺))) |
6 | 5 | biimpa 476 | . 2 ⊢ ((𝐺 ∈ ComplGraph ∧ 𝑁 ∈ 𝑉) → 𝑁 ∈ (UnivVtx‘𝐺)) |
7 | 1 | uvtxnbgrb 27749 | . . 3 ⊢ (𝑁 ∈ 𝑉 → (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁}))) |
8 | 7 | adantl 481 | . 2 ⊢ ((𝐺 ∈ ComplGraph ∧ 𝑁 ∈ 𝑉) → (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁}))) |
9 | 6, 8 | mpbid 231 | 1 ⊢ ((𝐺 ∈ ComplGraph ∧ 𝑁 ∈ 𝑉) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ∖ cdif 3888 {csn 4566 ‘cfv 6430 (class class class)co 7268 Vtxcvtx 27347 NeighbVtx cnbgr 27680 UnivVtxcuvtx 27733 ComplGraphccplgr 27757 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-1st 7817 df-2nd 7818 df-nbgr 27681 df-uvtx 27734 df-cplgr 27759 |
This theorem is referenced by: cusgrsizeindslem 27799 cusgrrusgr 27929 |
Copyright terms: Public domain | W3C validator |