MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbcplgr Structured version   Visualization version   GIF version

Theorem nbcplgr 29379
Description: In a complete graph, each vertex has all other vertices as neighbors. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 3-Nov-2020.)
Hypothesis
Ref Expression
nbcplgr.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
nbcplgr ((𝐺 ∈ ComplGraph ∧ 𝑁𝑉) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁}))

Proof of Theorem nbcplgr
StepHypRef Expression
1 nbcplgr.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
21cplgruvtxb 29358 . . . . . 6 (𝐺 ∈ ComplGraph → (𝐺 ∈ ComplGraph ↔ (UnivVtx‘𝐺) = 𝑉))
32ibi 267 . . . . 5 (𝐺 ∈ ComplGraph → (UnivVtx‘𝐺) = 𝑉)
43eqcomd 2740 . . . 4 (𝐺 ∈ ComplGraph → 𝑉 = (UnivVtx‘𝐺))
54eleq2d 2819 . . 3 (𝐺 ∈ ComplGraph → (𝑁𝑉𝑁 ∈ (UnivVtx‘𝐺)))
65biimpa 476 . 2 ((𝐺 ∈ ComplGraph ∧ 𝑁𝑉) → 𝑁 ∈ (UnivVtx‘𝐺))
71uvtxnbgrb 29346 . . 3 (𝑁𝑉 → (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})))
87adantl 481 . 2 ((𝐺 ∈ ComplGraph ∧ 𝑁𝑉) → (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})))
96, 8mpbid 232 1 ((𝐺 ∈ ComplGraph ∧ 𝑁𝑉) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  cdif 3928  {csn 4606  cfv 6541  (class class class)co 7413  Vtxcvtx 28941   NeighbVtx cnbgr 29277  UnivVtxcuvtx 29330  ComplGraphccplgr 29354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7996  df-2nd 7997  df-nbgr 29278  df-uvtx 29331  df-cplgr 29356
This theorem is referenced by:  cusgrsizeindslem  29397  cusgrrusgr  29527
  Copyright terms: Public domain W3C validator