![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nbcplgr | Structured version Visualization version GIF version |
Description: In a complete graph, each vertex has all other vertices as neighbors. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 3-Nov-2020.) |
Ref | Expression |
---|---|
nbcplgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
nbcplgr | ⊢ ((𝐺 ∈ ComplGraph ∧ 𝑁 ∈ 𝑉) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nbcplgr.v | . . . . . . 7 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | cplgruvtxb 29450 | . . . . . 6 ⊢ (𝐺 ∈ ComplGraph → (𝐺 ∈ ComplGraph ↔ (UnivVtx‘𝐺) = 𝑉)) |
3 | 2 | ibi 267 | . . . . 5 ⊢ (𝐺 ∈ ComplGraph → (UnivVtx‘𝐺) = 𝑉) |
4 | 3 | eqcomd 2746 | . . . 4 ⊢ (𝐺 ∈ ComplGraph → 𝑉 = (UnivVtx‘𝐺)) |
5 | 4 | eleq2d 2830 | . . 3 ⊢ (𝐺 ∈ ComplGraph → (𝑁 ∈ 𝑉 ↔ 𝑁 ∈ (UnivVtx‘𝐺))) |
6 | 5 | biimpa 476 | . 2 ⊢ ((𝐺 ∈ ComplGraph ∧ 𝑁 ∈ 𝑉) → 𝑁 ∈ (UnivVtx‘𝐺)) |
7 | 1 | uvtxnbgrb 29438 | . . 3 ⊢ (𝑁 ∈ 𝑉 → (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁}))) |
8 | 7 | adantl 481 | . 2 ⊢ ((𝐺 ∈ ComplGraph ∧ 𝑁 ∈ 𝑉) → (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁}))) |
9 | 6, 8 | mpbid 232 | 1 ⊢ ((𝐺 ∈ ComplGraph ∧ 𝑁 ∈ 𝑉) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∖ cdif 3973 {csn 4648 ‘cfv 6575 (class class class)co 7450 Vtxcvtx 29033 NeighbVtx cnbgr 29369 UnivVtxcuvtx 29422 ComplGraphccplgr 29446 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6527 df-fun 6577 df-fv 6583 df-ov 7453 df-oprab 7454 df-mpo 7455 df-1st 8032 df-2nd 8033 df-nbgr 29370 df-uvtx 29423 df-cplgr 29448 |
This theorem is referenced by: cusgrsizeindslem 29489 cusgrrusgr 29619 |
Copyright terms: Public domain | W3C validator |