MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbcplgr Structured version   Visualization version   GIF version

Theorem nbcplgr 27782
Description: In a complete graph, each vertex has all other vertices as neighbors. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 3-Nov-2020.)
Hypothesis
Ref Expression
nbcplgr.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
nbcplgr ((𝐺 ∈ ComplGraph ∧ 𝑁𝑉) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁}))

Proof of Theorem nbcplgr
StepHypRef Expression
1 nbcplgr.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
21cplgruvtxb 27761 . . . . . 6 (𝐺 ∈ ComplGraph → (𝐺 ∈ ComplGraph ↔ (UnivVtx‘𝐺) = 𝑉))
32ibi 266 . . . . 5 (𝐺 ∈ ComplGraph → (UnivVtx‘𝐺) = 𝑉)
43eqcomd 2745 . . . 4 (𝐺 ∈ ComplGraph → 𝑉 = (UnivVtx‘𝐺))
54eleq2d 2825 . . 3 (𝐺 ∈ ComplGraph → (𝑁𝑉𝑁 ∈ (UnivVtx‘𝐺)))
65biimpa 476 . 2 ((𝐺 ∈ ComplGraph ∧ 𝑁𝑉) → 𝑁 ∈ (UnivVtx‘𝐺))
71uvtxnbgrb 27749 . . 3 (𝑁𝑉 → (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})))
87adantl 481 . 2 ((𝐺 ∈ ComplGraph ∧ 𝑁𝑉) → (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})))
96, 8mpbid 231 1 ((𝐺 ∈ ComplGraph ∧ 𝑁𝑉) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541  wcel 2109  cdif 3888  {csn 4566  cfv 6430  (class class class)co 7268  Vtxcvtx 27347   NeighbVtx cnbgr 27680  UnivVtxcuvtx 27733  ComplGraphccplgr 27757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-1st 7817  df-2nd 7818  df-nbgr 27681  df-uvtx 27734  df-cplgr 27759
This theorem is referenced by:  cusgrsizeindslem  27799  cusgrrusgr  27929
  Copyright terms: Public domain W3C validator