| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nbcplgr | Structured version Visualization version GIF version | ||
| Description: In a complete graph, each vertex has all other vertices as neighbors. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 3-Nov-2020.) |
| Ref | Expression |
|---|---|
| nbcplgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| nbcplgr | ⊢ ((𝐺 ∈ ComplGraph ∧ 𝑁 ∈ 𝑉) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nbcplgr.v | . . . . . . 7 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | cplgruvtxb 29346 | . . . . . 6 ⊢ (𝐺 ∈ ComplGraph → (𝐺 ∈ ComplGraph ↔ (UnivVtx‘𝐺) = 𝑉)) |
| 3 | 2 | ibi 267 | . . . . 5 ⊢ (𝐺 ∈ ComplGraph → (UnivVtx‘𝐺) = 𝑉) |
| 4 | 3 | eqcomd 2736 | . . . 4 ⊢ (𝐺 ∈ ComplGraph → 𝑉 = (UnivVtx‘𝐺)) |
| 5 | 4 | eleq2d 2815 | . . 3 ⊢ (𝐺 ∈ ComplGraph → (𝑁 ∈ 𝑉 ↔ 𝑁 ∈ (UnivVtx‘𝐺))) |
| 6 | 5 | biimpa 476 | . 2 ⊢ ((𝐺 ∈ ComplGraph ∧ 𝑁 ∈ 𝑉) → 𝑁 ∈ (UnivVtx‘𝐺)) |
| 7 | 1 | uvtxnbgrb 29334 | . . 3 ⊢ (𝑁 ∈ 𝑉 → (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁}))) |
| 8 | 7 | adantl 481 | . 2 ⊢ ((𝐺 ∈ ComplGraph ∧ 𝑁 ∈ 𝑉) → (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁}))) |
| 9 | 6, 8 | mpbid 232 | 1 ⊢ ((𝐺 ∈ ComplGraph ∧ 𝑁 ∈ 𝑉) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3913 {csn 4591 ‘cfv 6513 (class class class)co 7389 Vtxcvtx 28929 NeighbVtx cnbgr 29265 UnivVtxcuvtx 29318 ComplGraphccplgr 29342 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 df-nbgr 29266 df-uvtx 29319 df-cplgr 29344 |
| This theorem is referenced by: cusgrsizeindslem 29385 cusgrrusgr 29515 |
| Copyright terms: Public domain | W3C validator |