MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbcplgr Structured version   Visualization version   GIF version

Theorem nbcplgr 29367
Description: In a complete graph, each vertex has all other vertices as neighbors. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 3-Nov-2020.)
Hypothesis
Ref Expression
nbcplgr.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
nbcplgr ((𝐺 ∈ ComplGraph ∧ 𝑁𝑉) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁}))

Proof of Theorem nbcplgr
StepHypRef Expression
1 nbcplgr.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
21cplgruvtxb 29346 . . . . . 6 (𝐺 ∈ ComplGraph → (𝐺 ∈ ComplGraph ↔ (UnivVtx‘𝐺) = 𝑉))
32ibi 267 . . . . 5 (𝐺 ∈ ComplGraph → (UnivVtx‘𝐺) = 𝑉)
43eqcomd 2736 . . . 4 (𝐺 ∈ ComplGraph → 𝑉 = (UnivVtx‘𝐺))
54eleq2d 2815 . . 3 (𝐺 ∈ ComplGraph → (𝑁𝑉𝑁 ∈ (UnivVtx‘𝐺)))
65biimpa 476 . 2 ((𝐺 ∈ ComplGraph ∧ 𝑁𝑉) → 𝑁 ∈ (UnivVtx‘𝐺))
71uvtxnbgrb 29334 . . 3 (𝑁𝑉 → (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})))
87adantl 481 . 2 ((𝐺 ∈ ComplGraph ∧ 𝑁𝑉) → (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})))
96, 8mpbid 232 1 ((𝐺 ∈ ComplGraph ∧ 𝑁𝑉) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cdif 3913  {csn 4591  cfv 6513  (class class class)co 7389  Vtxcvtx 28929   NeighbVtx cnbgr 29265  UnivVtxcuvtx 29318  ComplGraphccplgr 29342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-nbgr 29266  df-uvtx 29319  df-cplgr 29344
This theorem is referenced by:  cusgrsizeindslem  29385  cusgrrusgr  29515
  Copyright terms: Public domain W3C validator