Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbcom | Structured version Visualization version GIF version |
Description: Commutative law for double substitution into a class. (Contributed by NM, 14-Nov-2005.) (Revised by NM, 18-Aug-2018.) |
Ref | Expression |
---|---|
csbcom | ⊢ ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = ⦋𝐵 / 𝑦⦌⦋𝐴 / 𝑥⦌𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbccom 3762 | . . . 4 ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝑧 ∈ 𝐶 ↔ [𝐵 / 𝑦][𝐴 / 𝑥]𝑧 ∈ 𝐶) | |
2 | sbcel2 4305 | . . . . 5 ⊢ ([𝐵 / 𝑦]𝑧 ∈ 𝐶 ↔ 𝑧 ∈ ⦋𝐵 / 𝑦⦌𝐶) | |
3 | 2 | sbcbii 3738 | . . . 4 ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝑧 ∈ 𝐶 ↔ [𝐴 / 𝑥]𝑧 ∈ ⦋𝐵 / 𝑦⦌𝐶) |
4 | sbcel2 4305 | . . . . 5 ⊢ ([𝐴 / 𝑥]𝑧 ∈ 𝐶 ↔ 𝑧 ∈ ⦋𝐴 / 𝑥⦌𝐶) | |
5 | 4 | sbcbii 3738 | . . . 4 ⊢ ([𝐵 / 𝑦][𝐴 / 𝑥]𝑧 ∈ 𝐶 ↔ [𝐵 / 𝑦]𝑧 ∈ ⦋𝐴 / 𝑥⦌𝐶) |
6 | 1, 3, 5 | 3bitr3i 304 | . . 3 ⊢ ([𝐴 / 𝑥]𝑧 ∈ ⦋𝐵 / 𝑦⦌𝐶 ↔ [𝐵 / 𝑦]𝑧 ∈ ⦋𝐴 / 𝑥⦌𝐶) |
7 | sbcel2 4305 | . . 3 ⊢ ([𝐴 / 𝑥]𝑧 ∈ ⦋𝐵 / 𝑦⦌𝐶 ↔ 𝑧 ∈ ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶) | |
8 | sbcel2 4305 | . . 3 ⊢ ([𝐵 / 𝑦]𝑧 ∈ ⦋𝐴 / 𝑥⦌𝐶 ↔ 𝑧 ∈ ⦋𝐵 / 𝑦⦌⦋𝐴 / 𝑥⦌𝐶) | |
9 | 6, 7, 8 | 3bitr3i 304 | . 2 ⊢ (𝑧 ∈ ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 ↔ 𝑧 ∈ ⦋𝐵 / 𝑦⦌⦋𝐴 / 𝑥⦌𝐶) |
10 | 9 | eqriv 2735 | 1 ⊢ ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = ⦋𝐵 / 𝑦⦌⦋𝐴 / 𝑥⦌𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2114 [wsbc 3680 ⦋csb 3790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-nul 4212 |
This theorem is referenced by: ovmpos 7313 fvmpocurryd 7966 f1od2 30631 |
Copyright terms: Public domain | W3C validator |