|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > csbcom | Structured version Visualization version GIF version | ||
| Description: Commutative law for double substitution into a class. (Contributed by NM, 14-Nov-2005.) (Revised by NM, 18-Aug-2018.) | 
| Ref | Expression | 
|---|---|
| csbcom | ⊢ ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = ⦋𝐵 / 𝑦⦌⦋𝐴 / 𝑥⦌𝐶 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sbccom 3871 | . . . 4 ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝑧 ∈ 𝐶 ↔ [𝐵 / 𝑦][𝐴 / 𝑥]𝑧 ∈ 𝐶) | |
| 2 | sbcel2 4418 | . . . . 5 ⊢ ([𝐵 / 𝑦]𝑧 ∈ 𝐶 ↔ 𝑧 ∈ ⦋𝐵 / 𝑦⦌𝐶) | |
| 3 | 2 | sbcbii 3846 | . . . 4 ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝑧 ∈ 𝐶 ↔ [𝐴 / 𝑥]𝑧 ∈ ⦋𝐵 / 𝑦⦌𝐶) | 
| 4 | sbcel2 4418 | . . . . 5 ⊢ ([𝐴 / 𝑥]𝑧 ∈ 𝐶 ↔ 𝑧 ∈ ⦋𝐴 / 𝑥⦌𝐶) | |
| 5 | 4 | sbcbii 3846 | . . . 4 ⊢ ([𝐵 / 𝑦][𝐴 / 𝑥]𝑧 ∈ 𝐶 ↔ [𝐵 / 𝑦]𝑧 ∈ ⦋𝐴 / 𝑥⦌𝐶) | 
| 6 | 1, 3, 5 | 3bitr3i 301 | . . 3 ⊢ ([𝐴 / 𝑥]𝑧 ∈ ⦋𝐵 / 𝑦⦌𝐶 ↔ [𝐵 / 𝑦]𝑧 ∈ ⦋𝐴 / 𝑥⦌𝐶) | 
| 7 | sbcel2 4418 | . . 3 ⊢ ([𝐴 / 𝑥]𝑧 ∈ ⦋𝐵 / 𝑦⦌𝐶 ↔ 𝑧 ∈ ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶) | |
| 8 | sbcel2 4418 | . . 3 ⊢ ([𝐵 / 𝑦]𝑧 ∈ ⦋𝐴 / 𝑥⦌𝐶 ↔ 𝑧 ∈ ⦋𝐵 / 𝑦⦌⦋𝐴 / 𝑥⦌𝐶) | |
| 9 | 6, 7, 8 | 3bitr3i 301 | . 2 ⊢ (𝑧 ∈ ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 ↔ 𝑧 ∈ ⦋𝐵 / 𝑦⦌⦋𝐴 / 𝑥⦌𝐶) | 
| 10 | 9 | eqriv 2734 | 1 ⊢ ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = ⦋𝐵 / 𝑦⦌⦋𝐴 / 𝑥⦌𝐶 | 
| Colors of variables: wff setvar class | 
| Syntax hints: = wceq 1540 ∈ wcel 2108 [wsbc 3788 ⦋csb 3899 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-nul 4334 | 
| This theorem is referenced by: ovmpos 7581 fvmpocurryd 8296 f1od2 32732 | 
| Copyright terms: Public domain | W3C validator |