| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbcom | Structured version Visualization version GIF version | ||
| Description: Commutative law for double substitution into a class. (Contributed by NM, 14-Nov-2005.) (Revised by NM, 18-Aug-2018.) |
| Ref | Expression |
|---|---|
| csbcom | ⊢ ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = ⦋𝐵 / 𝑦⦌⦋𝐴 / 𝑥⦌𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbccom 3822 | . . . 4 ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝑧 ∈ 𝐶 ↔ [𝐵 / 𝑦][𝐴 / 𝑥]𝑧 ∈ 𝐶) | |
| 2 | sbcel2 4368 | . . . . 5 ⊢ ([𝐵 / 𝑦]𝑧 ∈ 𝐶 ↔ 𝑧 ∈ ⦋𝐵 / 𝑦⦌𝐶) | |
| 3 | 2 | sbcbii 3798 | . . . 4 ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝑧 ∈ 𝐶 ↔ [𝐴 / 𝑥]𝑧 ∈ ⦋𝐵 / 𝑦⦌𝐶) |
| 4 | sbcel2 4368 | . . . . 5 ⊢ ([𝐴 / 𝑥]𝑧 ∈ 𝐶 ↔ 𝑧 ∈ ⦋𝐴 / 𝑥⦌𝐶) | |
| 5 | 4 | sbcbii 3798 | . . . 4 ⊢ ([𝐵 / 𝑦][𝐴 / 𝑥]𝑧 ∈ 𝐶 ↔ [𝐵 / 𝑦]𝑧 ∈ ⦋𝐴 / 𝑥⦌𝐶) |
| 6 | 1, 3, 5 | 3bitr3i 301 | . . 3 ⊢ ([𝐴 / 𝑥]𝑧 ∈ ⦋𝐵 / 𝑦⦌𝐶 ↔ [𝐵 / 𝑦]𝑧 ∈ ⦋𝐴 / 𝑥⦌𝐶) |
| 7 | sbcel2 4368 | . . 3 ⊢ ([𝐴 / 𝑥]𝑧 ∈ ⦋𝐵 / 𝑦⦌𝐶 ↔ 𝑧 ∈ ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶) | |
| 8 | sbcel2 4368 | . . 3 ⊢ ([𝐵 / 𝑦]𝑧 ∈ ⦋𝐴 / 𝑥⦌𝐶 ↔ 𝑧 ∈ ⦋𝐵 / 𝑦⦌⦋𝐴 / 𝑥⦌𝐶) | |
| 9 | 6, 7, 8 | 3bitr3i 301 | . 2 ⊢ (𝑧 ∈ ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 ↔ 𝑧 ∈ ⦋𝐵 / 𝑦⦌⦋𝐴 / 𝑥⦌𝐶) |
| 10 | 9 | eqriv 2728 | 1 ⊢ ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = ⦋𝐵 / 𝑦⦌⦋𝐴 / 𝑥⦌𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 [wsbc 3741 ⦋csb 3850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-nul 4284 |
| This theorem is referenced by: ovmpos 7494 fvmpocurryd 8201 f1od2 32697 |
| Copyright terms: Public domain | W3C validator |