MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbcom Structured version   Visualization version   GIF version

Theorem csbcom 4383
Description: Commutative law for double substitution into a class. (Contributed by NM, 14-Nov-2005.) (Revised by NM, 18-Aug-2018.)
Assertion
Ref Expression
csbcom 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐵 / 𝑦𝐴 / 𝑥𝐶
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem csbcom
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sbccom 3834 . . . 4 ([𝐴 / 𝑥][𝐵 / 𝑦]𝑧𝐶[𝐵 / 𝑦][𝐴 / 𝑥]𝑧𝐶)
2 sbcel2 4381 . . . . 5 ([𝐵 / 𝑦]𝑧𝐶𝑧𝐵 / 𝑦𝐶)
32sbcbii 3810 . . . 4 ([𝐴 / 𝑥][𝐵 / 𝑦]𝑧𝐶[𝐴 / 𝑥]𝑧𝐵 / 𝑦𝐶)
4 sbcel2 4381 . . . . 5 ([𝐴 / 𝑥]𝑧𝐶𝑧𝐴 / 𝑥𝐶)
54sbcbii 3810 . . . 4 ([𝐵 / 𝑦][𝐴 / 𝑥]𝑧𝐶[𝐵 / 𝑦]𝑧𝐴 / 𝑥𝐶)
61, 3, 53bitr3i 301 . . 3 ([𝐴 / 𝑥]𝑧𝐵 / 𝑦𝐶[𝐵 / 𝑦]𝑧𝐴 / 𝑥𝐶)
7 sbcel2 4381 . . 3 ([𝐴 / 𝑥]𝑧𝐵 / 𝑦𝐶𝑧𝐴 / 𝑥𝐵 / 𝑦𝐶)
8 sbcel2 4381 . . 3 ([𝐵 / 𝑦]𝑧𝐴 / 𝑥𝐶𝑧𝐵 / 𝑦𝐴 / 𝑥𝐶)
96, 7, 83bitr3i 301 . 2 (𝑧𝐴 / 𝑥𝐵 / 𝑦𝐶𝑧𝐵 / 𝑦𝐴 / 𝑥𝐶)
109eqriv 2726 1 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐵 / 𝑦𝐴 / 𝑥𝐶
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  [wsbc 3753  csb 3862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-nul 4297
This theorem is referenced by:  ovmpos  7537  fvmpocurryd  8250  f1od2  32644
  Copyright terms: Public domain W3C validator