Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbceq2g | Structured version Visualization version GIF version |
Description: Move proper substitution to second argument of an equality. (Contributed by NM, 30-Nov-2005.) |
Ref | Expression |
---|---|
sbceq2g | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ 𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbceqg 4364 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) | |
2 | csbconstg 3869 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) | |
3 | 2 | eqeq1d 2739 | . 2 ⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶 ↔ 𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) |
4 | 1, 3 | bitrd 279 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ 𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 [wsbc 3734 ⦋csb 3850 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1544 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-v 3445 df-sbc 3735 df-csb 3851 |
This theorem is referenced by: csbsng 4664 csbmpt12 5508 opsbc2ie 31177 f1od2 31407 bj-snsetex 35290 csbmpo123 35658 csbfinxpg 35715 poimirlem26 35959 cdlemkid3N 39252 cdlemkid4 39253 brtrclfv2 41708 frege116 41960 |
Copyright terms: Public domain | W3C validator |