Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbceq2g Structured version   Visualization version   GIF version

Theorem sbceq2g 4327
 Description: Move proper substitution to second argument of an equality. (Contributed by NM, 30-Nov-2005.)
Assertion
Ref Expression
sbceq2g (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶𝐵 = 𝐴 / 𝑥𝐶))
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem sbceq2g
StepHypRef Expression
1 sbceqg 4320 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶))
2 csbconstg 3850 . . 3 (𝐴𝑉𝐴 / 𝑥𝐵 = 𝐵)
32eqeq1d 2803 . 2 (𝐴𝑉 → (𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶𝐵 = 𝐴 / 𝑥𝐶))
41, 3bitrd 282 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶𝐵 = 𝐴 / 𝑥𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   = wceq 1538   ∈ wcel 2112  [wsbc 3723  ⦋csb 3831 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-sbc 3724  df-csb 3832 This theorem is referenced by:  csbsng  4607  csbmpt12  5412  opsbc2ie  30249  f1od2  30486  bj-snsetex  34394  csbmpo123  34743  csbfinxpg  34800  poimirlem26  35076  cdlemkid3N  38222  cdlemkid4  38223  brtrclfv2  40415  frege116  40667
 Copyright terms: Public domain W3C validator