| Step | Hyp | Ref
| Expression |
| 1 | | fvmpocurryd.b |
. . 3
⊢ (𝜑 → 𝐵 ∈ 𝑌) |
| 2 | | csbcom 4395 |
. . . . 5
⊢
⦋𝐵 /
𝑏⦌⦋𝐴 / 𝑎⦌⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑎⦌⦋𝐵 / 𝑏⦌⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶 |
| 3 | | csbcow 3889 |
. . . . . 6
⊢
⦋𝐵 /
𝑏⦌⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶 |
| 4 | 3 | csbeq2i 3882 |
. . . . 5
⊢
⦋𝐴 /
𝑎⦌⦋𝐵 / 𝑏⦌⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑎⦌⦋𝐵 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶 |
| 5 | | csbcom 4395 |
. . . . . 6
⊢
⦋𝐴 /
𝑎⦌⦋𝐵 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑦⦌⦋𝐴 / 𝑎⦌⦋𝑎 / 𝑥⦌𝐶 |
| 6 | | csbcow 3889 |
. . . . . . 7
⊢
⦋𝐴 /
𝑎⦌⦋𝑎 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑥⦌𝐶 |
| 7 | 6 | csbeq2i 3882 |
. . . . . 6
⊢
⦋𝐵 /
𝑦⦌⦋𝐴 / 𝑎⦌⦋𝑎 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑦⦌⦋𝐴 / 𝑥⦌𝐶 |
| 8 | 5, 7 | eqtri 2758 |
. . . . 5
⊢
⦋𝐴 /
𝑎⦌⦋𝐵 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑦⦌⦋𝐴 / 𝑥⦌𝐶 |
| 9 | 2, 4, 8 | 3eqtri 2762 |
. . . 4
⊢
⦋𝐵 /
𝑏⦌⦋𝐴 / 𝑎⦌⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑦⦌⦋𝐴 / 𝑥⦌𝐶 |
| 10 | | fvmpocurryd.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| 11 | | fvmpocurryd.c |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐶 ∈ 𝑉) |
| 12 | | nfcsb1v 3898 |
. . . . . . . 8
⊢
Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐶 |
| 13 | 12 | nfel1 2915 |
. . . . . . 7
⊢
Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐶 ∈ 𝑉 |
| 14 | | nfcsb1v 3898 |
. . . . . . . 8
⊢
Ⅎ𝑦⦋𝐵 / 𝑦⦌⦋𝐴 / 𝑥⦌𝐶 |
| 15 | 14 | nfel1 2915 |
. . . . . . 7
⊢
Ⅎ𝑦⦋𝐵 / 𝑦⦌⦋𝐴 / 𝑥⦌𝐶 ∈ 𝑉 |
| 16 | | csbeq1a 3888 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → 𝐶 = ⦋𝐴 / 𝑥⦌𝐶) |
| 17 | 16 | eleq1d 2819 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝐶 ∈ 𝑉 ↔ ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝑉)) |
| 18 | | csbeq1a 3888 |
. . . . . . . 8
⊢ (𝑦 = 𝐵 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑦⦌⦋𝐴 / 𝑥⦌𝐶) |
| 19 | 18 | eleq1d 2819 |
. . . . . . 7
⊢ (𝑦 = 𝐵 → (⦋𝐴 / 𝑥⦌𝐶 ∈ 𝑉 ↔ ⦋𝐵 / 𝑦⦌⦋𝐴 / 𝑥⦌𝐶 ∈ 𝑉)) |
| 20 | 13, 15, 17, 19 | rspc2 3610 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐶 ∈ 𝑉 → ⦋𝐵 / 𝑦⦌⦋𝐴 / 𝑥⦌𝐶 ∈ 𝑉)) |
| 21 | 20 | imp 406 |
. . . . 5
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐶 ∈ 𝑉) → ⦋𝐵 / 𝑦⦌⦋𝐴 / 𝑥⦌𝐶 ∈ 𝑉) |
| 22 | 10, 1, 11, 21 | syl21anc 837 |
. . . 4
⊢ (𝜑 → ⦋𝐵 / 𝑦⦌⦋𝐴 / 𝑥⦌𝐶 ∈ 𝑉) |
| 23 | 9, 22 | eqeltrid 2838 |
. . 3
⊢ (𝜑 → ⦋𝐵 / 𝑏⦌⦋𝐴 / 𝑎⦌⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶 ∈ 𝑉) |
| 24 | | eqid 2735 |
. . . 4
⊢ (𝑏 ∈ 𝑌 ↦ ⦋𝐴 / 𝑎⦌⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶) = (𝑏 ∈ 𝑌 ↦ ⦋𝐴 / 𝑎⦌⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶) |
| 25 | 24 | fvmpts 6989 |
. . 3
⊢ ((𝐵 ∈ 𝑌 ∧ ⦋𝐵 / 𝑏⦌⦋𝐴 / 𝑎⦌⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶 ∈ 𝑉) → ((𝑏 ∈ 𝑌 ↦ ⦋𝐴 / 𝑎⦌⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶)‘𝐵) = ⦋𝐵 / 𝑏⦌⦋𝐴 / 𝑎⦌⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶) |
| 26 | 1, 23, 25 | syl2anc 584 |
. 2
⊢ (𝜑 → ((𝑏 ∈ 𝑌 ↦ ⦋𝐴 / 𝑎⦌⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶)‘𝐵) = ⦋𝐵 / 𝑏⦌⦋𝐴 / 𝑎⦌⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶) |
| 27 | | fvmpocurryd.f |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) |
| 28 | | nfcv 2898 |
. . . . . 6
⊢
Ⅎ𝑎𝐶 |
| 29 | | nfcv 2898 |
. . . . . 6
⊢
Ⅎ𝑏𝐶 |
| 30 | | nfcv 2898 |
. . . . . . 7
⊢
Ⅎ𝑥𝑏 |
| 31 | | nfcsb1v 3898 |
. . . . . . 7
⊢
Ⅎ𝑥⦋𝑎 / 𝑥⦌𝐶 |
| 32 | 30, 31 | nfcsbw 3900 |
. . . . . 6
⊢
Ⅎ𝑥⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶 |
| 33 | | nfcsb1v 3898 |
. . . . . 6
⊢
Ⅎ𝑦⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶 |
| 34 | | csbeq1a 3888 |
. . . . . . 7
⊢ (𝑥 = 𝑎 → 𝐶 = ⦋𝑎 / 𝑥⦌𝐶) |
| 35 | | csbeq1a 3888 |
. . . . . . 7
⊢ (𝑦 = 𝑏 → ⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶) |
| 36 | 34, 35 | sylan9eq 2790 |
. . . . . 6
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → 𝐶 = ⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶) |
| 37 | 28, 29, 32, 33, 36 | cbvmpo 7501 |
. . . . 5
⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶) = (𝑎 ∈ 𝑋, 𝑏 ∈ 𝑌 ↦ ⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶) |
| 38 | 27, 37 | eqtri 2758 |
. . . 4
⊢ 𝐹 = (𝑎 ∈ 𝑋, 𝑏 ∈ 𝑌 ↦ ⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶) |
| 39 | 31 | nfel1 2915 |
. . . . . . 7
⊢
Ⅎ𝑥⦋𝑎 / 𝑥⦌𝐶 ∈ 𝑉 |
| 40 | 33 | nfel1 2915 |
. . . . . . 7
⊢
Ⅎ𝑦⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶 ∈ 𝑉 |
| 41 | 34 | eleq1d 2819 |
. . . . . . 7
⊢ (𝑥 = 𝑎 → (𝐶 ∈ 𝑉 ↔ ⦋𝑎 / 𝑥⦌𝐶 ∈ 𝑉)) |
| 42 | 35 | eleq1d 2819 |
. . . . . . 7
⊢ (𝑦 = 𝑏 → (⦋𝑎 / 𝑥⦌𝐶 ∈ 𝑉 ↔ ⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶 ∈ 𝑉)) |
| 43 | 39, 40, 41, 42 | rspc2 3610 |
. . . . . 6
⊢ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑌) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐶 ∈ 𝑉 → ⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶 ∈ 𝑉)) |
| 44 | 11, 43 | mpan9 506 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑌)) → ⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶 ∈ 𝑉) |
| 45 | 44 | ralrimivva 3187 |
. . . 4
⊢ (𝜑 → ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑌 ⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶 ∈ 𝑉) |
| 46 | 1 | ne0d 4317 |
. . . 4
⊢ (𝜑 → 𝑌 ≠ ∅) |
| 47 | | fvmpocurryd.y |
. . . 4
⊢ (𝜑 → 𝑌 ∈ 𝑊) |
| 48 | 38, 45, 46, 47, 10 | mpocurryvald 8269 |
. . 3
⊢ (𝜑 → (curry 𝐹‘𝐴) = (𝑏 ∈ 𝑌 ↦ ⦋𝐴 / 𝑎⦌⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶)) |
| 49 | 48 | fveq1d 6878 |
. 2
⊢ (𝜑 → ((curry 𝐹‘𝐴)‘𝐵) = ((𝑏 ∈ 𝑌 ↦ ⦋𝐴 / 𝑎⦌⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶)‘𝐵)) |
| 50 | 27 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐶)) |
| 51 | | csbcow 3889 |
. . . . . . . 8
⊢
⦋𝑦 /
𝑏⦌⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑦 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶 |
| 52 | | csbid 3887 |
. . . . . . . 8
⊢
⦋𝑦 /
𝑦⦌⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑎 / 𝑥⦌𝐶 |
| 53 | 51, 52 | eqtr2i 2759 |
. . . . . . 7
⊢
⦋𝑎 /
𝑥⦌𝐶 = ⦋𝑦 / 𝑏⦌⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶 |
| 54 | 53 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑦 / 𝑏⦌⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶) |
| 55 | 54 | csbeq2dv 3881 |
. . . . 5
⊢ (𝜑 → ⦋𝑥 / 𝑎⦌⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑥 / 𝑎⦌⦋𝑦 / 𝑏⦌⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶) |
| 56 | | csbcow 3889 |
. . . . . 6
⊢
⦋𝑥 /
𝑎⦌⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑥 / 𝑥⦌𝐶 |
| 57 | | csbid 3887 |
. . . . . 6
⊢
⦋𝑥 /
𝑥⦌𝐶 = 𝐶 |
| 58 | 56, 57 | eqtri 2758 |
. . . . 5
⊢
⦋𝑥 /
𝑎⦌⦋𝑎 / 𝑥⦌𝐶 = 𝐶 |
| 59 | | csbcom 4395 |
. . . . 5
⊢
⦋𝑥 /
𝑎⦌⦋𝑦 / 𝑏⦌⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑦 / 𝑏⦌⦋𝑥 / 𝑎⦌⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶 |
| 60 | 55, 58, 59 | 3eqtr3g 2793 |
. . . 4
⊢ (𝜑 → 𝐶 = ⦋𝑦 / 𝑏⦌⦋𝑥 / 𝑎⦌⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶) |
| 61 | | csbeq1 3877 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → ⦋𝑥 / 𝑎⦌⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑎⦌⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶) |
| 62 | 61 | adantr 480 |
. . . . . 6
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ⦋𝑥 / 𝑎⦌⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑎⦌⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶) |
| 63 | 62 | csbeq2dv 3881 |
. . . . 5
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ⦋𝑦 / 𝑏⦌⦋𝑥 / 𝑎⦌⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶 = ⦋𝑦 / 𝑏⦌⦋𝐴 / 𝑎⦌⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶) |
| 64 | | csbeq1 3877 |
. . . . . 6
⊢ (𝑦 = 𝐵 → ⦋𝑦 / 𝑏⦌⦋𝐴 / 𝑎⦌⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑏⦌⦋𝐴 / 𝑎⦌⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶) |
| 65 | 64 | adantl 481 |
. . . . 5
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ⦋𝑦 / 𝑏⦌⦋𝐴 / 𝑎⦌⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑏⦌⦋𝐴 / 𝑎⦌⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶) |
| 66 | 63, 65 | eqtrd 2770 |
. . . 4
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ⦋𝑦 / 𝑏⦌⦋𝑥 / 𝑎⦌⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑏⦌⦋𝐴 / 𝑎⦌⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶) |
| 67 | 60, 66 | sylan9eq 2790 |
. . 3
⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝐶 = ⦋𝐵 / 𝑏⦌⦋𝐴 / 𝑎⦌⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶) |
| 68 | | eqidd 2736 |
. . 3
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝑌 = 𝑌) |
| 69 | | nfv 1914 |
. . 3
⊢
Ⅎ𝑥𝜑 |
| 70 | | nfv 1914 |
. . 3
⊢
Ⅎ𝑦𝜑 |
| 71 | | nfcv 2898 |
. . 3
⊢
Ⅎ𝑦𝐴 |
| 72 | | nfcv 2898 |
. . 3
⊢
Ⅎ𝑥𝐵 |
| 73 | | nfcv 2898 |
. . . . 5
⊢
Ⅎ𝑥𝐴 |
| 74 | 73, 32 | nfcsbw 3900 |
. . . 4
⊢
Ⅎ𝑥⦋𝐴 / 𝑎⦌⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶 |
| 75 | 72, 74 | nfcsbw 3900 |
. . 3
⊢
Ⅎ𝑥⦋𝐵 / 𝑏⦌⦋𝐴 / 𝑎⦌⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶 |
| 76 | 9, 14 | nfcxfr 2896 |
. . 3
⊢
Ⅎ𝑦⦋𝐵 / 𝑏⦌⦋𝐴 / 𝑎⦌⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶 |
| 77 | 50, 67, 68, 10, 1, 23, 69, 70, 71, 72, 75, 76 | ovmpodxf 7557 |
. 2
⊢ (𝜑 → (𝐴𝐹𝐵) = ⦋𝐵 / 𝑏⦌⦋𝐴 / 𝑎⦌⦋𝑏 / 𝑦⦌⦋𝑎 / 𝑥⦌𝐶) |
| 78 | 26, 49, 77 | 3eqtr4d 2780 |
1
⊢ (𝜑 → ((curry 𝐹‘𝐴)‘𝐵) = (𝐴𝐹𝐵)) |