| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbopabgALT | Structured version Visualization version GIF version | ||
| Description: Move substitution into a class abstraction. Version of csbopab 5535 with a sethood antecedent but depending on fewer axioms. (Contributed by NM, 6-Aug-2007.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| csbopabgALT | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝜑} = {〈𝑦, 𝑧〉 ∣ [𝐴 / 𝑥]𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1 3882 | . . 3 ⊢ (𝑤 = 𝐴 → ⦋𝑤 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝜑} = ⦋𝐴 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝜑}) | |
| 2 | dfsbcq2 3773 | . . . 4 ⊢ (𝑤 = 𝐴 → ([𝑤 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 3 | 2 | opabbidv 5190 | . . 3 ⊢ (𝑤 = 𝐴 → {〈𝑦, 𝑧〉 ∣ [𝑤 / 𝑥]𝜑} = {〈𝑦, 𝑧〉 ∣ [𝐴 / 𝑥]𝜑}) |
| 4 | 1, 3 | eqeq12d 2752 | . 2 ⊢ (𝑤 = 𝐴 → (⦋𝑤 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝜑} = {〈𝑦, 𝑧〉 ∣ [𝑤 / 𝑥]𝜑} ↔ ⦋𝐴 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝜑} = {〈𝑦, 𝑧〉 ∣ [𝐴 / 𝑥]𝜑})) |
| 5 | vex 3468 | . . 3 ⊢ 𝑤 ∈ V | |
| 6 | nfs1v 2157 | . . . 4 ⊢ Ⅎ𝑥[𝑤 / 𝑥]𝜑 | |
| 7 | 6 | nfopab 5193 | . . 3 ⊢ Ⅎ𝑥{〈𝑦, 𝑧〉 ∣ [𝑤 / 𝑥]𝜑} |
| 8 | sbequ12 2252 | . . . 4 ⊢ (𝑥 = 𝑤 → (𝜑 ↔ [𝑤 / 𝑥]𝜑)) | |
| 9 | 8 | opabbidv 5190 | . . 3 ⊢ (𝑥 = 𝑤 → {〈𝑦, 𝑧〉 ∣ 𝜑} = {〈𝑦, 𝑧〉 ∣ [𝑤 / 𝑥]𝜑}) |
| 10 | 5, 7, 9 | csbief 3913 | . 2 ⊢ ⦋𝑤 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝜑} = {〈𝑦, 𝑧〉 ∣ [𝑤 / 𝑥]𝜑} |
| 11 | 4, 10 | vtoclg 3538 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝜑} = {〈𝑦, 𝑧〉 ∣ [𝐴 / 𝑥]𝜑}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 [wsb 2065 ∈ wcel 2109 [wsbc 3770 ⦋csb 3879 {copab 5186 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-v 3466 df-sbc 3771 df-csb 3880 df-opab 5187 |
| This theorem is referenced by: csbcnvgALT 5869 |
| Copyright terms: Public domain | W3C validator |