![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbopabgALT | Structured version Visualization version GIF version |
Description: Move substitution into a class abstraction. Version of csbopab 5551 with a sethood antecedent but depending on fewer axioms. (Contributed by NM, 6-Aug-2007.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
csbopabgALT | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3892 | . . 3 ⊢ (𝑤 = 𝐴 → ⦋𝑤 / 𝑥⦌{⟨𝑦, 𝑧⟩ ∣ 𝜑} = ⦋𝐴 / 𝑥⦌{⟨𝑦, 𝑧⟩ ∣ 𝜑}) | |
2 | dfsbcq2 3777 | . . . 4 ⊢ (𝑤 = 𝐴 → ([𝑤 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
3 | 2 | opabbidv 5208 | . . 3 ⊢ (𝑤 = 𝐴 → {⟨𝑦, 𝑧⟩ ∣ [𝑤 / 𝑥]𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑}) |
4 | 1, 3 | eqeq12d 2743 | . 2 ⊢ (𝑤 = 𝐴 → (⦋𝑤 / 𝑥⦌{⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝑤 / 𝑥]𝜑} ↔ ⦋𝐴 / 𝑥⦌{⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑})) |
5 | vex 3473 | . . 3 ⊢ 𝑤 ∈ V | |
6 | nfs1v 2146 | . . . 4 ⊢ Ⅎ𝑥[𝑤 / 𝑥]𝜑 | |
7 | 6 | nfopab 5211 | . . 3 ⊢ Ⅎ𝑥{⟨𝑦, 𝑧⟩ ∣ [𝑤 / 𝑥]𝜑} |
8 | sbequ12 2236 | . . . 4 ⊢ (𝑥 = 𝑤 → (𝜑 ↔ [𝑤 / 𝑥]𝜑)) | |
9 | 8 | opabbidv 5208 | . . 3 ⊢ (𝑥 = 𝑤 → {⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝑤 / 𝑥]𝜑}) |
10 | 5, 7, 9 | csbief 3924 | . 2 ⊢ ⦋𝑤 / 𝑥⦌{⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝑤 / 𝑥]𝜑} |
11 | 4, 10 | vtoclg 3538 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 [wsb 2060 ∈ wcel 2099 [wsbc 3774 ⦋csb 3889 {copab 5204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-v 3471 df-sbc 3775 df-csb 3890 df-opab 5205 |
This theorem is referenced by: csbcnvgALT 5881 |
Copyright terms: Public domain | W3C validator |