|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > csbopabgALT | Structured version Visualization version GIF version | ||
| Description: Move substitution into a class abstraction. Version of csbopab 5560 with a sethood antecedent but depending on fewer axioms. (Contributed by NM, 6-Aug-2007.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) (New usage is discouraged.) (Proof modification is discouraged.) | 
| Ref | Expression | 
|---|---|
| csbopabgALT | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝜑} = {〈𝑦, 𝑧〉 ∣ [𝐴 / 𝑥]𝜑}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | csbeq1 3902 | . . 3 ⊢ (𝑤 = 𝐴 → ⦋𝑤 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝜑} = ⦋𝐴 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝜑}) | |
| 2 | dfsbcq2 3791 | . . . 4 ⊢ (𝑤 = 𝐴 → ([𝑤 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 3 | 2 | opabbidv 5209 | . . 3 ⊢ (𝑤 = 𝐴 → {〈𝑦, 𝑧〉 ∣ [𝑤 / 𝑥]𝜑} = {〈𝑦, 𝑧〉 ∣ [𝐴 / 𝑥]𝜑}) | 
| 4 | 1, 3 | eqeq12d 2753 | . 2 ⊢ (𝑤 = 𝐴 → (⦋𝑤 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝜑} = {〈𝑦, 𝑧〉 ∣ [𝑤 / 𝑥]𝜑} ↔ ⦋𝐴 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝜑} = {〈𝑦, 𝑧〉 ∣ [𝐴 / 𝑥]𝜑})) | 
| 5 | vex 3484 | . . 3 ⊢ 𝑤 ∈ V | |
| 6 | nfs1v 2156 | . . . 4 ⊢ Ⅎ𝑥[𝑤 / 𝑥]𝜑 | |
| 7 | 6 | nfopab 5212 | . . 3 ⊢ Ⅎ𝑥{〈𝑦, 𝑧〉 ∣ [𝑤 / 𝑥]𝜑} | 
| 8 | sbequ12 2251 | . . . 4 ⊢ (𝑥 = 𝑤 → (𝜑 ↔ [𝑤 / 𝑥]𝜑)) | |
| 9 | 8 | opabbidv 5209 | . . 3 ⊢ (𝑥 = 𝑤 → {〈𝑦, 𝑧〉 ∣ 𝜑} = {〈𝑦, 𝑧〉 ∣ [𝑤 / 𝑥]𝜑}) | 
| 10 | 5, 7, 9 | csbief 3933 | . 2 ⊢ ⦋𝑤 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝜑} = {〈𝑦, 𝑧〉 ∣ [𝑤 / 𝑥]𝜑} | 
| 11 | 4, 10 | vtoclg 3554 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝜑} = {〈𝑦, 𝑧〉 ∣ [𝐴 / 𝑥]𝜑}) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1540 [wsb 2064 ∈ wcel 2108 [wsbc 3788 ⦋csb 3899 {copab 5205 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-v 3482 df-sbc 3789 df-csb 3900 df-opab 5206 | 
| This theorem is referenced by: csbcnvgALT 5895 | 
| Copyright terms: Public domain | W3C validator |