![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbopabgALT | Structured version Visualization version GIF version |
Description: Move substitution into a class abstraction. Version of csbopab 5551 with a sethood antecedent but depending on fewer axioms. (Contributed by NM, 6-Aug-2007.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
csbopabgALT | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3888 | . . 3 ⊢ (𝑤 = 𝐴 → ⦋𝑤 / 𝑥⦌{⟨𝑦, 𝑧⟩ ∣ 𝜑} = ⦋𝐴 / 𝑥⦌{⟨𝑦, 𝑧⟩ ∣ 𝜑}) | |
2 | dfsbcq2 3772 | . . . 4 ⊢ (𝑤 = 𝐴 → ([𝑤 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
3 | 2 | opabbidv 5209 | . . 3 ⊢ (𝑤 = 𝐴 → {⟨𝑦, 𝑧⟩ ∣ [𝑤 / 𝑥]𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑}) |
4 | 1, 3 | eqeq12d 2741 | . 2 ⊢ (𝑤 = 𝐴 → (⦋𝑤 / 𝑥⦌{⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝑤 / 𝑥]𝜑} ↔ ⦋𝐴 / 𝑥⦌{⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑})) |
5 | vex 3467 | . . 3 ⊢ 𝑤 ∈ V | |
6 | nfs1v 2145 | . . . 4 ⊢ Ⅎ𝑥[𝑤 / 𝑥]𝜑 | |
7 | 6 | nfopab 5212 | . . 3 ⊢ Ⅎ𝑥{⟨𝑦, 𝑧⟩ ∣ [𝑤 / 𝑥]𝜑} |
8 | sbequ12 2238 | . . . 4 ⊢ (𝑥 = 𝑤 → (𝜑 ↔ [𝑤 / 𝑥]𝜑)) | |
9 | 8 | opabbidv 5209 | . . 3 ⊢ (𝑥 = 𝑤 → {⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝑤 / 𝑥]𝜑}) |
10 | 5, 7, 9 | csbief 3920 | . 2 ⊢ ⦋𝑤 / 𝑥⦌{⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝑤 / 𝑥]𝜑} |
11 | 4, 10 | vtoclg 3533 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 [wsb 2059 ∈ wcel 2098 [wsbc 3769 ⦋csb 3885 {copab 5205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-v 3465 df-sbc 3770 df-csb 3886 df-opab 5206 |
This theorem is referenced by: csbcnvgALT 5881 |
Copyright terms: Public domain | W3C validator |