| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbopabgALT | Structured version Visualization version GIF version | ||
| Description: Move substitution into a class abstraction. Version of csbopab 5490 with a sethood antecedent but depending on fewer axioms. (Contributed by NM, 6-Aug-2007.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| csbopabgALT | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝜑} = {〈𝑦, 𝑧〉 ∣ [𝐴 / 𝑥]𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1 3848 | . . 3 ⊢ (𝑤 = 𝐴 → ⦋𝑤 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝜑} = ⦋𝐴 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝜑}) | |
| 2 | dfsbcq2 3739 | . . . 4 ⊢ (𝑤 = 𝐴 → ([𝑤 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 3 | 2 | opabbidv 5152 | . . 3 ⊢ (𝑤 = 𝐴 → {〈𝑦, 𝑧〉 ∣ [𝑤 / 𝑥]𝜑} = {〈𝑦, 𝑧〉 ∣ [𝐴 / 𝑥]𝜑}) |
| 4 | 1, 3 | eqeq12d 2747 | . 2 ⊢ (𝑤 = 𝐴 → (⦋𝑤 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝜑} = {〈𝑦, 𝑧〉 ∣ [𝑤 / 𝑥]𝜑} ↔ ⦋𝐴 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝜑} = {〈𝑦, 𝑧〉 ∣ [𝐴 / 𝑥]𝜑})) |
| 5 | vex 3440 | . . 3 ⊢ 𝑤 ∈ V | |
| 6 | nfs1v 2159 | . . . 4 ⊢ Ⅎ𝑥[𝑤 / 𝑥]𝜑 | |
| 7 | 6 | nfopab 5155 | . . 3 ⊢ Ⅎ𝑥{〈𝑦, 𝑧〉 ∣ [𝑤 / 𝑥]𝜑} |
| 8 | sbequ12 2254 | . . . 4 ⊢ (𝑥 = 𝑤 → (𝜑 ↔ [𝑤 / 𝑥]𝜑)) | |
| 9 | 8 | opabbidv 5152 | . . 3 ⊢ (𝑥 = 𝑤 → {〈𝑦, 𝑧〉 ∣ 𝜑} = {〈𝑦, 𝑧〉 ∣ [𝑤 / 𝑥]𝜑}) |
| 10 | 5, 7, 9 | csbief 3879 | . 2 ⊢ ⦋𝑤 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝜑} = {〈𝑦, 𝑧〉 ∣ [𝑤 / 𝑥]𝜑} |
| 11 | 4, 10 | vtoclg 3507 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝜑} = {〈𝑦, 𝑧〉 ∣ [𝐴 / 𝑥]𝜑}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 [wsb 2067 ∈ wcel 2111 [wsbc 3736 ⦋csb 3845 {copab 5148 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-v 3438 df-sbc 3737 df-csb 3846 df-opab 5149 |
| This theorem is referenced by: csbcnvgALT 5819 |
| Copyright terms: Public domain | W3C validator |