MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbmpt12 Structured version   Visualization version   GIF version

Theorem csbmpt12 5517
Description: Move substitution into a maps-to notation. (Contributed by AV, 26-Sep-2019.)
Assertion
Ref Expression
csbmpt12 (𝐴𝑉𝐴 / 𝑥(𝑦𝑌𝑍) = (𝑦𝐴 / 𝑥𝑌𝐴 / 𝑥𝑍))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑉   𝑦,𝑌   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝑉(𝑥)   𝑌(𝑥)   𝑍(𝑥,𝑦)

Proof of Theorem csbmpt12
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 csbopab 5515 . . 3 𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ (𝑦𝑌𝑧 = 𝑍)} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥](𝑦𝑌𝑧 = 𝑍)}
2 sbcan 3803 . . . . 5 ([𝐴 / 𝑥](𝑦𝑌𝑧 = 𝑍) ↔ ([𝐴 / 𝑥]𝑦𝑌[𝐴 / 𝑥]𝑧 = 𝑍))
3 sbcel12 4374 . . . . . . 7 ([𝐴 / 𝑥]𝑦𝑌𝐴 / 𝑥𝑦𝐴 / 𝑥𝑌)
4 csbconstg 3881 . . . . . . . 8 (𝐴𝑉𝐴 / 𝑥𝑦 = 𝑦)
54eleq1d 2813 . . . . . . 7 (𝐴𝑉 → (𝐴 / 𝑥𝑦𝐴 / 𝑥𝑌𝑦𝐴 / 𝑥𝑌))
63, 5bitrid 283 . . . . . 6 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦𝑌𝑦𝐴 / 𝑥𝑌))
7 sbceq2g 4382 . . . . . 6 (𝐴𝑉 → ([𝐴 / 𝑥]𝑧 = 𝑍𝑧 = 𝐴 / 𝑥𝑍))
86, 7anbi12d 632 . . . . 5 (𝐴𝑉 → (([𝐴 / 𝑥]𝑦𝑌[𝐴 / 𝑥]𝑧 = 𝑍) ↔ (𝑦𝐴 / 𝑥𝑌𝑧 = 𝐴 / 𝑥𝑍)))
92, 8bitrid 283 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥](𝑦𝑌𝑧 = 𝑍) ↔ (𝑦𝐴 / 𝑥𝑌𝑧 = 𝐴 / 𝑥𝑍)))
109opabbidv 5173 . . 3 (𝐴𝑉 → {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥](𝑦𝑌𝑧 = 𝑍)} = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴 / 𝑥𝑌𝑧 = 𝐴 / 𝑥𝑍)})
111, 10eqtrid 2776 . 2 (𝐴𝑉𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ (𝑦𝑌𝑧 = 𝑍)} = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴 / 𝑥𝑌𝑧 = 𝐴 / 𝑥𝑍)})
12 df-mpt 5189 . . 3 (𝑦𝑌𝑍) = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝑌𝑧 = 𝑍)}
1312csbeq2i 3870 . 2 𝐴 / 𝑥(𝑦𝑌𝑍) = 𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ (𝑦𝑌𝑧 = 𝑍)}
14 df-mpt 5189 . 2 (𝑦𝐴 / 𝑥𝑌𝐴 / 𝑥𝑍) = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐴 / 𝑥𝑌𝑧 = 𝐴 / 𝑥𝑍)}
1511, 13, 143eqtr4g 2789 1 (𝐴𝑉𝐴 / 𝑥(𝑦𝑌𝑍) = (𝑦𝐴 / 𝑥𝑌𝐴 / 𝑥𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  [wsbc 3753  csb 3862  {copab 5169  cmpt 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-opab 5170  df-mpt 5189
This theorem is referenced by:  csbmpt2  5518  esum2dlem  34082
  Copyright terms: Public domain W3C validator