MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbin Structured version   Visualization version   GIF version

Theorem csbin 4370
Description: Distribute proper substitution into a class through an intersection relation. (Contributed by Alan Sare, 22-Jul-2012.) (Revised by NM, 18-Aug-2018.)
Assertion
Ref Expression
csbin 𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)

Proof of Theorem csbin
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3831 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥(𝐵𝐶) = 𝐴 / 𝑥(𝐵𝐶))
2 csbeq1 3831 . . . . 5 (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
3 csbeq1 3831 . . . . 5 (𝑦 = 𝐴𝑦 / 𝑥𝐶 = 𝐴 / 𝑥𝐶)
42, 3ineq12d 4144 . . . 4 (𝑦 = 𝐴 → (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
51, 4eqeq12d 2754 . . 3 (𝑦 = 𝐴 → (𝑦 / 𝑥(𝐵𝐶) = (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶) ↔ 𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)))
6 vex 3426 . . . 4 𝑦 ∈ V
7 nfcsb1v 3853 . . . . 5 𝑥𝑦 / 𝑥𝐵
8 nfcsb1v 3853 . . . . 5 𝑥𝑦 / 𝑥𝐶
97, 8nfin 4147 . . . 4 𝑥(𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶)
10 csbeq1a 3842 . . . . 5 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
11 csbeq1a 3842 . . . . 5 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
1210, 11ineq12d 4144 . . . 4 (𝑥 = 𝑦 → (𝐵𝐶) = (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶))
136, 9, 12csbief 3863 . . 3 𝑦 / 𝑥(𝐵𝐶) = (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶)
145, 13vtoclg 3495 . 2 (𝐴 ∈ V → 𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
15 csbprc 4337 . . 3 𝐴 ∈ V → 𝐴 / 𝑥(𝐵𝐶) = ∅)
16 csbprc 4337 . . . . 5 𝐴 ∈ V → 𝐴 / 𝑥𝐵 = ∅)
17 csbprc 4337 . . . . 5 𝐴 ∈ V → 𝐴 / 𝑥𝐶 = ∅)
1816, 17ineq12d 4144 . . . 4 𝐴 ∈ V → (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶) = (∅ ∩ ∅))
19 in0 4322 . . . 4 (∅ ∩ ∅) = ∅
2018, 19eqtr2di 2796 . . 3 𝐴 ∈ V → ∅ = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
2115, 20eqtrd 2778 . 2 𝐴 ∈ V → 𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
2214, 21pm2.61i 182 1 𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2108  Vcvv 3422  csb 3828  cin 3882  c0 4253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-in 3890  df-nul 4254
This theorem is referenced by:  csbres  5883  csbpredg  6197  disjxpin  30828  onfrALTlem5  42051  onfrALTlem4  42052  onfrALTlem5VD  42394  onfrALTlem4VD  42395  csbresgVD  42404  disjinfi  42620
  Copyright terms: Public domain W3C validator