MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbin Structured version   Visualization version   GIF version

Theorem csbin 4461
Description: Distribute proper substitution into a class through an intersection relation. (Contributed by Alan Sare, 22-Jul-2012.) (Revised by NM, 18-Aug-2018.)
Assertion
Ref Expression
csbin 𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)

Proof of Theorem csbin
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3918 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥(𝐵𝐶) = 𝐴 / 𝑥(𝐵𝐶))
2 csbeq1 3918 . . . . 5 (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
3 csbeq1 3918 . . . . 5 (𝑦 = 𝐴𝑦 / 𝑥𝐶 = 𝐴 / 𝑥𝐶)
42, 3ineq12d 4236 . . . 4 (𝑦 = 𝐴 → (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
51, 4eqeq12d 2750 . . 3 (𝑦 = 𝐴 → (𝑦 / 𝑥(𝐵𝐶) = (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶) ↔ 𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)))
6 vex 3486 . . . 4 𝑦 ∈ V
7 nfcsb1v 3940 . . . . 5 𝑥𝑦 / 𝑥𝐵
8 nfcsb1v 3940 . . . . 5 𝑥𝑦 / 𝑥𝐶
97, 8nfin 4239 . . . 4 𝑥(𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶)
10 csbeq1a 3929 . . . . 5 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
11 csbeq1a 3929 . . . . 5 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
1210, 11ineq12d 4236 . . . 4 (𝑥 = 𝑦 → (𝐵𝐶) = (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶))
136, 9, 12csbief 3950 . . 3 𝑦 / 𝑥(𝐵𝐶) = (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶)
145, 13vtoclg 3561 . 2 (𝐴 ∈ V → 𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
15 csbprc 4428 . . 3 𝐴 ∈ V → 𝐴 / 𝑥(𝐵𝐶) = ∅)
16 csbprc 4428 . . . . 5 𝐴 ∈ V → 𝐴 / 𝑥𝐵 = ∅)
17 csbprc 4428 . . . . 5 𝐴 ∈ V → 𝐴 / 𝑥𝐶 = ∅)
1816, 17ineq12d 4236 . . . 4 𝐴 ∈ V → (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶) = (∅ ∩ ∅))
19 in0 4414 . . . 4 (∅ ∩ ∅) = ∅
2018, 19eqtr2di 2791 . . 3 𝐴 ∈ V → ∅ = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
2115, 20eqtrd 2774 . 2 𝐴 ∈ V → 𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
2214, 21pm2.61i 182 1 𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wcel 2103  Vcvv 3482  csb 3915  cin 3969  c0 4347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-in 3977  df-nul 4348
This theorem is referenced by:  csbres  6011  csbpredg  6337  disjxpin  32601  onfrALTlem5  44453  onfrALTlem4  44454  onfrALTlem5VD  44796  onfrALTlem4VD  44797  csbresgVD  44806  disjinfi  45033
  Copyright terms: Public domain W3C validator