MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbab Structured version   Visualization version   GIF version

Theorem csbab 4368
Description: Move substitution into a class abstraction. (Contributed by NM, 13-Dec-2005.) (Revised by NM, 19-Aug-2018.)
Assertion
Ref Expression
csbab 𝐴 / 𝑥{𝑦𝜑} = {𝑦[𝐴 / 𝑥]𝜑}
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)

Proof of Theorem csbab
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-clab 2716 . . . 4 (𝑧 ∈ {𝑦[𝐴 / 𝑥]𝜑} ↔ [𝑧 / 𝑦][𝐴 / 𝑥]𝜑)
2 sbsbc 3715 . . . 4 ([𝑧 / 𝑦][𝐴 / 𝑥]𝜑[𝑧 / 𝑦][𝐴 / 𝑥]𝜑)
31, 2bitri 274 . . 3 (𝑧 ∈ {𝑦[𝐴 / 𝑥]𝜑} ↔ [𝑧 / 𝑦][𝐴 / 𝑥]𝜑)
4 sbccom 3800 . . . 4 ([𝑧 / 𝑦][𝐴 / 𝑥]𝜑[𝐴 / 𝑥][𝑧 / 𝑦]𝜑)
5 df-clab 2716 . . . . . 6 (𝑧 ∈ {𝑦𝜑} ↔ [𝑧 / 𝑦]𝜑)
6 sbsbc 3715 . . . . . 6 ([𝑧 / 𝑦]𝜑[𝑧 / 𝑦]𝜑)
75, 6bitri 274 . . . . 5 (𝑧 ∈ {𝑦𝜑} ↔ [𝑧 / 𝑦]𝜑)
87sbcbii 3772 . . . 4 ([𝐴 / 𝑥]𝑧 ∈ {𝑦𝜑} ↔ [𝐴 / 𝑥][𝑧 / 𝑦]𝜑)
94, 8bitr4i 277 . . 3 ([𝑧 / 𝑦][𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝑧 ∈ {𝑦𝜑})
10 sbcel2 4346 . . 3 ([𝐴 / 𝑥]𝑧 ∈ {𝑦𝜑} ↔ 𝑧𝐴 / 𝑥{𝑦𝜑})
113, 9, 103bitrri 297 . 2 (𝑧𝐴 / 𝑥{𝑦𝜑} ↔ 𝑧 ∈ {𝑦[𝐴 / 𝑥]𝜑})
1211eqriv 2735 1 𝐴 / 𝑥{𝑦𝜑} = {𝑦[𝐴 / 𝑥]𝜑}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  [wsb 2068  wcel 2108  {cab 2715  [wsbc 3711  csb 3828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-nul 4254
This theorem is referenced by:  csbsng  4641  csbuni  4867  csbxp  5676  csbdm  5795  csbfrecsg  8071  csbwrdg  14175  abfmpeld  30893  abfmpel  30894  csboprabg  35428  csbfinxpg  35486  csbingVD  42393  csbsngVD  42402  csbxpgVD  42403  csbrngVD  42405  csbunigVD  42407  csbfv12gALTVD  42408
  Copyright terms: Public domain W3C validator