| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbab | Structured version Visualization version GIF version | ||
| Description: Move substitution into a class abstraction. (Contributed by NM, 13-Dec-2005.) (Revised by NM, 19-Aug-2018.) |
| Ref | Expression |
|---|---|
| csbab | ⊢ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑} = {𝑦 ∣ [𝐴 / 𝑥]𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clab 2708 | . . . 4 ⊢ (𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝜑} ↔ [𝑧 / 𝑦][𝐴 / 𝑥]𝜑) | |
| 2 | sbsbc 3757 | . . . 4 ⊢ ([𝑧 / 𝑦][𝐴 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝐴 / 𝑥]𝜑) | |
| 3 | 1, 2 | bitri 275 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝜑} ↔ [𝑧 / 𝑦][𝐴 / 𝑥]𝜑) |
| 4 | sbccom 3834 | . . . 4 ⊢ ([𝑧 / 𝑦][𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥][𝑧 / 𝑦]𝜑) | |
| 5 | df-clab 2708 | . . . . . 6 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜑} ↔ [𝑧 / 𝑦]𝜑) | |
| 6 | sbsbc 3757 | . . . . . 6 ⊢ ([𝑧 / 𝑦]𝜑 ↔ [𝑧 / 𝑦]𝜑) | |
| 7 | 5, 6 | bitri 275 | . . . . 5 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜑} ↔ [𝑧 / 𝑦]𝜑) |
| 8 | 7 | sbcbii 3810 | . . . 4 ⊢ ([𝐴 / 𝑥]𝑧 ∈ {𝑦 ∣ 𝜑} ↔ [𝐴 / 𝑥][𝑧 / 𝑦]𝜑) |
| 9 | 4, 8 | bitr4i 278 | . . 3 ⊢ ([𝑧 / 𝑦][𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝑧 ∈ {𝑦 ∣ 𝜑}) |
| 10 | sbcel2 4381 | . . 3 ⊢ ([𝐴 / 𝑥]𝑧 ∈ {𝑦 ∣ 𝜑} ↔ 𝑧 ∈ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑}) | |
| 11 | 3, 9, 10 | 3bitrri 298 | . 2 ⊢ (𝑧 ∈ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑} ↔ 𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝜑}) |
| 12 | 11 | eqriv 2726 | 1 ⊢ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑} = {𝑦 ∣ [𝐴 / 𝑥]𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 [wsb 2065 ∈ wcel 2109 {cab 2707 [wsbc 3753 ⦋csb 3862 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-nul 4297 |
| This theorem is referenced by: csbsng 4672 csbuni 4900 csbxp 5738 csbdm 5861 csbfrecsg 8263 csbwrdg 14509 abfmpeld 32578 abfmpel 32579 csboprabg 37318 csbfinxpg 37376 csbingVD 44873 csbsngVD 44882 csbxpgVD 44883 csbrngVD 44885 csbunigVD 44887 csbfv12gALTVD 44888 |
| Copyright terms: Public domain | W3C validator |