| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbab | Structured version Visualization version GIF version | ||
| Description: Move substitution into a class abstraction. (Contributed by NM, 13-Dec-2005.) (Revised by NM, 19-Aug-2018.) |
| Ref | Expression |
|---|---|
| csbab | ⊢ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑} = {𝑦 ∣ [𝐴 / 𝑥]𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clab 2713 | . . . 4 ⊢ (𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝜑} ↔ [𝑧 / 𝑦][𝐴 / 𝑥]𝜑) | |
| 2 | sbsbc 3774 | . . . 4 ⊢ ([𝑧 / 𝑦][𝐴 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝐴 / 𝑥]𝜑) | |
| 3 | 1, 2 | bitri 275 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝜑} ↔ [𝑧 / 𝑦][𝐴 / 𝑥]𝜑) |
| 4 | sbccom 3851 | . . . 4 ⊢ ([𝑧 / 𝑦][𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥][𝑧 / 𝑦]𝜑) | |
| 5 | df-clab 2713 | . . . . . 6 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜑} ↔ [𝑧 / 𝑦]𝜑) | |
| 6 | sbsbc 3774 | . . . . . 6 ⊢ ([𝑧 / 𝑦]𝜑 ↔ [𝑧 / 𝑦]𝜑) | |
| 7 | 5, 6 | bitri 275 | . . . . 5 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜑} ↔ [𝑧 / 𝑦]𝜑) |
| 8 | 7 | sbcbii 3827 | . . . 4 ⊢ ([𝐴 / 𝑥]𝑧 ∈ {𝑦 ∣ 𝜑} ↔ [𝐴 / 𝑥][𝑧 / 𝑦]𝜑) |
| 9 | 4, 8 | bitr4i 278 | . . 3 ⊢ ([𝑧 / 𝑦][𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝑧 ∈ {𝑦 ∣ 𝜑}) |
| 10 | sbcel2 4398 | . . 3 ⊢ ([𝐴 / 𝑥]𝑧 ∈ {𝑦 ∣ 𝜑} ↔ 𝑧 ∈ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑}) | |
| 11 | 3, 9, 10 | 3bitrri 298 | . 2 ⊢ (𝑧 ∈ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑} ↔ 𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝜑}) |
| 12 | 11 | eqriv 2731 | 1 ⊢ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑} = {𝑦 ∣ [𝐴 / 𝑥]𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 [wsb 2063 ∈ wcel 2107 {cab 2712 [wsbc 3770 ⦋csb 3879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-nul 4314 |
| This theorem is referenced by: csbsng 4688 csbuni 4916 csbxp 5765 csbdm 5888 csbfrecsg 8290 csbwrdg 14563 abfmpeld 32591 abfmpel 32592 csboprabg 37265 csbfinxpg 37323 csbingVD 44837 csbsngVD 44846 csbxpgVD 44847 csbrngVD 44849 csbunigVD 44851 csbfv12gALTVD 44852 |
| Copyright terms: Public domain | W3C validator |