Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbab | Structured version Visualization version GIF version |
Description: Move substitution into a class abstraction. (Contributed by NM, 13-Dec-2005.) (Revised by NM, 19-Aug-2018.) |
Ref | Expression |
---|---|
csbab | ⊢ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑} = {𝑦 ∣ [𝐴 / 𝑥]𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clab 2716 | . . . 4 ⊢ (𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝜑} ↔ [𝑧 / 𝑦][𝐴 / 𝑥]𝜑) | |
2 | sbsbc 3720 | . . . 4 ⊢ ([𝑧 / 𝑦][𝐴 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝐴 / 𝑥]𝜑) | |
3 | 1, 2 | bitri 274 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝜑} ↔ [𝑧 / 𝑦][𝐴 / 𝑥]𝜑) |
4 | sbccom 3804 | . . . 4 ⊢ ([𝑧 / 𝑦][𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥][𝑧 / 𝑦]𝜑) | |
5 | df-clab 2716 | . . . . . 6 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜑} ↔ [𝑧 / 𝑦]𝜑) | |
6 | sbsbc 3720 | . . . . . 6 ⊢ ([𝑧 / 𝑦]𝜑 ↔ [𝑧 / 𝑦]𝜑) | |
7 | 5, 6 | bitri 274 | . . . . 5 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜑} ↔ [𝑧 / 𝑦]𝜑) |
8 | 7 | sbcbii 3776 | . . . 4 ⊢ ([𝐴 / 𝑥]𝑧 ∈ {𝑦 ∣ 𝜑} ↔ [𝐴 / 𝑥][𝑧 / 𝑦]𝜑) |
9 | 4, 8 | bitr4i 277 | . . 3 ⊢ ([𝑧 / 𝑦][𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝑧 ∈ {𝑦 ∣ 𝜑}) |
10 | sbcel2 4349 | . . 3 ⊢ ([𝐴 / 𝑥]𝑧 ∈ {𝑦 ∣ 𝜑} ↔ 𝑧 ∈ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑}) | |
11 | 3, 9, 10 | 3bitrri 298 | . 2 ⊢ (𝑧 ∈ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑} ↔ 𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝜑}) |
12 | 11 | eqriv 2735 | 1 ⊢ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑} = {𝑦 ∣ [𝐴 / 𝑥]𝜑} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 [wsb 2067 ∈ wcel 2106 {cab 2715 [wsbc 3716 ⦋csb 3832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-nul 4257 |
This theorem is referenced by: csbsng 4644 csbuni 4870 csbxp 5686 csbdm 5806 csbfrecsg 8100 csbwrdg 14247 abfmpeld 30991 abfmpel 30992 csboprabg 35501 csbfinxpg 35559 csbingVD 42504 csbsngVD 42513 csbxpgVD 42514 csbrngVD 42516 csbunigVD 42518 csbfv12gALTVD 42519 |
Copyright terms: Public domain | W3C validator |