MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbab Structured version   Visualization version   GIF version

Theorem csbab 4391
Description: Move substitution into a class abstraction. (Contributed by NM, 13-Dec-2005.) (Revised by NM, 19-Aug-2018.)
Assertion
Ref Expression
csbab 𝐴 / 𝑥{𝑦𝜑} = {𝑦[𝐴 / 𝑥]𝜑}
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)

Proof of Theorem csbab
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-clab 2712 . . . 4 (𝑧 ∈ {𝑦[𝐴 / 𝑥]𝜑} ↔ [𝑧 / 𝑦][𝐴 / 𝑥]𝜑)
2 sbsbc 3742 . . . 4 ([𝑧 / 𝑦][𝐴 / 𝑥]𝜑[𝑧 / 𝑦][𝐴 / 𝑥]𝜑)
31, 2bitri 275 . . 3 (𝑧 ∈ {𝑦[𝐴 / 𝑥]𝜑} ↔ [𝑧 / 𝑦][𝐴 / 𝑥]𝜑)
4 sbccom 3819 . . . 4 ([𝑧 / 𝑦][𝐴 / 𝑥]𝜑[𝐴 / 𝑥][𝑧 / 𝑦]𝜑)
5 df-clab 2712 . . . . . 6 (𝑧 ∈ {𝑦𝜑} ↔ [𝑧 / 𝑦]𝜑)
6 sbsbc 3742 . . . . . 6 ([𝑧 / 𝑦]𝜑[𝑧 / 𝑦]𝜑)
75, 6bitri 275 . . . . 5 (𝑧 ∈ {𝑦𝜑} ↔ [𝑧 / 𝑦]𝜑)
87sbcbii 3795 . . . 4 ([𝐴 / 𝑥]𝑧 ∈ {𝑦𝜑} ↔ [𝐴 / 𝑥][𝑧 / 𝑦]𝜑)
94, 8bitr4i 278 . . 3 ([𝑧 / 𝑦][𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝑧 ∈ {𝑦𝜑})
10 sbcel2 4369 . . 3 ([𝐴 / 𝑥]𝑧 ∈ {𝑦𝜑} ↔ 𝑧𝐴 / 𝑥{𝑦𝜑})
113, 9, 103bitrri 298 . 2 (𝑧𝐴 / 𝑥{𝑦𝜑} ↔ 𝑧 ∈ {𝑦[𝐴 / 𝑥]𝜑})
1211eqriv 2730 1 𝐴 / 𝑥{𝑦𝜑} = {𝑦[𝐴 / 𝑥]𝜑}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  [wsb 2067  wcel 2113  {cab 2711  [wsbc 3738  csb 3847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-nul 4285
This theorem is referenced by:  csbsng  4662  csbuni  4890  csbxp  5722  csbdm  5844  csbfrecsg  8223  csbwrdg  14461  abfmpeld  32647  abfmpel  32648  csboprabg  37385  csbfinxpg  37443  csbingVD  44990  csbsngVD  44999  csbxpgVD  45000  csbrngVD  45002  csbunigVD  45004  csbfv12gALTVD  45005
  Copyright terms: Public domain W3C validator