| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbab | Structured version Visualization version GIF version | ||
| Description: Move substitution into a class abstraction. (Contributed by NM, 13-Dec-2005.) (Revised by NM, 19-Aug-2018.) |
| Ref | Expression |
|---|---|
| csbab | ⊢ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑} = {𝑦 ∣ [𝐴 / 𝑥]𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clab 2712 | . . . 4 ⊢ (𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝜑} ↔ [𝑧 / 𝑦][𝐴 / 𝑥]𝜑) | |
| 2 | sbsbc 3742 | . . . 4 ⊢ ([𝑧 / 𝑦][𝐴 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝐴 / 𝑥]𝜑) | |
| 3 | 1, 2 | bitri 275 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝜑} ↔ [𝑧 / 𝑦][𝐴 / 𝑥]𝜑) |
| 4 | sbccom 3819 | . . . 4 ⊢ ([𝑧 / 𝑦][𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥][𝑧 / 𝑦]𝜑) | |
| 5 | df-clab 2712 | . . . . . 6 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜑} ↔ [𝑧 / 𝑦]𝜑) | |
| 6 | sbsbc 3742 | . . . . . 6 ⊢ ([𝑧 / 𝑦]𝜑 ↔ [𝑧 / 𝑦]𝜑) | |
| 7 | 5, 6 | bitri 275 | . . . . 5 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜑} ↔ [𝑧 / 𝑦]𝜑) |
| 8 | 7 | sbcbii 3795 | . . . 4 ⊢ ([𝐴 / 𝑥]𝑧 ∈ {𝑦 ∣ 𝜑} ↔ [𝐴 / 𝑥][𝑧 / 𝑦]𝜑) |
| 9 | 4, 8 | bitr4i 278 | . . 3 ⊢ ([𝑧 / 𝑦][𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝑧 ∈ {𝑦 ∣ 𝜑}) |
| 10 | sbcel2 4369 | . . 3 ⊢ ([𝐴 / 𝑥]𝑧 ∈ {𝑦 ∣ 𝜑} ↔ 𝑧 ∈ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑}) | |
| 11 | 3, 9, 10 | 3bitrri 298 | . 2 ⊢ (𝑧 ∈ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑} ↔ 𝑧 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝜑}) |
| 12 | 11 | eqriv 2730 | 1 ⊢ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑} = {𝑦 ∣ [𝐴 / 𝑥]𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 [wsb 2067 ∈ wcel 2113 {cab 2711 [wsbc 3738 ⦋csb 3847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-nul 4285 |
| This theorem is referenced by: csbsng 4662 csbuni 4890 csbxp 5722 csbdm 5844 csbfrecsg 8223 csbwrdg 14461 abfmpeld 32647 abfmpel 32648 csboprabg 37385 csbfinxpg 37443 csbingVD 44990 csbsngVD 44999 csbxpgVD 45000 csbrngVD 45002 csbunigVD 45004 csbfv12gALTVD 45005 |
| Copyright terms: Public domain | W3C validator |