![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-0p | Structured version Visualization version GIF version |
Description: Define the zero polynomial. (Contributed by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
df-0p | ⊢ 0𝑝 = (ℂ × {0}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0p 25723 | . 2 class 0𝑝 | |
2 | cc 11182 | . . 3 class ℂ | |
3 | cc0 11184 | . . . 4 class 0 | |
4 | 3 | csn 4648 | . . 3 class {0} |
5 | 2, 4 | cxp 5698 | . 2 class (ℂ × {0}) |
6 | 1, 5 | wceq 1537 | 1 wff 0𝑝 = (ℂ × {0}) |
Colors of variables: wff setvar class |
This definition is referenced by: 0pval 25725 0plef 25726 0pledm 25727 itg1ge0 25740 mbfi1fseqlem5 25774 itg2addlem 25813 ply0 26267 coeeulem 26283 dgrnznn 26306 coe0 26315 dgr0 26322 dgreq0 26325 dgrmulc 26331 plymul0or 26340 plydiveu 26358 fta1lem 26367 fta1 26368 quotcan 26369 plyexmo 26373 elqaalem3 26381 aaliou2 26400 plymul02 34523 mpaaeu 43107 |
Copyright terms: Public domain | W3C validator |