| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-0p | Structured version Visualization version GIF version | ||
| Description: Define the zero polynomial. (Contributed by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| df-0p | ⊢ 0𝑝 = (ℂ × {0}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0p 25620 | . 2 class 0𝑝 | |
| 2 | cc 11125 | . . 3 class ℂ | |
| 3 | cc0 11127 | . . . 4 class 0 | |
| 4 | 3 | csn 4601 | . . 3 class {0} |
| 5 | 2, 4 | cxp 5652 | . 2 class (ℂ × {0}) |
| 6 | 1, 5 | wceq 1540 | 1 wff 0𝑝 = (ℂ × {0}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: 0pval 25622 0plef 25623 0pledm 25624 itg1ge0 25637 mbfi1fseqlem5 25670 itg2addlem 25709 ply0 26163 coeeulem 26179 dgrnznn 26202 coe0 26211 dgr0 26218 dgreq0 26221 dgrmulc 26227 plymul0or 26238 plydiveu 26256 fta1lem 26265 fta1 26266 quotcan 26267 plyexmo 26271 elqaalem3 26279 aaliou2 26298 plymul02 34524 mpaaeu 43121 |
| Copyright terms: Public domain | W3C validator |