| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-0p | Structured version Visualization version GIF version | ||
| Description: Define the zero polynomial. (Contributed by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| df-0p | ⊢ 0𝑝 = (ℂ × {0}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0p 25597 | . 2 class 0𝑝 | |
| 2 | cc 11004 | . . 3 class ℂ | |
| 3 | cc0 11006 | . . . 4 class 0 | |
| 4 | 3 | csn 4573 | . . 3 class {0} |
| 5 | 2, 4 | cxp 5612 | . 2 class (ℂ × {0}) |
| 6 | 1, 5 | wceq 1541 | 1 wff 0𝑝 = (ℂ × {0}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: 0pval 25599 0plef 25600 0pledm 25601 itg1ge0 25614 mbfi1fseqlem5 25647 itg2addlem 25686 ply0 26140 coeeulem 26156 dgrnznn 26179 coe0 26188 dgr0 26195 dgreq0 26198 dgrmulc 26204 plymul0or 26215 plydiveu 26233 fta1lem 26242 fta1 26243 quotcan 26244 plyexmo 26248 elqaalem3 26256 aaliou2 26275 plymul02 34559 mpaaeu 43242 sinnpoly 46990 |
| Copyright terms: Public domain | W3C validator |