| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-0p | Structured version Visualization version GIF version | ||
| Description: Define the zero polynomial. (Contributed by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| df-0p | ⊢ 0𝑝 = (ℂ × {0}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0p 25570 | . 2 class 0𝑝 | |
| 2 | cc 11066 | . . 3 class ℂ | |
| 3 | cc0 11068 | . . . 4 class 0 | |
| 4 | 3 | csn 4589 | . . 3 class {0} |
| 5 | 2, 4 | cxp 5636 | . 2 class (ℂ × {0}) |
| 6 | 1, 5 | wceq 1540 | 1 wff 0𝑝 = (ℂ × {0}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: 0pval 25572 0plef 25573 0pledm 25574 itg1ge0 25587 mbfi1fseqlem5 25620 itg2addlem 25659 ply0 26113 coeeulem 26129 dgrnznn 26152 coe0 26161 dgr0 26168 dgreq0 26171 dgrmulc 26177 plymul0or 26188 plydiveu 26206 fta1lem 26215 fta1 26216 quotcan 26217 plyexmo 26221 elqaalem3 26229 aaliou2 26248 plymul02 34537 mpaaeu 43139 sinnpoly 46892 |
| Copyright terms: Public domain | W3C validator |