![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-0p | Structured version Visualization version GIF version |
Description: Define the zero polynomial. (Contributed by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
df-0p | ⊢ 0𝑝 = (ℂ × {0}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0p 25410 | . 2 class 0𝑝 | |
2 | cc 11110 | . . 3 class ℂ | |
3 | cc0 11112 | . . . 4 class 0 | |
4 | 3 | csn 4628 | . . 3 class {0} |
5 | 2, 4 | cxp 5674 | . 2 class (ℂ × {0}) |
6 | 1, 5 | wceq 1541 | 1 wff 0𝑝 = (ℂ × {0}) |
Colors of variables: wff setvar class |
This definition is referenced by: 0pval 25412 0plef 25413 0pledm 25414 itg1ge0 25427 mbfi1fseqlem5 25461 itg2addlem 25500 ply0 25946 coeeulem 25962 dgrnznn 25985 coe0 25994 dgr0 26000 dgreq0 26003 dgrmulc 26009 plymul0or 26018 plydiveu 26035 fta1lem 26044 fta1 26045 quotcan 26046 plyexmo 26050 elqaalem3 26058 aaliou2 26077 plymul02 33843 mpaaeu 42194 |
Copyright terms: Public domain | W3C validator |