| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-0p | Structured version Visualization version GIF version | ||
| Description: Define the zero polynomial. (Contributed by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| df-0p | ⊢ 0𝑝 = (ℂ × {0}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0p 25604 | . 2 class 0𝑝 | |
| 2 | cc 11044 | . . 3 class ℂ | |
| 3 | cc0 11046 | . . . 4 class 0 | |
| 4 | 3 | csn 4585 | . . 3 class {0} |
| 5 | 2, 4 | cxp 5629 | . 2 class (ℂ × {0}) |
| 6 | 1, 5 | wceq 1540 | 1 wff 0𝑝 = (ℂ × {0}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: 0pval 25606 0plef 25607 0pledm 25608 itg1ge0 25621 mbfi1fseqlem5 25654 itg2addlem 25693 ply0 26147 coeeulem 26163 dgrnznn 26186 coe0 26195 dgr0 26202 dgreq0 26205 dgrmulc 26211 plymul0or 26222 plydiveu 26240 fta1lem 26249 fta1 26250 quotcan 26251 plyexmo 26255 elqaalem3 26263 aaliou2 26282 plymul02 34531 mpaaeu 43133 sinnpoly 46886 |
| Copyright terms: Public domain | W3C validator |