Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-0p | Structured version Visualization version GIF version |
Description: Define the zero polynomial. (Contributed by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
df-0p | ⊢ 0𝑝 = (ℂ × {0}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0p 24738 | . 2 class 0𝑝 | |
2 | cc 10800 | . . 3 class ℂ | |
3 | cc0 10802 | . . . 4 class 0 | |
4 | 3 | csn 4558 | . . 3 class {0} |
5 | 2, 4 | cxp 5578 | . 2 class (ℂ × {0}) |
6 | 1, 5 | wceq 1539 | 1 wff 0𝑝 = (ℂ × {0}) |
Colors of variables: wff setvar class |
This definition is referenced by: 0pval 24740 0plef 24741 0pledm 24742 itg1ge0 24755 mbfi1fseqlem5 24789 itg2addlem 24828 ply0 25274 coeeulem 25290 dgrnznn 25313 coe0 25322 dgr0 25328 dgreq0 25331 dgrmulc 25337 plymul0or 25346 plydiveu 25363 fta1lem 25372 fta1 25373 quotcan 25374 plyexmo 25378 elqaalem3 25386 aaliou2 25405 plymul02 32425 mpaaeu 40891 |
Copyright terms: Public domain | W3C validator |