| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-0p | Structured version Visualization version GIF version | ||
| Description: Define the zero polynomial. (Contributed by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| df-0p | ⊢ 0𝑝 = (ℂ × {0}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0p 25568 | . 2 class 0𝑝 | |
| 2 | cc 11007 | . . 3 class ℂ | |
| 3 | cc0 11009 | . . . 4 class 0 | |
| 4 | 3 | csn 4577 | . . 3 class {0} |
| 5 | 2, 4 | cxp 5617 | . 2 class (ℂ × {0}) |
| 6 | 1, 5 | wceq 1540 | 1 wff 0𝑝 = (ℂ × {0}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: 0pval 25570 0plef 25571 0pledm 25572 itg1ge0 25585 mbfi1fseqlem5 25618 itg2addlem 25657 ply0 26111 coeeulem 26127 dgrnznn 26150 coe0 26159 dgr0 26166 dgreq0 26169 dgrmulc 26175 plymul0or 26186 plydiveu 26204 fta1lem 26213 fta1 26214 quotcan 26215 plyexmo 26219 elqaalem3 26227 aaliou2 26246 plymul02 34530 mpaaeu 43143 sinnpoly 46895 |
| Copyright terms: Public domain | W3C validator |