| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-0p | Structured version Visualization version GIF version | ||
| Description: Define the zero polynomial. (Contributed by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| df-0p | ⊢ 0𝑝 = (ℂ × {0}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0p 25603 | . 2 class 0𝑝 | |
| 2 | cc 11042 | . . 3 class ℂ | |
| 3 | cc0 11044 | . . . 4 class 0 | |
| 4 | 3 | csn 4585 | . . 3 class {0} |
| 5 | 2, 4 | cxp 5629 | . 2 class (ℂ × {0}) |
| 6 | 1, 5 | wceq 1540 | 1 wff 0𝑝 = (ℂ × {0}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: 0pval 25605 0plef 25606 0pledm 25607 itg1ge0 25620 mbfi1fseqlem5 25653 itg2addlem 25692 ply0 26146 coeeulem 26162 dgrnznn 26185 coe0 26194 dgr0 26201 dgreq0 26204 dgrmulc 26210 plymul0or 26221 plydiveu 26239 fta1lem 26248 fta1 26249 quotcan 26250 plyexmo 26254 elqaalem3 26262 aaliou2 26281 plymul02 34530 mpaaeu 43132 sinnpoly 46885 |
| Copyright terms: Public domain | W3C validator |