Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-0p | Structured version Visualization version GIF version |
Description: Define the zero polynomial. (Contributed by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
df-0p | ⊢ 0𝑝 = (ℂ × {0}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0p 24370 | . 2 class 0𝑝 | |
2 | cc 10574 | . . 3 class ℂ | |
3 | cc0 10576 | . . . 4 class 0 | |
4 | 3 | csn 4523 | . . 3 class {0} |
5 | 2, 4 | cxp 5523 | . 2 class (ℂ × {0}) |
6 | 1, 5 | wceq 1539 | 1 wff 0𝑝 = (ℂ × {0}) |
Colors of variables: wff setvar class |
This definition is referenced by: 0pval 24372 0plef 24373 0pledm 24374 itg1ge0 24387 mbfi1fseqlem5 24420 itg2addlem 24459 ply0 24905 coeeulem 24921 dgrnznn 24944 coe0 24953 dgr0 24959 dgreq0 24962 dgrmulc 24968 plymul0or 24977 plydiveu 24994 fta1lem 25003 fta1 25004 quotcan 25005 plyexmo 25009 elqaalem3 25017 aaliou2 25036 plymul02 32045 mpaaeu 40468 |
Copyright terms: Public domain | W3C validator |