![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-0p | Structured version Visualization version GIF version |
Description: Define the zero polynomial. (Contributed by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
df-0p | ⊢ 0𝑝 = (ℂ × {0}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0p 25717 | . 2 class 0𝑝 | |
2 | cc 11150 | . . 3 class ℂ | |
3 | cc0 11152 | . . . 4 class 0 | |
4 | 3 | csn 4630 | . . 3 class {0} |
5 | 2, 4 | cxp 5686 | . 2 class (ℂ × {0}) |
6 | 1, 5 | wceq 1536 | 1 wff 0𝑝 = (ℂ × {0}) |
Colors of variables: wff setvar class |
This definition is referenced by: 0pval 25719 0plef 25720 0pledm 25721 itg1ge0 25734 mbfi1fseqlem5 25768 itg2addlem 25807 ply0 26261 coeeulem 26277 dgrnznn 26300 coe0 26309 dgr0 26316 dgreq0 26319 dgrmulc 26325 plymul0or 26336 plydiveu 26354 fta1lem 26363 fta1 26364 quotcan 26365 plyexmo 26369 elqaalem3 26377 aaliou2 26396 plymul02 34539 mpaaeu 43138 |
Copyright terms: Public domain | W3C validator |