| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-0p | Structured version Visualization version GIF version | ||
| Description: Define the zero polynomial. (Contributed by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| df-0p | ⊢ 0𝑝 = (ℂ × {0}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0p 25577 | . 2 class 0𝑝 | |
| 2 | cc 11073 | . . 3 class ℂ | |
| 3 | cc0 11075 | . . . 4 class 0 | |
| 4 | 3 | csn 4592 | . . 3 class {0} |
| 5 | 2, 4 | cxp 5639 | . 2 class (ℂ × {0}) |
| 6 | 1, 5 | wceq 1540 | 1 wff 0𝑝 = (ℂ × {0}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: 0pval 25579 0plef 25580 0pledm 25581 itg1ge0 25594 mbfi1fseqlem5 25627 itg2addlem 25666 ply0 26120 coeeulem 26136 dgrnznn 26159 coe0 26168 dgr0 26175 dgreq0 26178 dgrmulc 26184 plymul0or 26195 plydiveu 26213 fta1lem 26222 fta1 26223 quotcan 26224 plyexmo 26228 elqaalem3 26236 aaliou2 26255 plymul02 34544 mpaaeu 43146 |
| Copyright terms: Public domain | W3C validator |