![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-0p | Structured version Visualization version GIF version |
Description: Define the zero polynomial. (Contributed by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
df-0p | ⊢ 0𝑝 = (ℂ × {0}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0p 25186 | . 2 class 0𝑝 | |
2 | cc 11108 | . . 3 class ℂ | |
3 | cc0 11110 | . . . 4 class 0 | |
4 | 3 | csn 4629 | . . 3 class {0} |
5 | 2, 4 | cxp 5675 | . 2 class (ℂ × {0}) |
6 | 1, 5 | wceq 1542 | 1 wff 0𝑝 = (ℂ × {0}) |
Colors of variables: wff setvar class |
This definition is referenced by: 0pval 25188 0plef 25189 0pledm 25190 itg1ge0 25203 mbfi1fseqlem5 25237 itg2addlem 25276 ply0 25722 coeeulem 25738 dgrnznn 25761 coe0 25770 dgr0 25776 dgreq0 25779 dgrmulc 25785 plymul0or 25794 plydiveu 25811 fta1lem 25820 fta1 25821 quotcan 25822 plyexmo 25826 elqaalem3 25834 aaliou2 25853 plymul02 33557 mpaaeu 41892 |
Copyright terms: Public domain | W3C validator |