![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-0p | Structured version Visualization version GIF version |
Description: Define the zero polynomial. (Contributed by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
df-0p | ⊢ 0𝑝 = (ℂ × {0}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0p 23957 | . 2 class 0𝑝 | |
2 | cc 10388 | . . 3 class ℂ | |
3 | cc0 10390 | . . . 4 class 0 | |
4 | 3 | csn 4478 | . . 3 class {0} |
5 | 2, 4 | cxp 5448 | . 2 class (ℂ × {0}) |
6 | 1, 5 | wceq 1525 | 1 wff 0𝑝 = (ℂ × {0}) |
Colors of variables: wff setvar class |
This definition is referenced by: 0pval 23959 0plef 23960 0pledm 23961 itg1ge0 23974 mbfi1fseqlem5 24007 itg2addlem 24046 ply0 24485 coeeulem 24501 dgrnznn 24524 coe0 24533 dgr0 24539 dgreq0 24542 dgrmulc 24548 plymul0or 24557 plydiveu 24574 fta1lem 24583 fta1 24584 quotcan 24585 plyexmo 24589 elqaalem3 24597 aaliou2 24616 plymul02 31429 mpaaeu 39256 |
Copyright terms: Public domain | W3C validator |