MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfi1fseqlem5 Structured version   Visualization version   GIF version

Theorem mbfi1fseqlem5 23780
Description: Lemma for mbfi1fseq 23782. Verify that 𝐺 describes an increasing sequence of positive functions. (Contributed by Mario Carneiro, 16-Aug-2014.)
Hypotheses
Ref Expression
mbfi1fseq.1 (𝜑𝐹 ∈ MblFn)
mbfi1fseq.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
mbfi1fseq.3 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)))
mbfi1fseq.4 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0)))
Assertion
Ref Expression
mbfi1fseqlem5 ((𝜑𝐴 ∈ ℕ) → (0𝑝𝑟 ≤ (𝐺𝐴) ∧ (𝐺𝐴) ∘𝑟 ≤ (𝐺‘(𝐴 + 1))))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐹   𝑥,𝐺   𝑚,𝐽   𝜑,𝑚,𝑥,𝑦   𝐴,𝑚,𝑥,𝑦
Allowed substitution hints:   𝐺(𝑦,𝑚)   𝐽(𝑥,𝑦)

Proof of Theorem mbfi1fseqlem5
StepHypRef Expression
1 mbfi1fseq.2 . . . . . . . . . . . . . . 15 (𝜑𝐹:ℝ⟶(0[,)+∞))
21adantr 472 . . . . . . . . . . . . . 14 ((𝜑𝐴 ∈ ℕ) → 𝐹:ℝ⟶(0[,)+∞))
32ffvelrnda 6551 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,)+∞))
4 elrege0 12485 . . . . . . . . . . . . 13 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
53, 4sylib 209 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
65simpld 488 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
7 2nn 11347 . . . . . . . . . . . . . 14 2 ∈ ℕ
8 nnnn0 11548 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
9 nnexpcl 13083 . . . . . . . . . . . . . 14 ((2 ∈ ℕ ∧ 𝐴 ∈ ℕ0) → (2↑𝐴) ∈ ℕ)
107, 8, 9sylancr 581 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ → (2↑𝐴) ∈ ℕ)
1110ad2antlr 718 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑𝐴) ∈ ℕ)
1211nnred 11293 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑𝐴) ∈ ℝ)
136, 12remulcld 10326 . . . . . . . . . 10 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) · (2↑𝐴)) ∈ ℝ)
1411nnnn0d 11600 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑𝐴) ∈ ℕ0)
1514nn0ge0d 11603 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ (2↑𝐴))
16 mulge0 10802 . . . . . . . . . . 11 ((((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)) ∧ ((2↑𝐴) ∈ ℝ ∧ 0 ≤ (2↑𝐴))) → 0 ≤ ((𝐹𝑥) · (2↑𝐴)))
175, 12, 15, 16syl12anc 865 . . . . . . . . . 10 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ ((𝐹𝑥) · (2↑𝐴)))
18 flge0nn0 12832 . . . . . . . . . 10 ((((𝐹𝑥) · (2↑𝐴)) ∈ ℝ ∧ 0 ≤ ((𝐹𝑥) · (2↑𝐴))) → (⌊‘((𝐹𝑥) · (2↑𝐴))) ∈ ℕ0)
1913, 17, 18syl2anc 579 . . . . . . . . 9 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) · (2↑𝐴))) ∈ ℕ0)
2019nn0red 11601 . . . . . . . 8 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) · (2↑𝐴))) ∈ ℝ)
2119nn0ge0d 11603 . . . . . . . 8 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ (⌊‘((𝐹𝑥) · (2↑𝐴))))
2211nngt0d 11323 . . . . . . . 8 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 < (2↑𝐴))
23 divge0 11148 . . . . . . . 8 ((((⌊‘((𝐹𝑥) · (2↑𝐴))) ∈ ℝ ∧ 0 ≤ (⌊‘((𝐹𝑥) · (2↑𝐴)))) ∧ ((2↑𝐴) ∈ ℝ ∧ 0 < (2↑𝐴))) → 0 ≤ ((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)))
2420, 21, 12, 22, 23syl22anc 867 . . . . . . 7 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ ((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)))
25 simpr 477 . . . . . . . . . . . . 13 ((𝑚 = 𝐴𝑦 = 𝑥) → 𝑦 = 𝑥)
2625fveq2d 6381 . . . . . . . . . . . 12 ((𝑚 = 𝐴𝑦 = 𝑥) → (𝐹𝑦) = (𝐹𝑥))
27 simpl 474 . . . . . . . . . . . . 13 ((𝑚 = 𝐴𝑦 = 𝑥) → 𝑚 = 𝐴)
2827oveq2d 6860 . . . . . . . . . . . 12 ((𝑚 = 𝐴𝑦 = 𝑥) → (2↑𝑚) = (2↑𝐴))
2926, 28oveq12d 6862 . . . . . . . . . . 11 ((𝑚 = 𝐴𝑦 = 𝑥) → ((𝐹𝑦) · (2↑𝑚)) = ((𝐹𝑥) · (2↑𝐴)))
3029fveq2d 6381 . . . . . . . . . 10 ((𝑚 = 𝐴𝑦 = 𝑥) → (⌊‘((𝐹𝑦) · (2↑𝑚))) = (⌊‘((𝐹𝑥) · (2↑𝐴))))
3130, 28oveq12d 6862 . . . . . . . . 9 ((𝑚 = 𝐴𝑦 = 𝑥) → ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) = ((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)))
32 mbfi1fseq.3 . . . . . . . . 9 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)))
33 ovex 6876 . . . . . . . . 9 ((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)) ∈ V
3431, 32, 33ovmpt2a 6991 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝐴𝐽𝑥) = ((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)))
3534adantll 705 . . . . . . 7 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴𝐽𝑥) = ((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)))
3624, 35breqtrrd 4839 . . . . . 6 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ (𝐴𝐽𝑥))
378nn0ge0d 11603 . . . . . . 7 (𝐴 ∈ ℕ → 0 ≤ 𝐴)
3837ad2antlr 718 . . . . . 6 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ 𝐴)
39 breq2 4815 . . . . . . 7 ((𝐴𝐽𝑥) = if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) → (0 ≤ (𝐴𝐽𝑥) ↔ 0 ≤ if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴)))
40 breq2 4815 . . . . . . 7 (𝐴 = if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) → (0 ≤ 𝐴 ↔ 0 ≤ if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴)))
4139, 40ifboth 4283 . . . . . 6 ((0 ≤ (𝐴𝐽𝑥) ∧ 0 ≤ 𝐴) → 0 ≤ if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴))
4236, 38, 41syl2anc 579 . . . . 5 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴))
43 0le0 11382 . . . . 5 0 ≤ 0
44 breq2 4815 . . . . . 6 (if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) = if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0) → (0 ≤ if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) ↔ 0 ≤ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0)))
45 breq2 4815 . . . . . 6 (0 = if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0) → (0 ≤ 0 ↔ 0 ≤ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0)))
4644, 45ifboth 4283 . . . . 5 ((0 ≤ if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) ∧ 0 ≤ 0) → 0 ≤ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))
4742, 43, 46sylancl 580 . . . 4 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))
4847ralrimiva 3113 . . 3 ((𝜑𝐴 ∈ ℕ) → ∀𝑥 ∈ ℝ 0 ≤ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))
49 0re 10297 . . . . . . 7 0 ∈ ℝ
50 fnconstg 6277 . . . . . . 7 (0 ∈ ℝ → (ℂ × {0}) Fn ℂ)
5149, 50ax-mp 5 . . . . . 6 (ℂ × {0}) Fn ℂ
52 df-0p 23731 . . . . . . 7 0𝑝 = (ℂ × {0})
5352fneq1i 6165 . . . . . 6 (0𝑝 Fn ℂ ↔ (ℂ × {0}) Fn ℂ)
5451, 53mpbir 222 . . . . 5 0𝑝 Fn ℂ
5554a1i 11 . . . 4 ((𝜑𝐴 ∈ ℕ) → 0𝑝 Fn ℂ)
56 mbfi1fseq.1 . . . . . . 7 (𝜑𝐹 ∈ MblFn)
57 mbfi1fseq.4 . . . . . . 7 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0)))
5856, 1, 32, 57mbfi1fseqlem4 23779 . . . . . 6 (𝜑𝐺:ℕ⟶dom ∫1)
5958ffvelrnda 6551 . . . . 5 ((𝜑𝐴 ∈ ℕ) → (𝐺𝐴) ∈ dom ∫1)
60 i1ff 23737 . . . . 5 ((𝐺𝐴) ∈ dom ∫1 → (𝐺𝐴):ℝ⟶ℝ)
61 ffn 6225 . . . . 5 ((𝐺𝐴):ℝ⟶ℝ → (𝐺𝐴) Fn ℝ)
6259, 60, 613syl 18 . . . 4 ((𝜑𝐴 ∈ ℕ) → (𝐺𝐴) Fn ℝ)
63 cnex 10272 . . . . 5 ℂ ∈ V
6463a1i 11 . . . 4 ((𝜑𝐴 ∈ ℕ) → ℂ ∈ V)
65 reex 10282 . . . . 5 ℝ ∈ V
6665a1i 11 . . . 4 ((𝜑𝐴 ∈ ℕ) → ℝ ∈ V)
67 ax-resscn 10248 . . . . 5 ℝ ⊆ ℂ
68 sseqin2 3981 . . . . 5 (ℝ ⊆ ℂ ↔ (ℂ ∩ ℝ) = ℝ)
6967, 68mpbi 221 . . . 4 (ℂ ∩ ℝ) = ℝ
70 0pval 23732 . . . . 5 (𝑥 ∈ ℂ → (0𝑝𝑥) = 0)
7170adantl 473 . . . 4 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℂ) → (0𝑝𝑥) = 0)
7256, 1, 32, 57mbfi1fseqlem2 23777 . . . . . . 7 (𝐴 ∈ ℕ → (𝐺𝐴) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0)))
7372fveq1d 6379 . . . . . 6 (𝐴 ∈ ℕ → ((𝐺𝐴)‘𝑥) = ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))‘𝑥))
7473ad2antlr 718 . . . . 5 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐺𝐴)‘𝑥) = ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))‘𝑥))
75 simpr 477 . . . . . 6 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
76 rge0ssre 12487 . . . . . . . . . . . . . . . 16 (0[,)+∞) ⊆ ℝ
77 simpr 477 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
78 ffvelrn 6549 . . . . . . . . . . . . . . . . 17 ((𝐹:ℝ⟶(0[,)+∞) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ (0[,)+∞))
791, 77, 78syl2an 589 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹𝑦) ∈ (0[,)+∞))
8076, 79sseldi 3761 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹𝑦) ∈ ℝ)
81 nnnn0 11548 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0)
82 nnexpcl 13083 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℕ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℕ)
837, 81, 82sylancr 581 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → (2↑𝑚) ∈ ℕ)
8483ad2antrl 719 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈ ℕ)
8584nnred 11293 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈ ℝ)
8680, 85remulcld 10326 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((𝐹𝑦) · (2↑𝑚)) ∈ ℝ)
87 reflcl 12808 . . . . . . . . . . . . . 14 (((𝐹𝑦) · (2↑𝑚)) ∈ ℝ → (⌊‘((𝐹𝑦) · (2↑𝑚))) ∈ ℝ)
8886, 87syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (⌊‘((𝐹𝑦) · (2↑𝑚))) ∈ ℝ)
8988, 84nndivred 11328 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ)
9089ralrimivva 3118 . . . . . . . . . . 11 (𝜑 → ∀𝑚 ∈ ℕ ∀𝑦 ∈ ℝ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ)
9132fmpt2 7440 . . . . . . . . . . 11 (∀𝑚 ∈ ℕ ∀𝑦 ∈ ℝ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ ↔ 𝐽:(ℕ × ℝ)⟶ℝ)
9290, 91sylib 209 . . . . . . . . . 10 (𝜑𝐽:(ℕ × ℝ)⟶ℝ)
93 fovrn 7004 . . . . . . . . . 10 ((𝐽:(ℕ × ℝ)⟶ℝ ∧ 𝐴 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝐴𝐽𝑥) ∈ ℝ)
9492, 93syl3an1 1202 . . . . . . . . 9 ((𝜑𝐴 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝐴𝐽𝑥) ∈ ℝ)
95943expa 1147 . . . . . . . 8 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴𝐽𝑥) ∈ ℝ)
96 nnre 11284 . . . . . . . . 9 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
9796ad2antlr 718 . . . . . . . 8 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℝ)
9895, 97ifcld 4290 . . . . . . 7 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) ∈ ℝ)
99 ifcl 4289 . . . . . . 7 ((if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0) ∈ ℝ)
10098, 49, 99sylancl 580 . . . . . 6 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0) ∈ ℝ)
101 eqid 2765 . . . . . . 7 (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))
102101fvmpt2 6482 . . . . . 6 ((𝑥 ∈ ℝ ∧ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0) ∈ ℝ) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))‘𝑥) = if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))
10375, 100, 102syl2anc 579 . . . . 5 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))‘𝑥) = if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))
10474, 103eqtrd 2799 . . . 4 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐺𝐴)‘𝑥) = if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))
10555, 62, 64, 66, 69, 71, 104ofrfval 7105 . . 3 ((𝜑𝐴 ∈ ℕ) → (0𝑝𝑟 ≤ (𝐺𝐴) ↔ ∀𝑥 ∈ ℝ 0 ≤ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0)))
10648, 105mpbird 248 . 2 ((𝜑𝐴 ∈ ℕ) → 0𝑝𝑟 ≤ (𝐺𝐴))
10756, 1, 32mbfi1fseqlem1 23776 . . . . . . . . . . . . 13 (𝜑𝐽:(ℕ × ℝ)⟶(0[,)+∞))
108107ad2antrr 717 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝐽:(ℕ × ℝ)⟶(0[,)+∞))
109 peano2nn 11290 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ)
110109ad2antlr 718 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴 + 1) ∈ ℕ)
111108, 110, 75fovrnd 7006 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐴 + 1)𝐽𝑥) ∈ (0[,)+∞))
112 elrege0 12485 . . . . . . . . . . 11 (((𝐴 + 1)𝐽𝑥) ∈ (0[,)+∞) ↔ (((𝐴 + 1)𝐽𝑥) ∈ ℝ ∧ 0 ≤ ((𝐴 + 1)𝐽𝑥)))
113111, 112sylib 209 . . . . . . . . . 10 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (((𝐴 + 1)𝐽𝑥) ∈ ℝ ∧ 0 ≤ ((𝐴 + 1)𝐽𝑥)))
114113simpld 488 . . . . . . . . 9 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐴 + 1)𝐽𝑥) ∈ ℝ)
115 min1 12225 . . . . . . . . . 10 (((𝐴𝐽𝑥) ∈ ℝ ∧ 𝐴 ∈ ℝ) → if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) ≤ (𝐴𝐽𝑥))
11695, 97, 115syl2anc 579 . . . . . . . . 9 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) ≤ (𝐴𝐽𝑥))
117 2cn 11349 . . . . . . . . . . . . . . 15 2 ∈ ℂ
1188ad2antlr 718 . . . . . . . . . . . . . . 15 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℕ0)
119 expp1 13077 . . . . . . . . . . . . . . 15 ((2 ∈ ℂ ∧ 𝐴 ∈ ℕ0) → (2↑(𝐴 + 1)) = ((2↑𝐴) · 2))
120117, 118, 119sylancr 581 . . . . . . . . . . . . . 14 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑(𝐴 + 1)) = ((2↑𝐴) · 2))
121120oveq2d 6860 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)) · (2↑(𝐴 + 1))) = (((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)) · ((2↑𝐴) · 2)))
12235, 95eqeltrrd 2845 . . . . . . . . . . . . . . 15 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)) ∈ ℝ)
123122recnd 10324 . . . . . . . . . . . . . 14 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)) ∈ ℂ)
12412recnd 10324 . . . . . . . . . . . . . 14 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑𝐴) ∈ ℂ)
125 2cnd 11352 . . . . . . . . . . . . . 14 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 2 ∈ ℂ)
126123, 124, 125mulassd 10319 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)) · (2↑𝐴)) · 2) = (((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)) · ((2↑𝐴) · 2)))
12720recnd 10324 . . . . . . . . . . . . . . 15 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) · (2↑𝐴))) ∈ ℂ)
12811nnne0d 11324 . . . . . . . . . . . . . . 15 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑𝐴) ≠ 0)
129127, 124, 128divcan1d 11058 . . . . . . . . . . . . . 14 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)) · (2↑𝐴)) = (⌊‘((𝐹𝑥) · (2↑𝐴))))
130129oveq1d 6859 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)) · (2↑𝐴)) · 2) = ((⌊‘((𝐹𝑥) · (2↑𝐴))) · 2))
131121, 126, 1303eqtr2d 2805 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)) · (2↑(𝐴 + 1))) = ((⌊‘((𝐹𝑥) · (2↑𝐴))) · 2))
132 flle 12811 . . . . . . . . . . . . . . . 16 (((𝐹𝑥) · (2↑𝐴)) ∈ ℝ → (⌊‘((𝐹𝑥) · (2↑𝐴))) ≤ ((𝐹𝑥) · (2↑𝐴)))
13313, 132syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) · (2↑𝐴))) ≤ ((𝐹𝑥) · (2↑𝐴)))
134 2re 11348 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
135 2pos 11384 . . . . . . . . . . . . . . . . . 18 0 < 2
136134, 135pm3.2i 462 . . . . . . . . . . . . . . . . 17 (2 ∈ ℝ ∧ 0 < 2)
137136a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2 ∈ ℝ ∧ 0 < 2))
138 lemul1 11131 . . . . . . . . . . . . . . . 16 (((⌊‘((𝐹𝑥) · (2↑𝐴))) ∈ ℝ ∧ ((𝐹𝑥) · (2↑𝐴)) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((⌊‘((𝐹𝑥) · (2↑𝐴))) ≤ ((𝐹𝑥) · (2↑𝐴)) ↔ ((⌊‘((𝐹𝑥) · (2↑𝐴))) · 2) ≤ (((𝐹𝑥) · (2↑𝐴)) · 2)))
13920, 13, 137, 138syl3anc 1490 . . . . . . . . . . . . . . 15 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) · (2↑𝐴))) ≤ ((𝐹𝑥) · (2↑𝐴)) ↔ ((⌊‘((𝐹𝑥) · (2↑𝐴))) · 2) ≤ (((𝐹𝑥) · (2↑𝐴)) · 2)))
140133, 139mpbid 223 . . . . . . . . . . . . . 14 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) · (2↑𝐴))) · 2) ≤ (((𝐹𝑥) · (2↑𝐴)) · 2))
141120oveq2d 6860 . . . . . . . . . . . . . . 15 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) · (2↑(𝐴 + 1))) = ((𝐹𝑥) · ((2↑𝐴) · 2)))
1426recnd 10324 . . . . . . . . . . . . . . . 16 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℂ)
143142, 124, 125mulassd 10319 . . . . . . . . . . . . . . 15 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (((𝐹𝑥) · (2↑𝐴)) · 2) = ((𝐹𝑥) · ((2↑𝐴) · 2)))
144141, 143eqtr4d 2802 . . . . . . . . . . . . . 14 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) · (2↑(𝐴 + 1))) = (((𝐹𝑥) · (2↑𝐴)) · 2))
145140, 144breqtrrd 4839 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) · (2↑𝐴))) · 2) ≤ ((𝐹𝑥) · (2↑(𝐴 + 1))))
146110nnnn0d 11600 . . . . . . . . . . . . . . . . 17 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴 + 1) ∈ ℕ0)
147 nnexpcl 13083 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℕ ∧ (𝐴 + 1) ∈ ℕ0) → (2↑(𝐴 + 1)) ∈ ℕ)
1487, 146, 147sylancr 581 . . . . . . . . . . . . . . . 16 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑(𝐴 + 1)) ∈ ℕ)
149148nnred 11293 . . . . . . . . . . . . . . 15 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑(𝐴 + 1)) ∈ ℝ)
1506, 149remulcld 10326 . . . . . . . . . . . . . 14 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) · (2↑(𝐴 + 1))) ∈ ℝ)
15113flcld 12810 . . . . . . . . . . . . . . 15 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) · (2↑𝐴))) ∈ ℤ)
152 2z 11659 . . . . . . . . . . . . . . 15 2 ∈ ℤ
153 zmulcl 11676 . . . . . . . . . . . . . . 15 (((⌊‘((𝐹𝑥) · (2↑𝐴))) ∈ ℤ ∧ 2 ∈ ℤ) → ((⌊‘((𝐹𝑥) · (2↑𝐴))) · 2) ∈ ℤ)
154151, 152, 153sylancl 580 . . . . . . . . . . . . . 14 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) · (2↑𝐴))) · 2) ∈ ℤ)
155 flge 12817 . . . . . . . . . . . . . 14 ((((𝐹𝑥) · (2↑(𝐴 + 1))) ∈ ℝ ∧ ((⌊‘((𝐹𝑥) · (2↑𝐴))) · 2) ∈ ℤ) → (((⌊‘((𝐹𝑥) · (2↑𝐴))) · 2) ≤ ((𝐹𝑥) · (2↑(𝐴 + 1))) ↔ ((⌊‘((𝐹𝑥) · (2↑𝐴))) · 2) ≤ (⌊‘((𝐹𝑥) · (2↑(𝐴 + 1))))))
156150, 154, 155syl2anc 579 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (((⌊‘((𝐹𝑥) · (2↑𝐴))) · 2) ≤ ((𝐹𝑥) · (2↑(𝐴 + 1))) ↔ ((⌊‘((𝐹𝑥) · (2↑𝐴))) · 2) ≤ (⌊‘((𝐹𝑥) · (2↑(𝐴 + 1))))))
157145, 156mpbid 223 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) · (2↑𝐴))) · 2) ≤ (⌊‘((𝐹𝑥) · (2↑(𝐴 + 1)))))
158131, 157eqbrtrd 4833 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)) · (2↑(𝐴 + 1))) ≤ (⌊‘((𝐹𝑥) · (2↑(𝐴 + 1)))))
159 reflcl 12808 . . . . . . . . . . . . 13 (((𝐹𝑥) · (2↑(𝐴 + 1))) ∈ ℝ → (⌊‘((𝐹𝑥) · (2↑(𝐴 + 1)))) ∈ ℝ)
160150, 159syl 17 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) · (2↑(𝐴 + 1)))) ∈ ℝ)
161148nngt0d 11323 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 < (2↑(𝐴 + 1)))
162 lemuldiv 11159 . . . . . . . . . . . 12 ((((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)) ∈ ℝ ∧ (⌊‘((𝐹𝑥) · (2↑(𝐴 + 1)))) ∈ ℝ ∧ ((2↑(𝐴 + 1)) ∈ ℝ ∧ 0 < (2↑(𝐴 + 1)))) → ((((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)) · (2↑(𝐴 + 1))) ≤ (⌊‘((𝐹𝑥) · (2↑(𝐴 + 1)))) ↔ ((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)) ≤ ((⌊‘((𝐹𝑥) · (2↑(𝐴 + 1)))) / (2↑(𝐴 + 1)))))
163122, 160, 149, 161, 162syl112anc 1493 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)) · (2↑(𝐴 + 1))) ≤ (⌊‘((𝐹𝑥) · (2↑(𝐴 + 1)))) ↔ ((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)) ≤ ((⌊‘((𝐹𝑥) · (2↑(𝐴 + 1)))) / (2↑(𝐴 + 1)))))
164158, 163mpbid 223 . . . . . . . . . 10 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)) ≤ ((⌊‘((𝐹𝑥) · (2↑(𝐴 + 1)))) / (2↑(𝐴 + 1))))
165 simpr 477 . . . . . . . . . . . . . . . 16 ((𝑚 = (𝐴 + 1) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥)
166165fveq2d 6381 . . . . . . . . . . . . . . 15 ((𝑚 = (𝐴 + 1) ∧ 𝑦 = 𝑥) → (𝐹𝑦) = (𝐹𝑥))
167 simpl 474 . . . . . . . . . . . . . . . 16 ((𝑚 = (𝐴 + 1) ∧ 𝑦 = 𝑥) → 𝑚 = (𝐴 + 1))
168167oveq2d 6860 . . . . . . . . . . . . . . 15 ((𝑚 = (𝐴 + 1) ∧ 𝑦 = 𝑥) → (2↑𝑚) = (2↑(𝐴 + 1)))
169166, 168oveq12d 6862 . . . . . . . . . . . . . 14 ((𝑚 = (𝐴 + 1) ∧ 𝑦 = 𝑥) → ((𝐹𝑦) · (2↑𝑚)) = ((𝐹𝑥) · (2↑(𝐴 + 1))))
170169fveq2d 6381 . . . . . . . . . . . . 13 ((𝑚 = (𝐴 + 1) ∧ 𝑦 = 𝑥) → (⌊‘((𝐹𝑦) · (2↑𝑚))) = (⌊‘((𝐹𝑥) · (2↑(𝐴 + 1)))))
171170, 168oveq12d 6862 . . . . . . . . . . . 12 ((𝑚 = (𝐴 + 1) ∧ 𝑦 = 𝑥) → ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) = ((⌊‘((𝐹𝑥) · (2↑(𝐴 + 1)))) / (2↑(𝐴 + 1))))
172 ovex 6876 . . . . . . . . . . . 12 ((⌊‘((𝐹𝑥) · (2↑(𝐴 + 1)))) / (2↑(𝐴 + 1))) ∈ V
173171, 32, 172ovmpt2a 6991 . . . . . . . . . . 11 (((𝐴 + 1) ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((𝐴 + 1)𝐽𝑥) = ((⌊‘((𝐹𝑥) · (2↑(𝐴 + 1)))) / (2↑(𝐴 + 1))))
174110, 75, 173syl2anc 579 . . . . . . . . . 10 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐴 + 1)𝐽𝑥) = ((⌊‘((𝐹𝑥) · (2↑(𝐴 + 1)))) / (2↑(𝐴 + 1))))
175164, 35, 1743brtr4d 4843 . . . . . . . . 9 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴𝐽𝑥) ≤ ((𝐴 + 1)𝐽𝑥))
17698, 95, 114, 116, 175letrd 10450 . . . . . . . 8 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) ≤ ((𝐴 + 1)𝐽𝑥))
177110nnred 11293 . . . . . . . . 9 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴 + 1) ∈ ℝ)
178 min2 12226 . . . . . . . . . 10 (((𝐴𝐽𝑥) ∈ ℝ ∧ 𝐴 ∈ ℝ) → if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) ≤ 𝐴)
17995, 97, 178syl2anc 579 . . . . . . . . 9 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) ≤ 𝐴)
18097lep1d 11211 . . . . . . . . 9 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝐴 ≤ (𝐴 + 1))
18198, 97, 177, 179, 180letrd 10450 . . . . . . . 8 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) ≤ (𝐴 + 1))
182 breq2 4815 . . . . . . . . 9 (((𝐴 + 1)𝐽𝑥) = if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)) → (if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) ≤ ((𝐴 + 1)𝐽𝑥) ↔ if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) ≤ if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1))))
183 breq2 4815 . . . . . . . . 9 ((𝐴 + 1) = if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)) → (if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) ≤ (𝐴 + 1) ↔ if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) ≤ if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1))))
184182, 183ifboth 4283 . . . . . . . 8 ((if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) ≤ ((𝐴 + 1)𝐽𝑥) ∧ if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) ≤ (𝐴 + 1)) → if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) ≤ if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)))
185176, 181, 184syl2anc 579 . . . . . . 7 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) ≤ if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)))
186185adantr 472 . . . . . 6 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ (-𝐴[,]𝐴)) → if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) ≤ if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)))
187 iftrue 4251 . . . . . . 7 (𝑥 ∈ (-𝐴[,]𝐴) → if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0) = if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴))
188187adantl 473 . . . . . 6 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ (-𝐴[,]𝐴)) → if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0) = if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴))
189177renegcld 10713 . . . . . . . . 9 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → -(𝐴 + 1) ∈ ℝ)
19097, 177lenegd 10862 . . . . . . . . . 10 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴 ≤ (𝐴 + 1) ↔ -(𝐴 + 1) ≤ -𝐴))
191180, 190mpbid 223 . . . . . . . . 9 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → -(𝐴 + 1) ≤ -𝐴)
192 iccss 12446 . . . . . . . . 9 (((-(𝐴 + 1) ∈ ℝ ∧ (𝐴 + 1) ∈ ℝ) ∧ (-(𝐴 + 1) ≤ -𝐴𝐴 ≤ (𝐴 + 1))) → (-𝐴[,]𝐴) ⊆ (-(𝐴 + 1)[,](𝐴 + 1)))
193189, 177, 191, 180, 192syl22anc 867 . . . . . . . 8 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (-𝐴[,]𝐴) ⊆ (-(𝐴 + 1)[,](𝐴 + 1)))
194193sselda 3763 . . . . . . 7 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ (-𝐴[,]𝐴)) → 𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)))
195194iftrued 4253 . . . . . 6 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ (-𝐴[,]𝐴)) → if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0) = if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)))
196186, 188, 1953brtr4d 4843 . . . . 5 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ (-𝐴[,]𝐴)) → if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0) ≤ if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0))
197 iffalse 4254 . . . . . . 7 𝑥 ∈ (-𝐴[,]𝐴) → if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0) = 0)
198197adantl 473 . . . . . 6 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ (-𝐴[,]𝐴)) → if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0) = 0)
199113simprd 489 . . . . . . . . 9 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ ((𝐴 + 1)𝐽𝑥))
200146nn0ge0d 11603 . . . . . . . . 9 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ (𝐴 + 1))
201 breq2 4815 . . . . . . . . . 10 (((𝐴 + 1)𝐽𝑥) = if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)) → (0 ≤ ((𝐴 + 1)𝐽𝑥) ↔ 0 ≤ if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1))))
202 breq2 4815 . . . . . . . . . 10 ((𝐴 + 1) = if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)) → (0 ≤ (𝐴 + 1) ↔ 0 ≤ if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1))))
203201, 202ifboth 4283 . . . . . . . . 9 ((0 ≤ ((𝐴 + 1)𝐽𝑥) ∧ 0 ≤ (𝐴 + 1)) → 0 ≤ if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)))
204199, 200, 203syl2anc 579 . . . . . . . 8 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)))
205 breq2 4815 . . . . . . . . 9 (if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)) = if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0) → (0 ≤ if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)) ↔ 0 ≤ if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0)))
206 breq2 4815 . . . . . . . . 9 (0 = if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0) → (0 ≤ 0 ↔ 0 ≤ if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0)))
207205, 206ifboth 4283 . . . . . . . 8 ((0 ≤ if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)) ∧ 0 ≤ 0) → 0 ≤ if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0))
208204, 43, 207sylancl 580 . . . . . . 7 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0))
209208adantr 472 . . . . . 6 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ (-𝐴[,]𝐴)) → 0 ≤ if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0))
210198, 209eqbrtrd 4833 . . . . 5 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ (-𝐴[,]𝐴)) → if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0) ≤ if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0))
211196, 210pm2.61dan 847 . . . 4 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0) ≤ if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0))
212211ralrimiva 3113 . . 3 ((𝜑𝐴 ∈ ℕ) → ∀𝑥 ∈ ℝ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0) ≤ if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0))
213 ffvelrn 6549 . . . . . 6 ((𝐺:ℕ⟶dom ∫1 ∧ (𝐴 + 1) ∈ ℕ) → (𝐺‘(𝐴 + 1)) ∈ dom ∫1)
21458, 109, 213syl2an 589 . . . . 5 ((𝜑𝐴 ∈ ℕ) → (𝐺‘(𝐴 + 1)) ∈ dom ∫1)
215 i1ff 23737 . . . . 5 ((𝐺‘(𝐴 + 1)) ∈ dom ∫1 → (𝐺‘(𝐴 + 1)):ℝ⟶ℝ)
216 ffn 6225 . . . . 5 ((𝐺‘(𝐴 + 1)):ℝ⟶ℝ → (𝐺‘(𝐴 + 1)) Fn ℝ)
217214, 215, 2163syl 18 . . . 4 ((𝜑𝐴 ∈ ℕ) → (𝐺‘(𝐴 + 1)) Fn ℝ)
218 inidm 3984 . . . 4 (ℝ ∩ ℝ) = ℝ
21956, 1, 32, 57mbfi1fseqlem2 23777 . . . . . . 7 ((𝐴 + 1) ∈ ℕ → (𝐺‘(𝐴 + 1)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0)))
220219fveq1d 6379 . . . . . 6 ((𝐴 + 1) ∈ ℕ → ((𝐺‘(𝐴 + 1))‘𝑥) = ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0))‘𝑥))
221110, 220syl 17 . . . . 5 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐺‘(𝐴 + 1))‘𝑥) = ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0))‘𝑥))
222114, 177ifcld 4290 . . . . . . 7 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)) ∈ ℝ)
223 ifcl 4289 . . . . . . 7 ((if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)) ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0) ∈ ℝ)
224222, 49, 223sylancl 580 . . . . . 6 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0) ∈ ℝ)
225 eqid 2765 . . . . . . 7 (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0))
226225fvmpt2 6482 . . . . . 6 ((𝑥 ∈ ℝ ∧ if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0) ∈ ℝ) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0))‘𝑥) = if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0))
22775, 224, 226syl2anc 579 . . . . 5 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0))‘𝑥) = if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0))
228221, 227eqtrd 2799 . . . 4 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐺‘(𝐴 + 1))‘𝑥) = if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0))
22962, 217, 66, 66, 218, 104, 228ofrfval 7105 . . 3 ((𝜑𝐴 ∈ ℕ) → ((𝐺𝐴) ∘𝑟 ≤ (𝐺‘(𝐴 + 1)) ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0) ≤ if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0)))
230212, 229mpbird 248 . 2 ((𝜑𝐴 ∈ ℕ) → (𝐺𝐴) ∘𝑟 ≤ (𝐺‘(𝐴 + 1)))
231106, 230jca 507 1 ((𝜑𝐴 ∈ ℕ) → (0𝑝𝑟 ≤ (𝐺𝐴) ∧ (𝐺𝐴) ∘𝑟 ≤ (𝐺‘(𝐴 + 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wral 3055  Vcvv 3350  cin 3733  wss 3734  ifcif 4245  {csn 4336   class class class wbr 4811  cmpt 4890   × cxp 5277  dom cdm 5279   Fn wfn 6065  wf 6066  cfv 6070  (class class class)co 6844  cmpt2 6846  𝑟 cofr 7096  cc 10189  cr 10190  0cc0 10191  1c1 10192   + caddc 10194   · cmul 10196  +∞cpnf 10327   < clt 10330  cle 10331  -cneg 10523   / cdiv 10940  cn 11276  2c2 11329  0cn0 11540  cz 11626  [,)cico 12382  [,]cicc 12383  cfl 12802  cexp 13070  MblFncmbf 23675  1citg1 23676  0𝑝c0p 23730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149  ax-inf2 8755  ax-cnex 10247  ax-resscn 10248  ax-1cn 10249  ax-icn 10250  ax-addcl 10251  ax-addrcl 10252  ax-mulcl 10253  ax-mulrcl 10254  ax-mulcom 10255  ax-addass 10256  ax-mulass 10257  ax-distr 10258  ax-i2m1 10259  ax-1ne0 10260  ax-1rid 10261  ax-rnegex 10262  ax-rrecex 10263  ax-cnre 10264  ax-pre-lttri 10265  ax-pre-lttrn 10266  ax-pre-ltadd 10267  ax-pre-mulgt0 10268  ax-pre-sup 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6805  df-ov 6847  df-oprab 6848  df-mpt2 6849  df-of 7097  df-ofr 7098  df-om 7266  df-1st 7368  df-2nd 7369  df-wrecs 7612  df-recs 7674  df-rdg 7712  df-1o 7766  df-2o 7767  df-oadd 7770  df-er 7949  df-map 8064  df-pm 8065  df-en 8163  df-dom 8164  df-sdom 8165  df-fin 8166  df-fi 8526  df-sup 8557  df-inf 8558  df-oi 8624  df-card 9018  df-cda 9245  df-pnf 10332  df-mnf 10333  df-xr 10334  df-ltxr 10335  df-le 10336  df-sub 10524  df-neg 10525  df-div 10941  df-nn 11277  df-2 11337  df-3 11338  df-n0 11541  df-z 11627  df-uz 11890  df-q 11993  df-rp 12032  df-xneg 12149  df-xadd 12150  df-xmul 12151  df-ioo 12384  df-ico 12386  df-icc 12387  df-fz 12537  df-fzo 12677  df-fl 12804  df-seq 13012  df-exp 13071  df-hash 13325  df-cj 14127  df-re 14128  df-im 14129  df-sqrt 14263  df-abs 14264  df-clim 14507  df-rlim 14508  df-sum 14705  df-rest 16352  df-topgen 16373  df-psmet 20014  df-xmet 20015  df-met 20016  df-bl 20017  df-mopn 20018  df-top 20981  df-topon 20998  df-bases 21033  df-cmp 21473  df-ovol 23525  df-vol 23526  df-mbf 23680  df-itg1 23681  df-0p 23731
This theorem is referenced by:  mbfi1fseqlem6  23781
  Copyright terms: Public domain W3C validator