Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfi1fseqlem5 Structured version   Visualization version   GIF version

Theorem mbfi1fseqlem5 24409
 Description: Lemma for mbfi1fseq 24411. Verify that 𝐺 describes an increasing sequence of positive functions. (Contributed by Mario Carneiro, 16-Aug-2014.)
Hypotheses
Ref Expression
mbfi1fseq.1 (𝜑𝐹 ∈ MblFn)
mbfi1fseq.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
mbfi1fseq.3 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)))
mbfi1fseq.4 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0)))
Assertion
Ref Expression
mbfi1fseqlem5 ((𝜑𝐴 ∈ ℕ) → (0𝑝r ≤ (𝐺𝐴) ∧ (𝐺𝐴) ∘r ≤ (𝐺‘(𝐴 + 1))))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐹   𝑥,𝐺   𝑚,𝐽   𝜑,𝑚,𝑥,𝑦   𝐴,𝑚,𝑥,𝑦
Allowed substitution hints:   𝐺(𝑦,𝑚)   𝐽(𝑥,𝑦)

Proof of Theorem mbfi1fseqlem5
StepHypRef Expression
1 mbfi1fseq.2 . . . . . . . . . . . . . . 15 (𝜑𝐹:ℝ⟶(0[,)+∞))
21adantr 485 . . . . . . . . . . . . . 14 ((𝜑𝐴 ∈ ℕ) → 𝐹:ℝ⟶(0[,)+∞))
32ffvelrnda 6840 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,)+∞))
4 elrege0 12876 . . . . . . . . . . . . 13 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
53, 4sylib 221 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
65simpld 499 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
7 2nn 11737 . . . . . . . . . . . . . 14 2 ∈ ℕ
8 nnnn0 11931 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
9 nnexpcl 13482 . . . . . . . . . . . . . 14 ((2 ∈ ℕ ∧ 𝐴 ∈ ℕ0) → (2↑𝐴) ∈ ℕ)
107, 8, 9sylancr 591 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ → (2↑𝐴) ∈ ℕ)
1110ad2antlr 727 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑𝐴) ∈ ℕ)
1211nnred 11679 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑𝐴) ∈ ℝ)
136, 12remulcld 10699 . . . . . . . . . 10 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) · (2↑𝐴)) ∈ ℝ)
1411nnnn0d 11984 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑𝐴) ∈ ℕ0)
1514nn0ge0d 11987 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ (2↑𝐴))
16 mulge0 11186 . . . . . . . . . . 11 ((((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)) ∧ ((2↑𝐴) ∈ ℝ ∧ 0 ≤ (2↑𝐴))) → 0 ≤ ((𝐹𝑥) · (2↑𝐴)))
175, 12, 15, 16syl12anc 836 . . . . . . . . . 10 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ ((𝐹𝑥) · (2↑𝐴)))
18 flge0nn0 13229 . . . . . . . . . 10 ((((𝐹𝑥) · (2↑𝐴)) ∈ ℝ ∧ 0 ≤ ((𝐹𝑥) · (2↑𝐴))) → (⌊‘((𝐹𝑥) · (2↑𝐴))) ∈ ℕ0)
1913, 17, 18syl2anc 588 . . . . . . . . 9 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) · (2↑𝐴))) ∈ ℕ0)
2019nn0red 11985 . . . . . . . 8 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) · (2↑𝐴))) ∈ ℝ)
2119nn0ge0d 11987 . . . . . . . 8 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ (⌊‘((𝐹𝑥) · (2↑𝐴))))
2211nngt0d 11713 . . . . . . . 8 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 < (2↑𝐴))
23 divge0 11537 . . . . . . . 8 ((((⌊‘((𝐹𝑥) · (2↑𝐴))) ∈ ℝ ∧ 0 ≤ (⌊‘((𝐹𝑥) · (2↑𝐴)))) ∧ ((2↑𝐴) ∈ ℝ ∧ 0 < (2↑𝐴))) → 0 ≤ ((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)))
2420, 21, 12, 22, 23syl22anc 838 . . . . . . 7 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ ((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)))
25 simpr 489 . . . . . . . . . . . . 13 ((𝑚 = 𝐴𝑦 = 𝑥) → 𝑦 = 𝑥)
2625fveq2d 6660 . . . . . . . . . . . 12 ((𝑚 = 𝐴𝑦 = 𝑥) → (𝐹𝑦) = (𝐹𝑥))
27 simpl 487 . . . . . . . . . . . . 13 ((𝑚 = 𝐴𝑦 = 𝑥) → 𝑚 = 𝐴)
2827oveq2d 7164 . . . . . . . . . . . 12 ((𝑚 = 𝐴𝑦 = 𝑥) → (2↑𝑚) = (2↑𝐴))
2926, 28oveq12d 7166 . . . . . . . . . . 11 ((𝑚 = 𝐴𝑦 = 𝑥) → ((𝐹𝑦) · (2↑𝑚)) = ((𝐹𝑥) · (2↑𝐴)))
3029fveq2d 6660 . . . . . . . . . 10 ((𝑚 = 𝐴𝑦 = 𝑥) → (⌊‘((𝐹𝑦) · (2↑𝑚))) = (⌊‘((𝐹𝑥) · (2↑𝐴))))
3130, 28oveq12d 7166 . . . . . . . . 9 ((𝑚 = 𝐴𝑦 = 𝑥) → ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) = ((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)))
32 mbfi1fseq.3 . . . . . . . . 9 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)))
33 ovex 7181 . . . . . . . . 9 ((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)) ∈ V
3431, 32, 33ovmpoa 7298 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝐴𝐽𝑥) = ((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)))
3534adantll 714 . . . . . . 7 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴𝐽𝑥) = ((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)))
3624, 35breqtrrd 5058 . . . . . 6 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ (𝐴𝐽𝑥))
378nn0ge0d 11987 . . . . . . 7 (𝐴 ∈ ℕ → 0 ≤ 𝐴)
3837ad2antlr 727 . . . . . 6 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ 𝐴)
39 breq2 5034 . . . . . . 7 ((𝐴𝐽𝑥) = if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) → (0 ≤ (𝐴𝐽𝑥) ↔ 0 ≤ if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴)))
40 breq2 5034 . . . . . . 7 (𝐴 = if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) → (0 ≤ 𝐴 ↔ 0 ≤ if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴)))
4139, 40ifboth 4457 . . . . . 6 ((0 ≤ (𝐴𝐽𝑥) ∧ 0 ≤ 𝐴) → 0 ≤ if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴))
4236, 38, 41syl2anc 588 . . . . 5 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴))
43 0le0 11765 . . . . 5 0 ≤ 0
44 breq2 5034 . . . . . 6 (if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) = if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0) → (0 ≤ if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) ↔ 0 ≤ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0)))
45 breq2 5034 . . . . . 6 (0 = if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0) → (0 ≤ 0 ↔ 0 ≤ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0)))
4644, 45ifboth 4457 . . . . 5 ((0 ≤ if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) ∧ 0 ≤ 0) → 0 ≤ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))
4742, 43, 46sylancl 590 . . . 4 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))
4847ralrimiva 3114 . . 3 ((𝜑𝐴 ∈ ℕ) → ∀𝑥 ∈ ℝ 0 ≤ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))
49 0re 10671 . . . . . . 7 0 ∈ ℝ
50 fnconstg 6550 . . . . . . 7 (0 ∈ ℝ → (ℂ × {0}) Fn ℂ)
5149, 50ax-mp 5 . . . . . 6 (ℂ × {0}) Fn ℂ
52 df-0p 24360 . . . . . . 7 0𝑝 = (ℂ × {0})
5352fneq1i 6429 . . . . . 6 (0𝑝 Fn ℂ ↔ (ℂ × {0}) Fn ℂ)
5451, 53mpbir 234 . . . . 5 0𝑝 Fn ℂ
5554a1i 11 . . . 4 ((𝜑𝐴 ∈ ℕ) → 0𝑝 Fn ℂ)
56 mbfi1fseq.1 . . . . . . 7 (𝜑𝐹 ∈ MblFn)
57 mbfi1fseq.4 . . . . . . 7 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0)))
5856, 1, 32, 57mbfi1fseqlem4 24408 . . . . . 6 (𝜑𝐺:ℕ⟶dom ∫1)
5958ffvelrnda 6840 . . . . 5 ((𝜑𝐴 ∈ ℕ) → (𝐺𝐴) ∈ dom ∫1)
60 i1ff 24366 . . . . 5 ((𝐺𝐴) ∈ dom ∫1 → (𝐺𝐴):ℝ⟶ℝ)
61 ffn 6496 . . . . 5 ((𝐺𝐴):ℝ⟶ℝ → (𝐺𝐴) Fn ℝ)
6259, 60, 613syl 18 . . . 4 ((𝜑𝐴 ∈ ℕ) → (𝐺𝐴) Fn ℝ)
63 cnex 10646 . . . . 5 ℂ ∈ V
6463a1i 11 . . . 4 ((𝜑𝐴 ∈ ℕ) → ℂ ∈ V)
65 reex 10656 . . . . 5 ℝ ∈ V
6665a1i 11 . . . 4 ((𝜑𝐴 ∈ ℕ) → ℝ ∈ V)
67 ax-resscn 10622 . . . . 5 ℝ ⊆ ℂ
68 sseqin2 4121 . . . . 5 (ℝ ⊆ ℂ ↔ (ℂ ∩ ℝ) = ℝ)
6967, 68mpbi 233 . . . 4 (ℂ ∩ ℝ) = ℝ
70 0pval 24361 . . . . 5 (𝑥 ∈ ℂ → (0𝑝𝑥) = 0)
7170adantl 486 . . . 4 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℂ) → (0𝑝𝑥) = 0)
7256, 1, 32, 57mbfi1fseqlem2 24406 . . . . . . 7 (𝐴 ∈ ℕ → (𝐺𝐴) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0)))
7372fveq1d 6658 . . . . . 6 (𝐴 ∈ ℕ → ((𝐺𝐴)‘𝑥) = ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))‘𝑥))
7473ad2antlr 727 . . . . 5 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐺𝐴)‘𝑥) = ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))‘𝑥))
75 simpr 489 . . . . . 6 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
76 rge0ssre 12878 . . . . . . . . . . . . . . . 16 (0[,)+∞) ⊆ ℝ
77 simpr 489 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
78 ffvelrn 6838 . . . . . . . . . . . . . . . . 17 ((𝐹:ℝ⟶(0[,)+∞) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ (0[,)+∞))
791, 77, 78syl2an 599 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹𝑦) ∈ (0[,)+∞))
8076, 79sseldi 3891 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹𝑦) ∈ ℝ)
81 nnnn0 11931 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0)
82 nnexpcl 13482 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℕ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℕ)
837, 81, 82sylancr 591 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → (2↑𝑚) ∈ ℕ)
8483ad2antrl 728 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈ ℕ)
8584nnred 11679 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈ ℝ)
8680, 85remulcld 10699 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((𝐹𝑦) · (2↑𝑚)) ∈ ℝ)
87 reflcl 13205 . . . . . . . . . . . . . 14 (((𝐹𝑦) · (2↑𝑚)) ∈ ℝ → (⌊‘((𝐹𝑦) · (2↑𝑚))) ∈ ℝ)
8886, 87syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (⌊‘((𝐹𝑦) · (2↑𝑚))) ∈ ℝ)
8988, 84nndivred 11718 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ)
9089ralrimivva 3121 . . . . . . . . . . 11 (𝜑 → ∀𝑚 ∈ ℕ ∀𝑦 ∈ ℝ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ)
9132fmpo 7768 . . . . . . . . . . 11 (∀𝑚 ∈ ℕ ∀𝑦 ∈ ℝ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ ↔ 𝐽:(ℕ × ℝ)⟶ℝ)
9290, 91sylib 221 . . . . . . . . . 10 (𝜑𝐽:(ℕ × ℝ)⟶ℝ)
93 fovrn 7312 . . . . . . . . . 10 ((𝐽:(ℕ × ℝ)⟶ℝ ∧ 𝐴 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝐴𝐽𝑥) ∈ ℝ)
9492, 93syl3an1 1161 . . . . . . . . 9 ((𝜑𝐴 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝐴𝐽𝑥) ∈ ℝ)
95943expa 1116 . . . . . . . 8 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴𝐽𝑥) ∈ ℝ)
96 nnre 11671 . . . . . . . . 9 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
9796ad2antlr 727 . . . . . . . 8 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℝ)
9895, 97ifcld 4464 . . . . . . 7 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) ∈ ℝ)
99 ifcl 4463 . . . . . . 7 ((if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0) ∈ ℝ)
10098, 49, 99sylancl 590 . . . . . 6 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0) ∈ ℝ)
101 eqid 2759 . . . . . . 7 (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))
102101fvmpt2 6768 . . . . . 6 ((𝑥 ∈ ℝ ∧ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0) ∈ ℝ) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))‘𝑥) = if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))
10375, 100, 102syl2anc 588 . . . . 5 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))‘𝑥) = if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))
10474, 103eqtrd 2794 . . . 4 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐺𝐴)‘𝑥) = if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))
10555, 62, 64, 66, 69, 71, 104ofrfval 7412 . . 3 ((𝜑𝐴 ∈ ℕ) → (0𝑝r ≤ (𝐺𝐴) ↔ ∀𝑥 ∈ ℝ 0 ≤ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0)))
10648, 105mpbird 260 . 2 ((𝜑𝐴 ∈ ℕ) → 0𝑝r ≤ (𝐺𝐴))
10756, 1, 32mbfi1fseqlem1 24405 . . . . . . . . . . . . 13 (𝜑𝐽:(ℕ × ℝ)⟶(0[,)+∞))
108107ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝐽:(ℕ × ℝ)⟶(0[,)+∞))
109 peano2nn 11676 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ)
110109ad2antlr 727 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴 + 1) ∈ ℕ)
111108, 110, 75fovrnd 7314 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐴 + 1)𝐽𝑥) ∈ (0[,)+∞))
112 elrege0 12876 . . . . . . . . . . 11 (((𝐴 + 1)𝐽𝑥) ∈ (0[,)+∞) ↔ (((𝐴 + 1)𝐽𝑥) ∈ ℝ ∧ 0 ≤ ((𝐴 + 1)𝐽𝑥)))
113111, 112sylib 221 . . . . . . . . . 10 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (((𝐴 + 1)𝐽𝑥) ∈ ℝ ∧ 0 ≤ ((𝐴 + 1)𝐽𝑥)))
114113simpld 499 . . . . . . . . 9 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐴 + 1)𝐽𝑥) ∈ ℝ)
115 min1 12613 . . . . . . . . . 10 (((𝐴𝐽𝑥) ∈ ℝ ∧ 𝐴 ∈ ℝ) → if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) ≤ (𝐴𝐽𝑥))
11695, 97, 115syl2anc 588 . . . . . . . . 9 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) ≤ (𝐴𝐽𝑥))
117 2cn 11739 . . . . . . . . . . . . . . 15 2 ∈ ℂ
1188ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℕ0)
119 expp1 13476 . . . . . . . . . . . . . . 15 ((2 ∈ ℂ ∧ 𝐴 ∈ ℕ0) → (2↑(𝐴 + 1)) = ((2↑𝐴) · 2))
120117, 118, 119sylancr 591 . . . . . . . . . . . . . 14 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑(𝐴 + 1)) = ((2↑𝐴) · 2))
121120oveq2d 7164 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)) · (2↑(𝐴 + 1))) = (((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)) · ((2↑𝐴) · 2)))
12235, 95eqeltrrd 2854 . . . . . . . . . . . . . . 15 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)) ∈ ℝ)
123122recnd 10697 . . . . . . . . . . . . . 14 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)) ∈ ℂ)
12412recnd 10697 . . . . . . . . . . . . . 14 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑𝐴) ∈ ℂ)
125 2cnd 11742 . . . . . . . . . . . . . 14 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 2 ∈ ℂ)
126123, 124, 125mulassd 10692 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)) · (2↑𝐴)) · 2) = (((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)) · ((2↑𝐴) · 2)))
12720recnd 10697 . . . . . . . . . . . . . . 15 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) · (2↑𝐴))) ∈ ℂ)
12811nnne0d 11714 . . . . . . . . . . . . . . 15 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑𝐴) ≠ 0)
129127, 124, 128divcan1d 11445 . . . . . . . . . . . . . 14 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)) · (2↑𝐴)) = (⌊‘((𝐹𝑥) · (2↑𝐴))))
130129oveq1d 7163 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)) · (2↑𝐴)) · 2) = ((⌊‘((𝐹𝑥) · (2↑𝐴))) · 2))
131121, 126, 1303eqtr2d 2800 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)) · (2↑(𝐴 + 1))) = ((⌊‘((𝐹𝑥) · (2↑𝐴))) · 2))
132 flle 13208 . . . . . . . . . . . . . . . 16 (((𝐹𝑥) · (2↑𝐴)) ∈ ℝ → (⌊‘((𝐹𝑥) · (2↑𝐴))) ≤ ((𝐹𝑥) · (2↑𝐴)))
13313, 132syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) · (2↑𝐴))) ≤ ((𝐹𝑥) · (2↑𝐴)))
134 2re 11738 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
135 2pos 11767 . . . . . . . . . . . . . . . . . 18 0 < 2
136134, 135pm3.2i 475 . . . . . . . . . . . . . . . . 17 (2 ∈ ℝ ∧ 0 < 2)
137136a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2 ∈ ℝ ∧ 0 < 2))
138 lemul1 11520 . . . . . . . . . . . . . . . 16 (((⌊‘((𝐹𝑥) · (2↑𝐴))) ∈ ℝ ∧ ((𝐹𝑥) · (2↑𝐴)) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((⌊‘((𝐹𝑥) · (2↑𝐴))) ≤ ((𝐹𝑥) · (2↑𝐴)) ↔ ((⌊‘((𝐹𝑥) · (2↑𝐴))) · 2) ≤ (((𝐹𝑥) · (2↑𝐴)) · 2)))
13920, 13, 137, 138syl3anc 1369 . . . . . . . . . . . . . . 15 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) · (2↑𝐴))) ≤ ((𝐹𝑥) · (2↑𝐴)) ↔ ((⌊‘((𝐹𝑥) · (2↑𝐴))) · 2) ≤ (((𝐹𝑥) · (2↑𝐴)) · 2)))
140133, 139mpbid 235 . . . . . . . . . . . . . 14 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) · (2↑𝐴))) · 2) ≤ (((𝐹𝑥) · (2↑𝐴)) · 2))
141120oveq2d 7164 . . . . . . . . . . . . . . 15 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) · (2↑(𝐴 + 1))) = ((𝐹𝑥) · ((2↑𝐴) · 2)))
1426recnd 10697 . . . . . . . . . . . . . . . 16 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℂ)
143142, 124, 125mulassd 10692 . . . . . . . . . . . . . . 15 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (((𝐹𝑥) · (2↑𝐴)) · 2) = ((𝐹𝑥) · ((2↑𝐴) · 2)))
144141, 143eqtr4d 2797 . . . . . . . . . . . . . 14 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) · (2↑(𝐴 + 1))) = (((𝐹𝑥) · (2↑𝐴)) · 2))
145140, 144breqtrrd 5058 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) · (2↑𝐴))) · 2) ≤ ((𝐹𝑥) · (2↑(𝐴 + 1))))
146110nnnn0d 11984 . . . . . . . . . . . . . . . . 17 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴 + 1) ∈ ℕ0)
147 nnexpcl 13482 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℕ ∧ (𝐴 + 1) ∈ ℕ0) → (2↑(𝐴 + 1)) ∈ ℕ)
1487, 146, 147sylancr 591 . . . . . . . . . . . . . . . 16 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑(𝐴 + 1)) ∈ ℕ)
149148nnred 11679 . . . . . . . . . . . . . . 15 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑(𝐴 + 1)) ∈ ℝ)
1506, 149remulcld 10699 . . . . . . . . . . . . . 14 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) · (2↑(𝐴 + 1))) ∈ ℝ)
15113flcld 13207 . . . . . . . . . . . . . . 15 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) · (2↑𝐴))) ∈ ℤ)
152 2z 12043 . . . . . . . . . . . . . . 15 2 ∈ ℤ
153 zmulcl 12060 . . . . . . . . . . . . . . 15 (((⌊‘((𝐹𝑥) · (2↑𝐴))) ∈ ℤ ∧ 2 ∈ ℤ) → ((⌊‘((𝐹𝑥) · (2↑𝐴))) · 2) ∈ ℤ)
154151, 152, 153sylancl 590 . . . . . . . . . . . . . 14 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) · (2↑𝐴))) · 2) ∈ ℤ)
155 flge 13214 . . . . . . . . . . . . . 14 ((((𝐹𝑥) · (2↑(𝐴 + 1))) ∈ ℝ ∧ ((⌊‘((𝐹𝑥) · (2↑𝐴))) · 2) ∈ ℤ) → (((⌊‘((𝐹𝑥) · (2↑𝐴))) · 2) ≤ ((𝐹𝑥) · (2↑(𝐴 + 1))) ↔ ((⌊‘((𝐹𝑥) · (2↑𝐴))) · 2) ≤ (⌊‘((𝐹𝑥) · (2↑(𝐴 + 1))))))
156150, 154, 155syl2anc 588 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (((⌊‘((𝐹𝑥) · (2↑𝐴))) · 2) ≤ ((𝐹𝑥) · (2↑(𝐴 + 1))) ↔ ((⌊‘((𝐹𝑥) · (2↑𝐴))) · 2) ≤ (⌊‘((𝐹𝑥) · (2↑(𝐴 + 1))))))
157145, 156mpbid 235 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) · (2↑𝐴))) · 2) ≤ (⌊‘((𝐹𝑥) · (2↑(𝐴 + 1)))))
158131, 157eqbrtrd 5052 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)) · (2↑(𝐴 + 1))) ≤ (⌊‘((𝐹𝑥) · (2↑(𝐴 + 1)))))
159 reflcl 13205 . . . . . . . . . . . . 13 (((𝐹𝑥) · (2↑(𝐴 + 1))) ∈ ℝ → (⌊‘((𝐹𝑥) · (2↑(𝐴 + 1)))) ∈ ℝ)
160150, 159syl 17 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) · (2↑(𝐴 + 1)))) ∈ ℝ)
161148nngt0d 11713 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 < (2↑(𝐴 + 1)))
162 lemuldiv 11548 . . . . . . . . . . . 12 ((((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)) ∈ ℝ ∧ (⌊‘((𝐹𝑥) · (2↑(𝐴 + 1)))) ∈ ℝ ∧ ((2↑(𝐴 + 1)) ∈ ℝ ∧ 0 < (2↑(𝐴 + 1)))) → ((((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)) · (2↑(𝐴 + 1))) ≤ (⌊‘((𝐹𝑥) · (2↑(𝐴 + 1)))) ↔ ((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)) ≤ ((⌊‘((𝐹𝑥) · (2↑(𝐴 + 1)))) / (2↑(𝐴 + 1)))))
163122, 160, 149, 161, 162syl112anc 1372 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)) · (2↑(𝐴 + 1))) ≤ (⌊‘((𝐹𝑥) · (2↑(𝐴 + 1)))) ↔ ((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)) ≤ ((⌊‘((𝐹𝑥) · (2↑(𝐴 + 1)))) / (2↑(𝐴 + 1)))))
164158, 163mpbid 235 . . . . . . . . . 10 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)) ≤ ((⌊‘((𝐹𝑥) · (2↑(𝐴 + 1)))) / (2↑(𝐴 + 1))))
165 simpr 489 . . . . . . . . . . . . . . . 16 ((𝑚 = (𝐴 + 1) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥)
166165fveq2d 6660 . . . . . . . . . . . . . . 15 ((𝑚 = (𝐴 + 1) ∧ 𝑦 = 𝑥) → (𝐹𝑦) = (𝐹𝑥))
167 simpl 487 . . . . . . . . . . . . . . . 16 ((𝑚 = (𝐴 + 1) ∧ 𝑦 = 𝑥) → 𝑚 = (𝐴 + 1))
168167oveq2d 7164 . . . . . . . . . . . . . . 15 ((𝑚 = (𝐴 + 1) ∧ 𝑦 = 𝑥) → (2↑𝑚) = (2↑(𝐴 + 1)))
169166, 168oveq12d 7166 . . . . . . . . . . . . . 14 ((𝑚 = (𝐴 + 1) ∧ 𝑦 = 𝑥) → ((𝐹𝑦) · (2↑𝑚)) = ((𝐹𝑥) · (2↑(𝐴 + 1))))
170169fveq2d 6660 . . . . . . . . . . . . 13 ((𝑚 = (𝐴 + 1) ∧ 𝑦 = 𝑥) → (⌊‘((𝐹𝑦) · (2↑𝑚))) = (⌊‘((𝐹𝑥) · (2↑(𝐴 + 1)))))
171170, 168oveq12d 7166 . . . . . . . . . . . 12 ((𝑚 = (𝐴 + 1) ∧ 𝑦 = 𝑥) → ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) = ((⌊‘((𝐹𝑥) · (2↑(𝐴 + 1)))) / (2↑(𝐴 + 1))))
172 ovex 7181 . . . . . . . . . . . 12 ((⌊‘((𝐹𝑥) · (2↑(𝐴 + 1)))) / (2↑(𝐴 + 1))) ∈ V
173171, 32, 172ovmpoa 7298 . . . . . . . . . . 11 (((𝐴 + 1) ∈ ℕ ∧ 𝑥 ∈ ℝ) → ((𝐴 + 1)𝐽𝑥) = ((⌊‘((𝐹𝑥) · (2↑(𝐴 + 1)))) / (2↑(𝐴 + 1))))
174110, 75, 173syl2anc 588 . . . . . . . . . 10 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐴 + 1)𝐽𝑥) = ((⌊‘((𝐹𝑥) · (2↑(𝐴 + 1)))) / (2↑(𝐴 + 1))))
175164, 35, 1743brtr4d 5062 . . . . . . . . 9 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴𝐽𝑥) ≤ ((𝐴 + 1)𝐽𝑥))
17698, 95, 114, 116, 175letrd 10825 . . . . . . . 8 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) ≤ ((𝐴 + 1)𝐽𝑥))
177110nnred 11679 . . . . . . . . 9 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴 + 1) ∈ ℝ)
178 min2 12614 . . . . . . . . . 10 (((𝐴𝐽𝑥) ∈ ℝ ∧ 𝐴 ∈ ℝ) → if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) ≤ 𝐴)
17995, 97, 178syl2anc 588 . . . . . . . . 9 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) ≤ 𝐴)
18097lep1d 11599 . . . . . . . . 9 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝐴 ≤ (𝐴 + 1))
18198, 97, 177, 179, 180letrd 10825 . . . . . . . 8 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) ≤ (𝐴 + 1))
182 breq2 5034 . . . . . . . . 9 (((𝐴 + 1)𝐽𝑥) = if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)) → (if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) ≤ ((𝐴 + 1)𝐽𝑥) ↔ if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) ≤ if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1))))
183 breq2 5034 . . . . . . . . 9 ((𝐴 + 1) = if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)) → (if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) ≤ (𝐴 + 1) ↔ if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) ≤ if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1))))
184182, 183ifboth 4457 . . . . . . . 8 ((if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) ≤ ((𝐴 + 1)𝐽𝑥) ∧ if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) ≤ (𝐴 + 1)) → if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) ≤ if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)))
185176, 181, 184syl2anc 588 . . . . . . 7 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) ≤ if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)))
186185adantr 485 . . . . . 6 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ (-𝐴[,]𝐴)) → if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) ≤ if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)))
187 iftrue 4424 . . . . . . 7 (𝑥 ∈ (-𝐴[,]𝐴) → if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0) = if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴))
188187adantl 486 . . . . . 6 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ (-𝐴[,]𝐴)) → if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0) = if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴))
189177renegcld 11095 . . . . . . . . 9 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → -(𝐴 + 1) ∈ ℝ)
19097, 177lenegd 11247 . . . . . . . . . 10 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴 ≤ (𝐴 + 1) ↔ -(𝐴 + 1) ≤ -𝐴))
191180, 190mpbid 235 . . . . . . . . 9 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → -(𝐴 + 1) ≤ -𝐴)
192 iccss 12837 . . . . . . . . 9 (((-(𝐴 + 1) ∈ ℝ ∧ (𝐴 + 1) ∈ ℝ) ∧ (-(𝐴 + 1) ≤ -𝐴𝐴 ≤ (𝐴 + 1))) → (-𝐴[,]𝐴) ⊆ (-(𝐴 + 1)[,](𝐴 + 1)))
193189, 177, 191, 180, 192syl22anc 838 . . . . . . . 8 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (-𝐴[,]𝐴) ⊆ (-(𝐴 + 1)[,](𝐴 + 1)))
194193sselda 3893 . . . . . . 7 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ (-𝐴[,]𝐴)) → 𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)))
195194iftrued 4426 . . . . . 6 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ (-𝐴[,]𝐴)) → if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0) = if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)))
196186, 188, 1953brtr4d 5062 . . . . 5 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ (-𝐴[,]𝐴)) → if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0) ≤ if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0))
197 iffalse 4427 . . . . . . 7 𝑥 ∈ (-𝐴[,]𝐴) → if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0) = 0)
198197adantl 486 . . . . . 6 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ (-𝐴[,]𝐴)) → if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0) = 0)
199113simprd 500 . . . . . . . . 9 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ ((𝐴 + 1)𝐽𝑥))
200146nn0ge0d 11987 . . . . . . . . 9 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ (𝐴 + 1))
201 breq2 5034 . . . . . . . . . 10 (((𝐴 + 1)𝐽𝑥) = if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)) → (0 ≤ ((𝐴 + 1)𝐽𝑥) ↔ 0 ≤ if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1))))
202 breq2 5034 . . . . . . . . . 10 ((𝐴 + 1) = if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)) → (0 ≤ (𝐴 + 1) ↔ 0 ≤ if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1))))
203201, 202ifboth 4457 . . . . . . . . 9 ((0 ≤ ((𝐴 + 1)𝐽𝑥) ∧ 0 ≤ (𝐴 + 1)) → 0 ≤ if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)))
204199, 200, 203syl2anc 588 . . . . . . . 8 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)))
205 breq2 5034 . . . . . . . . 9 (if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)) = if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0) → (0 ≤ if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)) ↔ 0 ≤ if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0)))
206 breq2 5034 . . . . . . . . 9 (0 = if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0) → (0 ≤ 0 ↔ 0 ≤ if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0)))
207205, 206ifboth 4457 . . . . . . . 8 ((0 ≤ if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)) ∧ 0 ≤ 0) → 0 ≤ if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0))
208204, 43, 207sylancl 590 . . . . . . 7 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0))
209208adantr 485 . . . . . 6 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ (-𝐴[,]𝐴)) → 0 ≤ if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0))
210198, 209eqbrtrd 5052 . . . . 5 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ (-𝐴[,]𝐴)) → if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0) ≤ if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0))
211196, 210pm2.61dan 813 . . . 4 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0) ≤ if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0))
212211ralrimiva 3114 . . 3 ((𝜑𝐴 ∈ ℕ) → ∀𝑥 ∈ ℝ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0) ≤ if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0))
213 ffvelrn 6838 . . . . . 6 ((𝐺:ℕ⟶dom ∫1 ∧ (𝐴 + 1) ∈ ℕ) → (𝐺‘(𝐴 + 1)) ∈ dom ∫1)
21458, 109, 213syl2an 599 . . . . 5 ((𝜑𝐴 ∈ ℕ) → (𝐺‘(𝐴 + 1)) ∈ dom ∫1)
215 i1ff 24366 . . . . 5 ((𝐺‘(𝐴 + 1)) ∈ dom ∫1 → (𝐺‘(𝐴 + 1)):ℝ⟶ℝ)
216 ffn 6496 . . . . 5 ((𝐺‘(𝐴 + 1)):ℝ⟶ℝ → (𝐺‘(𝐴 + 1)) Fn ℝ)
217214, 215, 2163syl 18 . . . 4 ((𝜑𝐴 ∈ ℕ) → (𝐺‘(𝐴 + 1)) Fn ℝ)
218 inidm 4124 . . . 4 (ℝ ∩ ℝ) = ℝ
21956, 1, 32, 57mbfi1fseqlem2 24406 . . . . . . 7 ((𝐴 + 1) ∈ ℕ → (𝐺‘(𝐴 + 1)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0)))
220219fveq1d 6658 . . . . . 6 ((𝐴 + 1) ∈ ℕ → ((𝐺‘(𝐴 + 1))‘𝑥) = ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0))‘𝑥))
221110, 220syl 17 . . . . 5 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐺‘(𝐴 + 1))‘𝑥) = ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0))‘𝑥))
222114, 177ifcld 4464 . . . . . . 7 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)) ∈ ℝ)
223 ifcl 4463 . . . . . . 7 ((if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)) ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0) ∈ ℝ)
224222, 49, 223sylancl 590 . . . . . 6 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0) ∈ ℝ)
225 eqid 2759 . . . . . . 7 (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0))
226225fvmpt2 6768 . . . . . 6 ((𝑥 ∈ ℝ ∧ if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0) ∈ ℝ) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0))‘𝑥) = if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0))
22775, 224, 226syl2anc 588 . . . . 5 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0))‘𝑥) = if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0))
228221, 227eqtrd 2794 . . . 4 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐺‘(𝐴 + 1))‘𝑥) = if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0))
22962, 217, 66, 66, 218, 104, 228ofrfval 7412 . . 3 ((𝜑𝐴 ∈ ℕ) → ((𝐺𝐴) ∘r ≤ (𝐺‘(𝐴 + 1)) ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0) ≤ if(𝑥 ∈ (-(𝐴 + 1)[,](𝐴 + 1)), if(((𝐴 + 1)𝐽𝑥) ≤ (𝐴 + 1), ((𝐴 + 1)𝐽𝑥), (𝐴 + 1)), 0)))
230212, 229mpbird 260 . 2 ((𝜑𝐴 ∈ ℕ) → (𝐺𝐴) ∘r ≤ (𝐺‘(𝐴 + 1)))
231106, 230jca 516 1 ((𝜑𝐴 ∈ ℕ) → (0𝑝r ≤ (𝐺𝐴) ∧ (𝐺𝐴) ∘r ≤ (𝐺‘(𝐴 + 1))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 400   = wceq 1539   ∈ wcel 2112  ∀wral 3071  Vcvv 3410   ∩ cin 3858   ⊆ wss 3859  ifcif 4418  {csn 4520   class class class wbr 5030   ↦ cmpt 5110   × cxp 5520  dom cdm 5522   Fn wfn 6328  ⟶wf 6329  ‘cfv 6333  (class class class)co 7148   ∈ cmpo 7150   ∘r cofr 7402  ℂcc 10563  ℝcr 10564  0cc0 10565  1c1 10566   + caddc 10568   · cmul 10570  +∞cpnf 10700   < clt 10703   ≤ cle 10704  -cneg 10899   / cdiv 11325  ℕcn 11664  2c2 11719  ℕ0cn0 11924  ℤcz 12010  [,)cico 12771  [,]cicc 12772  ⌊cfl 13199  ↑cexp 13469  MblFncmbf 24304  ∫1citg1 24305  0𝑝c0p 24359 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7457  ax-inf2 9127  ax-cnex 10621  ax-resscn 10622  ax-1cn 10623  ax-icn 10624  ax-addcl 10625  ax-addrcl 10626  ax-mulcl 10627  ax-mulrcl 10628  ax-mulcom 10629  ax-addass 10630  ax-mulass 10631  ax-distr 10632  ax-i2m1 10633  ax-1ne0 10634  ax-1rid 10635  ax-rnegex 10636  ax-rrecex 10637  ax-cnre 10638  ax-pre-lttri 10639  ax-pre-lttrn 10640  ax-pre-ltadd 10641  ax-pre-mulgt0 10642  ax-pre-sup 10643 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4419  df-pw 4494  df-sn 4521  df-pr 4523  df-tp 4525  df-op 4527  df-uni 4797  df-int 4837  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5428  df-eprel 5433  df-po 5441  df-so 5442  df-fr 5481  df-se 5482  df-we 5483  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6292  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-isom 6342  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7403  df-ofr 7404  df-om 7578  df-1st 7691  df-2nd 7692  df-wrecs 7955  df-recs 8016  df-rdg 8054  df-1o 8110  df-2o 8111  df-oadd 8114  df-er 8297  df-map 8416  df-pm 8417  df-en 8526  df-dom 8527  df-sdom 8528  df-fin 8529  df-fi 8898  df-sup 8929  df-inf 8930  df-oi 8997  df-dju 9353  df-card 9391  df-pnf 10705  df-mnf 10706  df-xr 10707  df-ltxr 10708  df-le 10709  df-sub 10900  df-neg 10901  df-div 11326  df-nn 11665  df-2 11727  df-3 11728  df-n0 11925  df-z 12011  df-uz 12273  df-q 12379  df-rp 12421  df-xneg 12538  df-xadd 12539  df-xmul 12540  df-ioo 12773  df-ico 12775  df-icc 12776  df-fz 12930  df-fzo 13073  df-fl 13201  df-seq 13409  df-exp 13470  df-hash 13731  df-cj 14496  df-re 14497  df-im 14498  df-sqrt 14632  df-abs 14633  df-clim 14883  df-rlim 14884  df-sum 15081  df-rest 16744  df-topgen 16765  df-psmet 20148  df-xmet 20149  df-met 20150  df-bl 20151  df-mopn 20152  df-top 21584  df-topon 21601  df-bases 21636  df-cmp 22077  df-ovol 24154  df-vol 24155  df-mbf 24309  df-itg1 24310  df-0p 24360 This theorem is referenced by:  mbfi1fseqlem6  24410
 Copyright terms: Public domain W3C validator