MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fta1 Structured version   Visualization version   GIF version

Theorem fta1 25813
Description: The easy direction of the Fundamental Theorem of Algebra: A nonzero polynomial has at most deg(𝐹) roots. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypothesis
Ref Expression
fta1.1 𝑅 = (𝐹 “ {0})
Assertion
Ref Expression
fta1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) → (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹)))

Proof of Theorem fta1
Dummy variables 𝑥 𝑔 𝑓 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . 2 (deg‘𝐹) = (deg‘𝐹)
2 dgrcl 25739 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
32adantr 482 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) → (deg‘𝐹) ∈ ℕ0)
4 eqeq2 2745 . . . . . . 7 (𝑥 = 0 → ((deg‘𝑓) = 𝑥 ↔ (deg‘𝑓) = 0))
54imbi1d 342 . . . . . 6 (𝑥 = 0 → (((deg‘𝑓) = 𝑥 → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓))) ↔ ((deg‘𝑓) = 0 → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓)))))
65ralbidv 3178 . . . . 5 (𝑥 = 0 → (∀𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑓) = 𝑥 → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓))) ↔ ∀𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑓) = 0 → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓)))))
7 eqeq2 2745 . . . . . . 7 (𝑥 = 𝑑 → ((deg‘𝑓) = 𝑥 ↔ (deg‘𝑓) = 𝑑))
87imbi1d 342 . . . . . 6 (𝑥 = 𝑑 → (((deg‘𝑓) = 𝑥 → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓))) ↔ ((deg‘𝑓) = 𝑑 → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓)))))
98ralbidv 3178 . . . . 5 (𝑥 = 𝑑 → (∀𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑓) = 𝑥 → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓))) ↔ ∀𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑓) = 𝑑 → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓)))))
10 eqeq2 2745 . . . . . . 7 (𝑥 = (𝑑 + 1) → ((deg‘𝑓) = 𝑥 ↔ (deg‘𝑓) = (𝑑 + 1)))
1110imbi1d 342 . . . . . 6 (𝑥 = (𝑑 + 1) → (((deg‘𝑓) = 𝑥 → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓))) ↔ ((deg‘𝑓) = (𝑑 + 1) → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓)))))
1211ralbidv 3178 . . . . 5 (𝑥 = (𝑑 + 1) → (∀𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑓) = 𝑥 → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓))) ↔ ∀𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑓) = (𝑑 + 1) → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓)))))
13 eqeq2 2745 . . . . . . 7 (𝑥 = (deg‘𝐹) → ((deg‘𝑓) = 𝑥 ↔ (deg‘𝑓) = (deg‘𝐹)))
1413imbi1d 342 . . . . . 6 (𝑥 = (deg‘𝐹) → (((deg‘𝑓) = 𝑥 → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓))) ↔ ((deg‘𝑓) = (deg‘𝐹) → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓)))))
1514ralbidv 3178 . . . . 5 (𝑥 = (deg‘𝐹) → (∀𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑓) = 𝑥 → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓))) ↔ ∀𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑓) = (deg‘𝐹) → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓)))))
16 eldifsni 4793 . . . . . . . . . . 11 (𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) → 𝑓 ≠ 0𝑝)
1716adantr 482 . . . . . . . . . 10 ((𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ∧ (deg‘𝑓) = 0) → 𝑓 ≠ 0𝑝)
18 simplr 768 . . . . . . . . . . . . . . 15 (((𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ∧ (deg‘𝑓) = 0) ∧ 𝑥 ∈ (𝑓 “ {0})) → (deg‘𝑓) = 0)
19 eldifi 4126 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) → 𝑓 ∈ (Poly‘ℂ))
2019ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ∧ (deg‘𝑓) = 0) ∧ 𝑥 ∈ (𝑓 “ {0})) → 𝑓 ∈ (Poly‘ℂ))
21 0dgrb 25752 . . . . . . . . . . . . . . . 16 (𝑓 ∈ (Poly‘ℂ) → ((deg‘𝑓) = 0 ↔ 𝑓 = (ℂ × {(𝑓‘0)})))
2220, 21syl 17 . . . . . . . . . . . . . . 15 (((𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ∧ (deg‘𝑓) = 0) ∧ 𝑥 ∈ (𝑓 “ {0})) → ((deg‘𝑓) = 0 ↔ 𝑓 = (ℂ × {(𝑓‘0)})))
2318, 22mpbid 231 . . . . . . . . . . . . . 14 (((𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ∧ (deg‘𝑓) = 0) ∧ 𝑥 ∈ (𝑓 “ {0})) → 𝑓 = (ℂ × {(𝑓‘0)}))
2423fveq1d 6891 . . . . . . . . . . . . . . . . 17 (((𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ∧ (deg‘𝑓) = 0) ∧ 𝑥 ∈ (𝑓 “ {0})) → (𝑓𝑥) = ((ℂ × {(𝑓‘0)})‘𝑥))
2519adantr 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ∧ (deg‘𝑓) = 0) → 𝑓 ∈ (Poly‘ℂ))
26 plyf 25704 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ (Poly‘ℂ) → 𝑓:ℂ⟶ℂ)
27 ffn 6715 . . . . . . . . . . . . . . . . . . . 20 (𝑓:ℂ⟶ℂ → 𝑓 Fn ℂ)
28 fniniseg 7059 . . . . . . . . . . . . . . . . . . . 20 (𝑓 Fn ℂ → (𝑥 ∈ (𝑓 “ {0}) ↔ (𝑥 ∈ ℂ ∧ (𝑓𝑥) = 0)))
2925, 26, 27, 284syl 19 . . . . . . . . . . . . . . . . . . 19 ((𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ∧ (deg‘𝑓) = 0) → (𝑥 ∈ (𝑓 “ {0}) ↔ (𝑥 ∈ ℂ ∧ (𝑓𝑥) = 0)))
3029biimpa 478 . . . . . . . . . . . . . . . . . 18 (((𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ∧ (deg‘𝑓) = 0) ∧ 𝑥 ∈ (𝑓 “ {0})) → (𝑥 ∈ ℂ ∧ (𝑓𝑥) = 0))
3130simprd 497 . . . . . . . . . . . . . . . . 17 (((𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ∧ (deg‘𝑓) = 0) ∧ 𝑥 ∈ (𝑓 “ {0})) → (𝑓𝑥) = 0)
3230simpld 496 . . . . . . . . . . . . . . . . . 18 (((𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ∧ (deg‘𝑓) = 0) ∧ 𝑥 ∈ (𝑓 “ {0})) → 𝑥 ∈ ℂ)
33 fvex 6902 . . . . . . . . . . . . . . . . . . 19 (𝑓‘0) ∈ V
3433fvconst2 7202 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → ((ℂ × {(𝑓‘0)})‘𝑥) = (𝑓‘0))
3532, 34syl 17 . . . . . . . . . . . . . . . . 17 (((𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ∧ (deg‘𝑓) = 0) ∧ 𝑥 ∈ (𝑓 “ {0})) → ((ℂ × {(𝑓‘0)})‘𝑥) = (𝑓‘0))
3624, 31, 353eqtr3rd 2782 . . . . . . . . . . . . . . . 16 (((𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ∧ (deg‘𝑓) = 0) ∧ 𝑥 ∈ (𝑓 “ {0})) → (𝑓‘0) = 0)
3736sneqd 4640 . . . . . . . . . . . . . . 15 (((𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ∧ (deg‘𝑓) = 0) ∧ 𝑥 ∈ (𝑓 “ {0})) → {(𝑓‘0)} = {0})
3837xpeq2d 5706 . . . . . . . . . . . . . 14 (((𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ∧ (deg‘𝑓) = 0) ∧ 𝑥 ∈ (𝑓 “ {0})) → (ℂ × {(𝑓‘0)}) = (ℂ × {0}))
3923, 38eqtrd 2773 . . . . . . . . . . . . 13 (((𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ∧ (deg‘𝑓) = 0) ∧ 𝑥 ∈ (𝑓 “ {0})) → 𝑓 = (ℂ × {0}))
40 df-0p 25179 . . . . . . . . . . . . 13 0𝑝 = (ℂ × {0})
4139, 40eqtr4di 2791 . . . . . . . . . . . 12 (((𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ∧ (deg‘𝑓) = 0) ∧ 𝑥 ∈ (𝑓 “ {0})) → 𝑓 = 0𝑝)
4241ex 414 . . . . . . . . . . 11 ((𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ∧ (deg‘𝑓) = 0) → (𝑥 ∈ (𝑓 “ {0}) → 𝑓 = 0𝑝))
4342necon3ad 2954 . . . . . . . . . 10 ((𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ∧ (deg‘𝑓) = 0) → (𝑓 ≠ 0𝑝 → ¬ 𝑥 ∈ (𝑓 “ {0})))
4417, 43mpd 15 . . . . . . . . 9 ((𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ∧ (deg‘𝑓) = 0) → ¬ 𝑥 ∈ (𝑓 “ {0}))
4544eq0rdv 4404 . . . . . . . 8 ((𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ∧ (deg‘𝑓) = 0) → (𝑓 “ {0}) = ∅)
4645ex 414 . . . . . . 7 (𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) → ((deg‘𝑓) = 0 → (𝑓 “ {0}) = ∅))
47 dgrcl 25739 . . . . . . . . 9 (𝑓 ∈ (Poly‘ℂ) → (deg‘𝑓) ∈ ℕ0)
48 nn0ge0 12494 . . . . . . . . 9 ((deg‘𝑓) ∈ ℕ0 → 0 ≤ (deg‘𝑓))
4919, 47, 483syl 18 . . . . . . . 8 (𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) → 0 ≤ (deg‘𝑓))
50 id 22 . . . . . . . . . . 11 ((𝑓 “ {0}) = ∅ → (𝑓 “ {0}) = ∅)
51 0fin 9168 . . . . . . . . . . 11 ∅ ∈ Fin
5250, 51eqeltrdi 2842 . . . . . . . . . 10 ((𝑓 “ {0}) = ∅ → (𝑓 “ {0}) ∈ Fin)
5352biantrurd 534 . . . . . . . . 9 ((𝑓 “ {0}) = ∅ → ((♯‘(𝑓 “ {0})) ≤ (deg‘𝑓) ↔ ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓))))
54 fveq2 6889 . . . . . . . . . . 11 ((𝑓 “ {0}) = ∅ → (♯‘(𝑓 “ {0})) = (♯‘∅))
55 hash0 14324 . . . . . . . . . . 11 (♯‘∅) = 0
5654, 55eqtrdi 2789 . . . . . . . . . 10 ((𝑓 “ {0}) = ∅ → (♯‘(𝑓 “ {0})) = 0)
5756breq1d 5158 . . . . . . . . 9 ((𝑓 “ {0}) = ∅ → ((♯‘(𝑓 “ {0})) ≤ (deg‘𝑓) ↔ 0 ≤ (deg‘𝑓)))
5853, 57bitr3d 281 . . . . . . . 8 ((𝑓 “ {0}) = ∅ → (((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓)) ↔ 0 ≤ (deg‘𝑓)))
5949, 58syl5ibrcom 246 . . . . . . 7 (𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) → ((𝑓 “ {0}) = ∅ → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓))))
6046, 59syld 47 . . . . . 6 (𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) → ((deg‘𝑓) = 0 → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓))))
6160rgen 3064 . . . . 5 𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑓) = 0 → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓)))
62 fveqeq2 6898 . . . . . . . 8 (𝑓 = 𝑔 → ((deg‘𝑓) = 𝑑 ↔ (deg‘𝑔) = 𝑑))
63 cnveq 5872 . . . . . . . . . . 11 (𝑓 = 𝑔𝑓 = 𝑔)
6463imaeq1d 6057 . . . . . . . . . 10 (𝑓 = 𝑔 → (𝑓 “ {0}) = (𝑔 “ {0}))
6564eleq1d 2819 . . . . . . . . 9 (𝑓 = 𝑔 → ((𝑓 “ {0}) ∈ Fin ↔ (𝑔 “ {0}) ∈ Fin))
6664fveq2d 6893 . . . . . . . . . 10 (𝑓 = 𝑔 → (♯‘(𝑓 “ {0})) = (♯‘(𝑔 “ {0})))
67 fveq2 6889 . . . . . . . . . 10 (𝑓 = 𝑔 → (deg‘𝑓) = (deg‘𝑔))
6866, 67breq12d 5161 . . . . . . . . 9 (𝑓 = 𝑔 → ((♯‘(𝑓 “ {0})) ≤ (deg‘𝑓) ↔ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔)))
6965, 68anbi12d 632 . . . . . . . 8 (𝑓 = 𝑔 → (((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓)) ↔ ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔))))
7062, 69imbi12d 345 . . . . . . 7 (𝑓 = 𝑔 → (((deg‘𝑓) = 𝑑 → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓))) ↔ ((deg‘𝑔) = 𝑑 → ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔)))))
7170cbvralvw 3235 . . . . . 6 (∀𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑓) = 𝑑 → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓))) ↔ ∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔))))
7249ad2antlr 726 . . . . . . . . . . . 12 (((𝑑 ∈ ℕ0𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})) ∧ (deg‘𝑓) = (𝑑 + 1)) → 0 ≤ (deg‘𝑓))
7372, 58syl5ibrcom 246 . . . . . . . . . . 11 (((𝑑 ∈ ℕ0𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})) ∧ (deg‘𝑓) = (𝑑 + 1)) → ((𝑓 “ {0}) = ∅ → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓))))
7473a1dd 50 . . . . . . . . . 10 (((𝑑 ∈ ℕ0𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})) ∧ (deg‘𝑓) = (𝑑 + 1)) → ((𝑓 “ {0}) = ∅ → (∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔))) → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓)))))
75 n0 4346 . . . . . . . . . . 11 ((𝑓 “ {0}) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑓 “ {0}))
76 eqid 2733 . . . . . . . . . . . . . 14 (𝑓 “ {0}) = (𝑓 “ {0})
77 simplll 774 . . . . . . . . . . . . . 14 ((((𝑑 ∈ ℕ0𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})) ∧ (deg‘𝑓) = (𝑑 + 1)) ∧ (𝑥 ∈ (𝑓 “ {0}) ∧ ∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔))))) → 𝑑 ∈ ℕ0)
78 simpllr 775 . . . . . . . . . . . . . 14 ((((𝑑 ∈ ℕ0𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})) ∧ (deg‘𝑓) = (𝑑 + 1)) ∧ (𝑥 ∈ (𝑓 “ {0}) ∧ ∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔))))) → 𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}))
79 simplr 768 . . . . . . . . . . . . . 14 ((((𝑑 ∈ ℕ0𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})) ∧ (deg‘𝑓) = (𝑑 + 1)) ∧ (𝑥 ∈ (𝑓 “ {0}) ∧ ∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔))))) → (deg‘𝑓) = (𝑑 + 1))
80 simprl 770 . . . . . . . . . . . . . 14 ((((𝑑 ∈ ℕ0𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})) ∧ (deg‘𝑓) = (𝑑 + 1)) ∧ (𝑥 ∈ (𝑓 “ {0}) ∧ ∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔))))) → 𝑥 ∈ (𝑓 “ {0}))
81 simprr 772 . . . . . . . . . . . . . 14 ((((𝑑 ∈ ℕ0𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})) ∧ (deg‘𝑓) = (𝑑 + 1)) ∧ (𝑥 ∈ (𝑓 “ {0}) ∧ ∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔))))) → ∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔))))
8276, 77, 78, 79, 80, 81fta1lem 25812 . . . . . . . . . . . . 13 ((((𝑑 ∈ ℕ0𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})) ∧ (deg‘𝑓) = (𝑑 + 1)) ∧ (𝑥 ∈ (𝑓 “ {0}) ∧ ∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔))))) → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓)))
8382exp32 422 . . . . . . . . . . . 12 (((𝑑 ∈ ℕ0𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})) ∧ (deg‘𝑓) = (𝑑 + 1)) → (𝑥 ∈ (𝑓 “ {0}) → (∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔))) → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓)))))
8483exlimdv 1937 . . . . . . . . . . 11 (((𝑑 ∈ ℕ0𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})) ∧ (deg‘𝑓) = (𝑑 + 1)) → (∃𝑥 𝑥 ∈ (𝑓 “ {0}) → (∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔))) → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓)))))
8575, 84biimtrid 241 . . . . . . . . . 10 (((𝑑 ∈ ℕ0𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})) ∧ (deg‘𝑓) = (𝑑 + 1)) → ((𝑓 “ {0}) ≠ ∅ → (∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔))) → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓)))))
8674, 85pm2.61dne 3029 . . . . . . . . 9 (((𝑑 ∈ ℕ0𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})) ∧ (deg‘𝑓) = (𝑑 + 1)) → (∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔))) → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓))))
8786ex 414 . . . . . . . 8 ((𝑑 ∈ ℕ0𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})) → ((deg‘𝑓) = (𝑑 + 1) → (∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔))) → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓)))))
8887com23 86 . . . . . . 7 ((𝑑 ∈ ℕ0𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})) → (∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔))) → ((deg‘𝑓) = (𝑑 + 1) → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓)))))
8988ralrimdva 3155 . . . . . 6 (𝑑 ∈ ℕ0 → (∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔))) → ∀𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑓) = (𝑑 + 1) → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓)))))
9071, 89biimtrid 241 . . . . 5 (𝑑 ∈ ℕ0 → (∀𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑓) = 𝑑 → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓))) → ∀𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑓) = (𝑑 + 1) → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓)))))
916, 9, 12, 15, 61, 90nn0ind 12654 . . . 4 ((deg‘𝐹) ∈ ℕ0 → ∀𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑓) = (deg‘𝐹) → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓))))
923, 91syl 17 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) → ∀𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑓) = (deg‘𝐹) → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓))))
93 plyssc 25706 . . . . 5 (Poly‘𝑆) ⊆ (Poly‘ℂ)
9493sseli 3978 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ))
95 eldifsn 4790 . . . . 5 (𝐹 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ↔ (𝐹 ∈ (Poly‘ℂ) ∧ 𝐹 ≠ 0𝑝))
96 fveqeq2 6898 . . . . . . 7 (𝑓 = 𝐹 → ((deg‘𝑓) = (deg‘𝐹) ↔ (deg‘𝐹) = (deg‘𝐹)))
97 cnveq 5872 . . . . . . . . . . 11 (𝑓 = 𝐹𝑓 = 𝐹)
9897imaeq1d 6057 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑓 “ {0}) = (𝐹 “ {0}))
99 fta1.1 . . . . . . . . . 10 𝑅 = (𝐹 “ {0})
10098, 99eqtr4di 2791 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓 “ {0}) = 𝑅)
101100eleq1d 2819 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑓 “ {0}) ∈ Fin ↔ 𝑅 ∈ Fin))
102100fveq2d 6893 . . . . . . . . 9 (𝑓 = 𝐹 → (♯‘(𝑓 “ {0})) = (♯‘𝑅))
103 fveq2 6889 . . . . . . . . 9 (𝑓 = 𝐹 → (deg‘𝑓) = (deg‘𝐹))
104102, 103breq12d 5161 . . . . . . . 8 (𝑓 = 𝐹 → ((♯‘(𝑓 “ {0})) ≤ (deg‘𝑓) ↔ (♯‘𝑅) ≤ (deg‘𝐹)))
105101, 104anbi12d 632 . . . . . . 7 (𝑓 = 𝐹 → (((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓)) ↔ (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹))))
10696, 105imbi12d 345 . . . . . 6 (𝑓 = 𝐹 → (((deg‘𝑓) = (deg‘𝐹) → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓))) ↔ ((deg‘𝐹) = (deg‘𝐹) → (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹)))))
107106rspcv 3609 . . . . 5 (𝐹 ∈ ((Poly‘ℂ) ∖ {0𝑝}) → (∀𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑓) = (deg‘𝐹) → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓))) → ((deg‘𝐹) = (deg‘𝐹) → (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹)))))
10895, 107sylbir 234 . . . 4 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐹 ≠ 0𝑝) → (∀𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑓) = (deg‘𝐹) → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓))) → ((deg‘𝐹) = (deg‘𝐹) → (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹)))))
10994, 108sylan 581 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) → (∀𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑓) = (deg‘𝐹) → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓))) → ((deg‘𝐹) = (deg‘𝐹) → (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹)))))
11092, 109mpd 15 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) → ((deg‘𝐹) = (deg‘𝐹) → (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹))))
1111, 110mpi 20 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) → (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397   = wceq 1542  wex 1782  wcel 2107  wne 2941  wral 3062  cdif 3945  c0 4322  {csn 4628   class class class wbr 5148   × cxp 5674  ccnv 5675  cima 5679   Fn wfn 6536  wf 6537  cfv 6541  (class class class)co 7406  Fincfn 8936  cc 11105  0cc0 11107  1c1 11108   + caddc 11110  cle 11246  0cn0 12469  chash 14287  0𝑝c0p 25178  Polycply 25690  degcdgr 25693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-inf2 9633  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-of 7667  df-om 7853  df-1st 7972  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-1o 8463  df-oadd 8467  df-er 8700  df-map 8819  df-pm 8820  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-sup 9434  df-inf 9435  df-oi 9502  df-dju 9893  df-card 9931  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-n0 12470  df-xnn0 12542  df-z 12556  df-uz 12820  df-rp 12972  df-fz 13482  df-fzo 13625  df-fl 13754  df-seq 13964  df-exp 14025  df-hash 14288  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-clim 15429  df-rlim 15430  df-sum 15630  df-0p 25179  df-ply 25694  df-idp 25695  df-coe 25696  df-dgr 25697  df-quot 25796
This theorem is referenced by:  vieta1lem2  25816  vieta1  25817  plyexmo  25818  aannenlem1  25833  aalioulem2  25838  basellem4  26578  dchrfi  26748
  Copyright terms: Public domain W3C validator