Step | Hyp | Ref
| Expression |
1 | | eqid 2737 |
. 2
⊢
(deg‘𝐹) =
(deg‘𝐹) |
2 | | dgrcl 25127 |
. . . . 5
⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈
ℕ0) |
3 | 2 | adantr 484 |
. . . 4
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) →
(deg‘𝐹) ∈
ℕ0) |
4 | | eqeq2 2749 |
. . . . . . 7
⊢ (𝑥 = 0 → ((deg‘𝑓) = 𝑥 ↔ (deg‘𝑓) = 0)) |
5 | 4 | imbi1d 345 |
. . . . . 6
⊢ (𝑥 = 0 → (((deg‘𝑓) = 𝑥 → ((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓))) ↔ ((deg‘𝑓) = 0 → ((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓))))) |
6 | 5 | ralbidv 3118 |
. . . . 5
⊢ (𝑥 = 0 → (∀𝑓 ∈ ((Poly‘ℂ)
∖ {0𝑝})((deg‘𝑓) = 𝑥 → ((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓))) ↔ ∀𝑓 ∈ ((Poly‘ℂ)
∖ {0𝑝})((deg‘𝑓) = 0 → ((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓))))) |
7 | | eqeq2 2749 |
. . . . . . 7
⊢ (𝑥 = 𝑑 → ((deg‘𝑓) = 𝑥 ↔ (deg‘𝑓) = 𝑑)) |
8 | 7 | imbi1d 345 |
. . . . . 6
⊢ (𝑥 = 𝑑 → (((deg‘𝑓) = 𝑥 → ((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓))) ↔ ((deg‘𝑓) = 𝑑 → ((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓))))) |
9 | 8 | ralbidv 3118 |
. . . . 5
⊢ (𝑥 = 𝑑 → (∀𝑓 ∈ ((Poly‘ℂ) ∖
{0𝑝})((deg‘𝑓) = 𝑥 → ((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓))) ↔ ∀𝑓 ∈ ((Poly‘ℂ)
∖ {0𝑝})((deg‘𝑓) = 𝑑 → ((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓))))) |
10 | | eqeq2 2749 |
. . . . . . 7
⊢ (𝑥 = (𝑑 + 1) → ((deg‘𝑓) = 𝑥 ↔ (deg‘𝑓) = (𝑑 + 1))) |
11 | 10 | imbi1d 345 |
. . . . . 6
⊢ (𝑥 = (𝑑 + 1) → (((deg‘𝑓) = 𝑥 → ((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓))) ↔ ((deg‘𝑓) = (𝑑 + 1) → ((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓))))) |
12 | 11 | ralbidv 3118 |
. . . . 5
⊢ (𝑥 = (𝑑 + 1) → (∀𝑓 ∈ ((Poly‘ℂ) ∖
{0𝑝})((deg‘𝑓) = 𝑥 → ((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓))) ↔ ∀𝑓 ∈ ((Poly‘ℂ)
∖ {0𝑝})((deg‘𝑓) = (𝑑 + 1) → ((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓))))) |
13 | | eqeq2 2749 |
. . . . . . 7
⊢ (𝑥 = (deg‘𝐹) → ((deg‘𝑓) = 𝑥 ↔ (deg‘𝑓) = (deg‘𝐹))) |
14 | 13 | imbi1d 345 |
. . . . . 6
⊢ (𝑥 = (deg‘𝐹) → (((deg‘𝑓) = 𝑥 → ((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓))) ↔ ((deg‘𝑓) = (deg‘𝐹) → ((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓))))) |
15 | 14 | ralbidv 3118 |
. . . . 5
⊢ (𝑥 = (deg‘𝐹) → (∀𝑓 ∈ ((Poly‘ℂ) ∖
{0𝑝})((deg‘𝑓) = 𝑥 → ((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓))) ↔ ∀𝑓 ∈ ((Poly‘ℂ)
∖ {0𝑝})((deg‘𝑓) = (deg‘𝐹) → ((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓))))) |
16 | | eldifsni 4703 |
. . . . . . . . . . 11
⊢ (𝑓 ∈ ((Poly‘ℂ)
∖ {0𝑝}) → 𝑓 ≠ 0𝑝) |
17 | 16 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ ((Poly‘ℂ)
∖ {0𝑝}) ∧ (deg‘𝑓) = 0) → 𝑓 ≠ 0𝑝) |
18 | | simplr 769 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓 ∈ ((Poly‘ℂ)
∖ {0𝑝}) ∧ (deg‘𝑓) = 0) ∧ 𝑥 ∈ (◡𝑓 “ {0})) → (deg‘𝑓) = 0) |
19 | | eldifi 4041 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 ∈ ((Poly‘ℂ)
∖ {0𝑝}) → 𝑓 ∈
(Poly‘ℂ)) |
20 | 19 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑓 ∈ ((Poly‘ℂ)
∖ {0𝑝}) ∧ (deg‘𝑓) = 0) ∧ 𝑥 ∈ (◡𝑓 “ {0})) → 𝑓 ∈
(Poly‘ℂ)) |
21 | | 0dgrb 25140 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 ∈ (Poly‘ℂ)
→ ((deg‘𝑓) = 0
↔ 𝑓 = (ℂ ×
{(𝑓‘0)}))) |
22 | 20, 21 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓 ∈ ((Poly‘ℂ)
∖ {0𝑝}) ∧ (deg‘𝑓) = 0) ∧ 𝑥 ∈ (◡𝑓 “ {0})) → ((deg‘𝑓) = 0 ↔ 𝑓 = (ℂ × {(𝑓‘0)}))) |
23 | 18, 22 | mpbid 235 |
. . . . . . . . . . . . . 14
⊢ (((𝑓 ∈ ((Poly‘ℂ)
∖ {0𝑝}) ∧ (deg‘𝑓) = 0) ∧ 𝑥 ∈ (◡𝑓 “ {0})) → 𝑓 = (ℂ × {(𝑓‘0)})) |
24 | 23 | fveq1d 6719 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑓 ∈ ((Poly‘ℂ)
∖ {0𝑝}) ∧ (deg‘𝑓) = 0) ∧ 𝑥 ∈ (◡𝑓 “ {0})) → (𝑓‘𝑥) = ((ℂ × {(𝑓‘0)})‘𝑥)) |
25 | 19 | adantr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓 ∈ ((Poly‘ℂ)
∖ {0𝑝}) ∧ (deg‘𝑓) = 0) → 𝑓 ∈
(Poly‘ℂ)) |
26 | | plyf 25092 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 ∈ (Poly‘ℂ)
→ 𝑓:ℂ⟶ℂ) |
27 | | ffn 6545 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓:ℂ⟶ℂ →
𝑓 Fn
ℂ) |
28 | | fniniseg 6880 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 Fn ℂ → (𝑥 ∈ (◡𝑓 “ {0}) ↔ (𝑥 ∈ ℂ ∧ (𝑓‘𝑥) = 0))) |
29 | 25, 26, 27, 28 | 4syl 19 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓 ∈ ((Poly‘ℂ)
∖ {0𝑝}) ∧ (deg‘𝑓) = 0) → (𝑥 ∈ (◡𝑓 “ {0}) ↔ (𝑥 ∈ ℂ ∧ (𝑓‘𝑥) = 0))) |
30 | 29 | biimpa 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑓 ∈ ((Poly‘ℂ)
∖ {0𝑝}) ∧ (deg‘𝑓) = 0) ∧ 𝑥 ∈ (◡𝑓 “ {0})) → (𝑥 ∈ ℂ ∧ (𝑓‘𝑥) = 0)) |
31 | 30 | simprd 499 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑓 ∈ ((Poly‘ℂ)
∖ {0𝑝}) ∧ (deg‘𝑓) = 0) ∧ 𝑥 ∈ (◡𝑓 “ {0})) → (𝑓‘𝑥) = 0) |
32 | 30 | simpld 498 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑓 ∈ ((Poly‘ℂ)
∖ {0𝑝}) ∧ (deg‘𝑓) = 0) ∧ 𝑥 ∈ (◡𝑓 “ {0})) → 𝑥 ∈ ℂ) |
33 | | fvex 6730 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓‘0) ∈
V |
34 | 33 | fvconst2 7019 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ℂ → ((ℂ
× {(𝑓‘0)})‘𝑥) = (𝑓‘0)) |
35 | 32, 34 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑓 ∈ ((Poly‘ℂ)
∖ {0𝑝}) ∧ (deg‘𝑓) = 0) ∧ 𝑥 ∈ (◡𝑓 “ {0})) → ((ℂ ×
{(𝑓‘0)})‘𝑥) = (𝑓‘0)) |
36 | 24, 31, 35 | 3eqtr3rd 2786 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑓 ∈ ((Poly‘ℂ)
∖ {0𝑝}) ∧ (deg‘𝑓) = 0) ∧ 𝑥 ∈ (◡𝑓 “ {0})) → (𝑓‘0) = 0) |
37 | 36 | sneqd 4553 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓 ∈ ((Poly‘ℂ)
∖ {0𝑝}) ∧ (deg‘𝑓) = 0) ∧ 𝑥 ∈ (◡𝑓 “ {0})) → {(𝑓‘0)} = {0}) |
38 | 37 | xpeq2d 5581 |
. . . . . . . . . . . . . 14
⊢ (((𝑓 ∈ ((Poly‘ℂ)
∖ {0𝑝}) ∧ (deg‘𝑓) = 0) ∧ 𝑥 ∈ (◡𝑓 “ {0})) → (ℂ ×
{(𝑓‘0)}) = (ℂ
× {0})) |
39 | 23, 38 | eqtrd 2777 |
. . . . . . . . . . . . 13
⊢ (((𝑓 ∈ ((Poly‘ℂ)
∖ {0𝑝}) ∧ (deg‘𝑓) = 0) ∧ 𝑥 ∈ (◡𝑓 “ {0})) → 𝑓 = (ℂ × {0})) |
40 | | df-0p 24567 |
. . . . . . . . . . . . 13
⊢
0𝑝 = (ℂ × {0}) |
41 | 39, 40 | eqtr4di 2796 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∈ ((Poly‘ℂ)
∖ {0𝑝}) ∧ (deg‘𝑓) = 0) ∧ 𝑥 ∈ (◡𝑓 “ {0})) → 𝑓 = 0𝑝) |
42 | 41 | ex 416 |
. . . . . . . . . . 11
⊢ ((𝑓 ∈ ((Poly‘ℂ)
∖ {0𝑝}) ∧ (deg‘𝑓) = 0) → (𝑥 ∈ (◡𝑓 “ {0}) → 𝑓 = 0𝑝)) |
43 | 42 | necon3ad 2953 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ ((Poly‘ℂ)
∖ {0𝑝}) ∧ (deg‘𝑓) = 0) → (𝑓 ≠ 0𝑝 → ¬
𝑥 ∈ (◡𝑓 “ {0}))) |
44 | 17, 43 | mpd 15 |
. . . . . . . . 9
⊢ ((𝑓 ∈ ((Poly‘ℂ)
∖ {0𝑝}) ∧ (deg‘𝑓) = 0) → ¬ 𝑥 ∈ (◡𝑓 “ {0})) |
45 | 44 | eq0rdv 4319 |
. . . . . . . 8
⊢ ((𝑓 ∈ ((Poly‘ℂ)
∖ {0𝑝}) ∧ (deg‘𝑓) = 0) → (◡𝑓 “ {0}) = ∅) |
46 | 45 | ex 416 |
. . . . . . 7
⊢ (𝑓 ∈ ((Poly‘ℂ)
∖ {0𝑝}) → ((deg‘𝑓) = 0 → (◡𝑓 “ {0}) = ∅)) |
47 | | dgrcl 25127 |
. . . . . . . . 9
⊢ (𝑓 ∈ (Poly‘ℂ)
→ (deg‘𝑓) ∈
ℕ0) |
48 | | nn0ge0 12115 |
. . . . . . . . 9
⊢
((deg‘𝑓)
∈ ℕ0 → 0 ≤ (deg‘𝑓)) |
49 | 19, 47, 48 | 3syl 18 |
. . . . . . . 8
⊢ (𝑓 ∈ ((Poly‘ℂ)
∖ {0𝑝}) → 0 ≤ (deg‘𝑓)) |
50 | | id 22 |
. . . . . . . . . . 11
⊢ ((◡𝑓 “ {0}) = ∅ → (◡𝑓 “ {0}) = ∅) |
51 | | 0fin 8849 |
. . . . . . . . . . 11
⊢ ∅
∈ Fin |
52 | 50, 51 | eqeltrdi 2846 |
. . . . . . . . . 10
⊢ ((◡𝑓 “ {0}) = ∅ → (◡𝑓 “ {0}) ∈ Fin) |
53 | 52 | biantrurd 536 |
. . . . . . . . 9
⊢ ((◡𝑓 “ {0}) = ∅ →
((♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓) ↔ ((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓)))) |
54 | | fveq2 6717 |
. . . . . . . . . . 11
⊢ ((◡𝑓 “ {0}) = ∅ →
(♯‘(◡𝑓 “ {0})) =
(♯‘∅)) |
55 | | hash0 13934 |
. . . . . . . . . . 11
⊢
(♯‘∅) = 0 |
56 | 54, 55 | eqtrdi 2794 |
. . . . . . . . . 10
⊢ ((◡𝑓 “ {0}) = ∅ →
(♯‘(◡𝑓 “ {0})) = 0) |
57 | 56 | breq1d 5063 |
. . . . . . . . 9
⊢ ((◡𝑓 “ {0}) = ∅ →
((♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓) ↔ 0 ≤ (deg‘𝑓))) |
58 | 53, 57 | bitr3d 284 |
. . . . . . . 8
⊢ ((◡𝑓 “ {0}) = ∅ → (((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓)) ↔ 0 ≤
(deg‘𝑓))) |
59 | 49, 58 | syl5ibrcom 250 |
. . . . . . 7
⊢ (𝑓 ∈ ((Poly‘ℂ)
∖ {0𝑝}) → ((◡𝑓 “ {0}) = ∅ → ((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓)))) |
60 | 46, 59 | syld 47 |
. . . . . 6
⊢ (𝑓 ∈ ((Poly‘ℂ)
∖ {0𝑝}) → ((deg‘𝑓) = 0 → ((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓)))) |
61 | 60 | rgen 3071 |
. . . . 5
⊢
∀𝑓 ∈
((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑓) = 0 → ((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓))) |
62 | | fveqeq2 6726 |
. . . . . . . 8
⊢ (𝑓 = 𝑔 → ((deg‘𝑓) = 𝑑 ↔ (deg‘𝑔) = 𝑑)) |
63 | | cnveq 5742 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑔 → ◡𝑓 = ◡𝑔) |
64 | 63 | imaeq1d 5928 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑔 → (◡𝑓 “ {0}) = (◡𝑔 “ {0})) |
65 | 64 | eleq1d 2822 |
. . . . . . . . 9
⊢ (𝑓 = 𝑔 → ((◡𝑓 “ {0}) ∈ Fin ↔ (◡𝑔 “ {0}) ∈ Fin)) |
66 | 64 | fveq2d 6721 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑔 → (♯‘(◡𝑓 “ {0})) = (♯‘(◡𝑔 “ {0}))) |
67 | | fveq2 6717 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑔 → (deg‘𝑓) = (deg‘𝑔)) |
68 | 66, 67 | breq12d 5066 |
. . . . . . . . 9
⊢ (𝑓 = 𝑔 → ((♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓) ↔ (♯‘(◡𝑔 “ {0})) ≤ (deg‘𝑔))) |
69 | 65, 68 | anbi12d 634 |
. . . . . . . 8
⊢ (𝑓 = 𝑔 → (((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓)) ↔ ((◡𝑔 “ {0}) ∈ Fin ∧
(♯‘(◡𝑔 “ {0})) ≤ (deg‘𝑔)))) |
70 | 62, 69 | imbi12d 348 |
. . . . . . 7
⊢ (𝑓 = 𝑔 → (((deg‘𝑓) = 𝑑 → ((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓))) ↔ ((deg‘𝑔) = 𝑑 → ((◡𝑔 “ {0}) ∈ Fin ∧
(♯‘(◡𝑔 “ {0})) ≤ (deg‘𝑔))))) |
71 | 70 | cbvralvw 3358 |
. . . . . 6
⊢
(∀𝑓 ∈
((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑓) = 𝑑 → ((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓))) ↔ ∀𝑔 ∈ ((Poly‘ℂ)
∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((◡𝑔 “ {0}) ∈ Fin ∧
(♯‘(◡𝑔 “ {0})) ≤ (deg‘𝑔)))) |
72 | 49 | ad2antlr 727 |
. . . . . . . . . . . 12
⊢ (((𝑑 ∈ ℕ0
∧ 𝑓 ∈
((Poly‘ℂ) ∖ {0𝑝})) ∧ (deg‘𝑓) = (𝑑 + 1)) → 0 ≤ (deg‘𝑓)) |
73 | 72, 58 | syl5ibrcom 250 |
. . . . . . . . . . 11
⊢ (((𝑑 ∈ ℕ0
∧ 𝑓 ∈
((Poly‘ℂ) ∖ {0𝑝})) ∧ (deg‘𝑓) = (𝑑 + 1)) → ((◡𝑓 “ {0}) = ∅ → ((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓)))) |
74 | 73 | a1dd 50 |
. . . . . . . . . 10
⊢ (((𝑑 ∈ ℕ0
∧ 𝑓 ∈
((Poly‘ℂ) ∖ {0𝑝})) ∧ (deg‘𝑓) = (𝑑 + 1)) → ((◡𝑓 “ {0}) = ∅ → (∀𝑔 ∈ ((Poly‘ℂ)
∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((◡𝑔 “ {0}) ∈ Fin ∧
(♯‘(◡𝑔 “ {0})) ≤ (deg‘𝑔))) → ((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓))))) |
75 | | n0 4261 |
. . . . . . . . . . 11
⊢ ((◡𝑓 “ {0}) ≠ ∅ ↔
∃𝑥 𝑥 ∈ (◡𝑓 “ {0})) |
76 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢ (◡𝑓 “ {0}) = (◡𝑓 “ {0}) |
77 | | simplll 775 |
. . . . . . . . . . . . . 14
⊢ ((((𝑑 ∈ ℕ0
∧ 𝑓 ∈
((Poly‘ℂ) ∖ {0𝑝})) ∧ (deg‘𝑓) = (𝑑 + 1)) ∧ (𝑥 ∈ (◡𝑓 “ {0}) ∧ ∀𝑔 ∈ ((Poly‘ℂ)
∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((◡𝑔 “ {0}) ∈ Fin ∧
(♯‘(◡𝑔 “ {0})) ≤ (deg‘𝑔))))) → 𝑑 ∈ ℕ0) |
78 | | simpllr 776 |
. . . . . . . . . . . . . 14
⊢ ((((𝑑 ∈ ℕ0
∧ 𝑓 ∈
((Poly‘ℂ) ∖ {0𝑝})) ∧ (deg‘𝑓) = (𝑑 + 1)) ∧ (𝑥 ∈ (◡𝑓 “ {0}) ∧ ∀𝑔 ∈ ((Poly‘ℂ)
∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((◡𝑔 “ {0}) ∈ Fin ∧
(♯‘(◡𝑔 “ {0})) ≤ (deg‘𝑔))))) → 𝑓 ∈ ((Poly‘ℂ) ∖
{0𝑝})) |
79 | | simplr 769 |
. . . . . . . . . . . . . 14
⊢ ((((𝑑 ∈ ℕ0
∧ 𝑓 ∈
((Poly‘ℂ) ∖ {0𝑝})) ∧ (deg‘𝑓) = (𝑑 + 1)) ∧ (𝑥 ∈ (◡𝑓 “ {0}) ∧ ∀𝑔 ∈ ((Poly‘ℂ)
∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((◡𝑔 “ {0}) ∈ Fin ∧
(♯‘(◡𝑔 “ {0})) ≤ (deg‘𝑔))))) → (deg‘𝑓) = (𝑑 + 1)) |
80 | | simprl 771 |
. . . . . . . . . . . . . 14
⊢ ((((𝑑 ∈ ℕ0
∧ 𝑓 ∈
((Poly‘ℂ) ∖ {0𝑝})) ∧ (deg‘𝑓) = (𝑑 + 1)) ∧ (𝑥 ∈ (◡𝑓 “ {0}) ∧ ∀𝑔 ∈ ((Poly‘ℂ)
∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((◡𝑔 “ {0}) ∈ Fin ∧
(♯‘(◡𝑔 “ {0})) ≤ (deg‘𝑔))))) → 𝑥 ∈ (◡𝑓 “ {0})) |
81 | | simprr 773 |
. . . . . . . . . . . . . 14
⊢ ((((𝑑 ∈ ℕ0
∧ 𝑓 ∈
((Poly‘ℂ) ∖ {0𝑝})) ∧ (deg‘𝑓) = (𝑑 + 1)) ∧ (𝑥 ∈ (◡𝑓 “ {0}) ∧ ∀𝑔 ∈ ((Poly‘ℂ)
∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((◡𝑔 “ {0}) ∈ Fin ∧
(♯‘(◡𝑔 “ {0})) ≤ (deg‘𝑔))))) → ∀𝑔 ∈ ((Poly‘ℂ)
∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((◡𝑔 “ {0}) ∈ Fin ∧
(♯‘(◡𝑔 “ {0})) ≤ (deg‘𝑔)))) |
82 | 76, 77, 78, 79, 80, 81 | fta1lem 25200 |
. . . . . . . . . . . . 13
⊢ ((((𝑑 ∈ ℕ0
∧ 𝑓 ∈
((Poly‘ℂ) ∖ {0𝑝})) ∧ (deg‘𝑓) = (𝑑 + 1)) ∧ (𝑥 ∈ (◡𝑓 “ {0}) ∧ ∀𝑔 ∈ ((Poly‘ℂ)
∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((◡𝑔 “ {0}) ∈ Fin ∧
(♯‘(◡𝑔 “ {0})) ≤ (deg‘𝑔))))) → ((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓))) |
83 | 82 | exp32 424 |
. . . . . . . . . . . 12
⊢ (((𝑑 ∈ ℕ0
∧ 𝑓 ∈
((Poly‘ℂ) ∖ {0𝑝})) ∧ (deg‘𝑓) = (𝑑 + 1)) → (𝑥 ∈ (◡𝑓 “ {0}) → (∀𝑔 ∈ ((Poly‘ℂ)
∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((◡𝑔 “ {0}) ∈ Fin ∧
(♯‘(◡𝑔 “ {0})) ≤ (deg‘𝑔))) → ((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓))))) |
84 | 83 | exlimdv 1941 |
. . . . . . . . . . 11
⊢ (((𝑑 ∈ ℕ0
∧ 𝑓 ∈
((Poly‘ℂ) ∖ {0𝑝})) ∧ (deg‘𝑓) = (𝑑 + 1)) → (∃𝑥 𝑥 ∈ (◡𝑓 “ {0}) → (∀𝑔 ∈ ((Poly‘ℂ)
∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((◡𝑔 “ {0}) ∈ Fin ∧
(♯‘(◡𝑔 “ {0})) ≤ (deg‘𝑔))) → ((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓))))) |
85 | 75, 84 | syl5bi 245 |
. . . . . . . . . 10
⊢ (((𝑑 ∈ ℕ0
∧ 𝑓 ∈
((Poly‘ℂ) ∖ {0𝑝})) ∧ (deg‘𝑓) = (𝑑 + 1)) → ((◡𝑓 “ {0}) ≠ ∅ →
(∀𝑔 ∈
((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((◡𝑔 “ {0}) ∈ Fin ∧
(♯‘(◡𝑔 “ {0})) ≤ (deg‘𝑔))) → ((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓))))) |
86 | 74, 85 | pm2.61dne 3028 |
. . . . . . . . 9
⊢ (((𝑑 ∈ ℕ0
∧ 𝑓 ∈
((Poly‘ℂ) ∖ {0𝑝})) ∧ (deg‘𝑓) = (𝑑 + 1)) → (∀𝑔 ∈ ((Poly‘ℂ) ∖
{0𝑝})((deg‘𝑔) = 𝑑 → ((◡𝑔 “ {0}) ∈ Fin ∧
(♯‘(◡𝑔 “ {0})) ≤ (deg‘𝑔))) → ((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓)))) |
87 | 86 | ex 416 |
. . . . . . . 8
⊢ ((𝑑 ∈ ℕ0
∧ 𝑓 ∈
((Poly‘ℂ) ∖ {0𝑝})) →
((deg‘𝑓) = (𝑑 + 1) → (∀𝑔 ∈ ((Poly‘ℂ)
∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((◡𝑔 “ {0}) ∈ Fin ∧
(♯‘(◡𝑔 “ {0})) ≤ (deg‘𝑔))) → ((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓))))) |
88 | 87 | com23 86 |
. . . . . . 7
⊢ ((𝑑 ∈ ℕ0
∧ 𝑓 ∈
((Poly‘ℂ) ∖ {0𝑝})) → (∀𝑔 ∈ ((Poly‘ℂ)
∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((◡𝑔 “ {0}) ∈ Fin ∧
(♯‘(◡𝑔 “ {0})) ≤ (deg‘𝑔))) → ((deg‘𝑓) = (𝑑 + 1) → ((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓))))) |
89 | 88 | ralrimdva 3110 |
. . . . . 6
⊢ (𝑑 ∈ ℕ0
→ (∀𝑔 ∈
((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((◡𝑔 “ {0}) ∈ Fin ∧
(♯‘(◡𝑔 “ {0})) ≤ (deg‘𝑔))) → ∀𝑓 ∈ ((Poly‘ℂ)
∖ {0𝑝})((deg‘𝑓) = (𝑑 + 1) → ((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓))))) |
90 | 71, 89 | syl5bi 245 |
. . . . 5
⊢ (𝑑 ∈ ℕ0
→ (∀𝑓 ∈
((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑓) = 𝑑 → ((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓))) → ∀𝑓 ∈ ((Poly‘ℂ)
∖ {0𝑝})((deg‘𝑓) = (𝑑 + 1) → ((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓))))) |
91 | 6, 9, 12, 15, 61, 90 | nn0ind 12272 |
. . . 4
⊢
((deg‘𝐹)
∈ ℕ0 → ∀𝑓 ∈ ((Poly‘ℂ) ∖
{0𝑝})((deg‘𝑓) = (deg‘𝐹) → ((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓)))) |
92 | 3, 91 | syl 17 |
. . 3
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) →
∀𝑓 ∈
((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑓) = (deg‘𝐹) → ((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓)))) |
93 | | plyssc 25094 |
. . . . 5
⊢
(Poly‘𝑆)
⊆ (Poly‘ℂ) |
94 | 93 | sseli 3896 |
. . . 4
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈
(Poly‘ℂ)) |
95 | | eldifsn 4700 |
. . . . 5
⊢ (𝐹 ∈ ((Poly‘ℂ)
∖ {0𝑝}) ↔ (𝐹 ∈ (Poly‘ℂ) ∧ 𝐹 ≠
0𝑝)) |
96 | | fveqeq2 6726 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → ((deg‘𝑓) = (deg‘𝐹) ↔ (deg‘𝐹) = (deg‘𝐹))) |
97 | | cnveq 5742 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝐹 → ◡𝑓 = ◡𝐹) |
98 | 97 | imaeq1d 5928 |
. . . . . . . . . 10
⊢ (𝑓 = 𝐹 → (◡𝑓 “ {0}) = (◡𝐹 “ {0})) |
99 | | fta1.1 |
. . . . . . . . . 10
⊢ 𝑅 = (◡𝐹 “ {0}) |
100 | 98, 99 | eqtr4di 2796 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → (◡𝑓 “ {0}) = 𝑅) |
101 | 100 | eleq1d 2822 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → ((◡𝑓 “ {0}) ∈ Fin ↔ 𝑅 ∈ Fin)) |
102 | 100 | fveq2d 6721 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → (♯‘(◡𝑓 “ {0})) = (♯‘𝑅)) |
103 | | fveq2 6717 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → (deg‘𝑓) = (deg‘𝐹)) |
104 | 102, 103 | breq12d 5066 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → ((♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓) ↔ (♯‘𝑅) ≤ (deg‘𝐹))) |
105 | 101, 104 | anbi12d 634 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → (((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓)) ↔ (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹)))) |
106 | 96, 105 | imbi12d 348 |
. . . . . 6
⊢ (𝑓 = 𝐹 → (((deg‘𝑓) = (deg‘𝐹) → ((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓))) ↔ ((deg‘𝐹) = (deg‘𝐹) → (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹))))) |
107 | 106 | rspcv 3532 |
. . . . 5
⊢ (𝐹 ∈ ((Poly‘ℂ)
∖ {0𝑝}) → (∀𝑓 ∈ ((Poly‘ℂ) ∖
{0𝑝})((deg‘𝑓) = (deg‘𝐹) → ((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓))) → ((deg‘𝐹) = (deg‘𝐹) → (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹))))) |
108 | 95, 107 | sylbir 238 |
. . . 4
⊢ ((𝐹 ∈ (Poly‘ℂ)
∧ 𝐹 ≠
0𝑝) → (∀𝑓 ∈ ((Poly‘ℂ) ∖
{0𝑝})((deg‘𝑓) = (deg‘𝐹) → ((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓))) → ((deg‘𝐹) = (deg‘𝐹) → (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹))))) |
109 | 94, 108 | sylan 583 |
. . 3
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) →
(∀𝑓 ∈
((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑓) = (deg‘𝐹) → ((◡𝑓 “ {0}) ∈ Fin ∧
(♯‘(◡𝑓 “ {0})) ≤ (deg‘𝑓))) → ((deg‘𝐹) = (deg‘𝐹) → (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹))))) |
110 | 92, 109 | mpd 15 |
. 2
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) →
((deg‘𝐹) =
(deg‘𝐹) → (𝑅 ∈ Fin ∧
(♯‘𝑅) ≤
(deg‘𝐹)))) |
111 | 1, 110 | mpi 20 |
1
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) → (𝑅 ∈ Fin ∧
(♯‘𝑅) ≤
(deg‘𝐹))) |