MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fta1 Structured version   Visualization version   GIF version

Theorem fta1 25468
Description: The easy direction of the Fundamental Theorem of Algebra: A nonzero polynomial has at most deg(𝐹) roots. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypothesis
Ref Expression
fta1.1 𝑅 = (𝐹 “ {0})
Assertion
Ref Expression
fta1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) → (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹)))

Proof of Theorem fta1
Dummy variables 𝑥 𝑔 𝑓 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . 2 (deg‘𝐹) = (deg‘𝐹)
2 dgrcl 25394 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
32adantr 481 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) → (deg‘𝐹) ∈ ℕ0)
4 eqeq2 2750 . . . . . . 7 (𝑥 = 0 → ((deg‘𝑓) = 𝑥 ↔ (deg‘𝑓) = 0))
54imbi1d 342 . . . . . 6 (𝑥 = 0 → (((deg‘𝑓) = 𝑥 → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓))) ↔ ((deg‘𝑓) = 0 → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓)))))
65ralbidv 3112 . . . . 5 (𝑥 = 0 → (∀𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑓) = 𝑥 → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓))) ↔ ∀𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑓) = 0 → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓)))))
7 eqeq2 2750 . . . . . . 7 (𝑥 = 𝑑 → ((deg‘𝑓) = 𝑥 ↔ (deg‘𝑓) = 𝑑))
87imbi1d 342 . . . . . 6 (𝑥 = 𝑑 → (((deg‘𝑓) = 𝑥 → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓))) ↔ ((deg‘𝑓) = 𝑑 → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓)))))
98ralbidv 3112 . . . . 5 (𝑥 = 𝑑 → (∀𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑓) = 𝑥 → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓))) ↔ ∀𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑓) = 𝑑 → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓)))))
10 eqeq2 2750 . . . . . . 7 (𝑥 = (𝑑 + 1) → ((deg‘𝑓) = 𝑥 ↔ (deg‘𝑓) = (𝑑 + 1)))
1110imbi1d 342 . . . . . 6 (𝑥 = (𝑑 + 1) → (((deg‘𝑓) = 𝑥 → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓))) ↔ ((deg‘𝑓) = (𝑑 + 1) → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓)))))
1211ralbidv 3112 . . . . 5 (𝑥 = (𝑑 + 1) → (∀𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑓) = 𝑥 → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓))) ↔ ∀𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑓) = (𝑑 + 1) → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓)))))
13 eqeq2 2750 . . . . . . 7 (𝑥 = (deg‘𝐹) → ((deg‘𝑓) = 𝑥 ↔ (deg‘𝑓) = (deg‘𝐹)))
1413imbi1d 342 . . . . . 6 (𝑥 = (deg‘𝐹) → (((deg‘𝑓) = 𝑥 → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓))) ↔ ((deg‘𝑓) = (deg‘𝐹) → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓)))))
1514ralbidv 3112 . . . . 5 (𝑥 = (deg‘𝐹) → (∀𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑓) = 𝑥 → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓))) ↔ ∀𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑓) = (deg‘𝐹) → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓)))))
16 eldifsni 4723 . . . . . . . . . . 11 (𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) → 𝑓 ≠ 0𝑝)
1716adantr 481 . . . . . . . . . 10 ((𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ∧ (deg‘𝑓) = 0) → 𝑓 ≠ 0𝑝)
18 simplr 766 . . . . . . . . . . . . . . 15 (((𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ∧ (deg‘𝑓) = 0) ∧ 𝑥 ∈ (𝑓 “ {0})) → (deg‘𝑓) = 0)
19 eldifi 4061 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) → 𝑓 ∈ (Poly‘ℂ))
2019ad2antrr 723 . . . . . . . . . . . . . . . 16 (((𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ∧ (deg‘𝑓) = 0) ∧ 𝑥 ∈ (𝑓 “ {0})) → 𝑓 ∈ (Poly‘ℂ))
21 0dgrb 25407 . . . . . . . . . . . . . . . 16 (𝑓 ∈ (Poly‘ℂ) → ((deg‘𝑓) = 0 ↔ 𝑓 = (ℂ × {(𝑓‘0)})))
2220, 21syl 17 . . . . . . . . . . . . . . 15 (((𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ∧ (deg‘𝑓) = 0) ∧ 𝑥 ∈ (𝑓 “ {0})) → ((deg‘𝑓) = 0 ↔ 𝑓 = (ℂ × {(𝑓‘0)})))
2318, 22mpbid 231 . . . . . . . . . . . . . 14 (((𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ∧ (deg‘𝑓) = 0) ∧ 𝑥 ∈ (𝑓 “ {0})) → 𝑓 = (ℂ × {(𝑓‘0)}))
2423fveq1d 6776 . . . . . . . . . . . . . . . . 17 (((𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ∧ (deg‘𝑓) = 0) ∧ 𝑥 ∈ (𝑓 “ {0})) → (𝑓𝑥) = ((ℂ × {(𝑓‘0)})‘𝑥))
2519adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ∧ (deg‘𝑓) = 0) → 𝑓 ∈ (Poly‘ℂ))
26 plyf 25359 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ (Poly‘ℂ) → 𝑓:ℂ⟶ℂ)
27 ffn 6600 . . . . . . . . . . . . . . . . . . . 20 (𝑓:ℂ⟶ℂ → 𝑓 Fn ℂ)
28 fniniseg 6937 . . . . . . . . . . . . . . . . . . . 20 (𝑓 Fn ℂ → (𝑥 ∈ (𝑓 “ {0}) ↔ (𝑥 ∈ ℂ ∧ (𝑓𝑥) = 0)))
2925, 26, 27, 284syl 19 . . . . . . . . . . . . . . . . . . 19 ((𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ∧ (deg‘𝑓) = 0) → (𝑥 ∈ (𝑓 “ {0}) ↔ (𝑥 ∈ ℂ ∧ (𝑓𝑥) = 0)))
3029biimpa 477 . . . . . . . . . . . . . . . . . 18 (((𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ∧ (deg‘𝑓) = 0) ∧ 𝑥 ∈ (𝑓 “ {0})) → (𝑥 ∈ ℂ ∧ (𝑓𝑥) = 0))
3130simprd 496 . . . . . . . . . . . . . . . . 17 (((𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ∧ (deg‘𝑓) = 0) ∧ 𝑥 ∈ (𝑓 “ {0})) → (𝑓𝑥) = 0)
3230simpld 495 . . . . . . . . . . . . . . . . . 18 (((𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ∧ (deg‘𝑓) = 0) ∧ 𝑥 ∈ (𝑓 “ {0})) → 𝑥 ∈ ℂ)
33 fvex 6787 . . . . . . . . . . . . . . . . . . 19 (𝑓‘0) ∈ V
3433fvconst2 7079 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℂ → ((ℂ × {(𝑓‘0)})‘𝑥) = (𝑓‘0))
3532, 34syl 17 . . . . . . . . . . . . . . . . 17 (((𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ∧ (deg‘𝑓) = 0) ∧ 𝑥 ∈ (𝑓 “ {0})) → ((ℂ × {(𝑓‘0)})‘𝑥) = (𝑓‘0))
3624, 31, 353eqtr3rd 2787 . . . . . . . . . . . . . . . 16 (((𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ∧ (deg‘𝑓) = 0) ∧ 𝑥 ∈ (𝑓 “ {0})) → (𝑓‘0) = 0)
3736sneqd 4573 . . . . . . . . . . . . . . 15 (((𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ∧ (deg‘𝑓) = 0) ∧ 𝑥 ∈ (𝑓 “ {0})) → {(𝑓‘0)} = {0})
3837xpeq2d 5619 . . . . . . . . . . . . . 14 (((𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ∧ (deg‘𝑓) = 0) ∧ 𝑥 ∈ (𝑓 “ {0})) → (ℂ × {(𝑓‘0)}) = (ℂ × {0}))
3923, 38eqtrd 2778 . . . . . . . . . . . . 13 (((𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ∧ (deg‘𝑓) = 0) ∧ 𝑥 ∈ (𝑓 “ {0})) → 𝑓 = (ℂ × {0}))
40 df-0p 24834 . . . . . . . . . . . . 13 0𝑝 = (ℂ × {0})
4139, 40eqtr4di 2796 . . . . . . . . . . . 12 (((𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ∧ (deg‘𝑓) = 0) ∧ 𝑥 ∈ (𝑓 “ {0})) → 𝑓 = 0𝑝)
4241ex 413 . . . . . . . . . . 11 ((𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ∧ (deg‘𝑓) = 0) → (𝑥 ∈ (𝑓 “ {0}) → 𝑓 = 0𝑝))
4342necon3ad 2956 . . . . . . . . . 10 ((𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ∧ (deg‘𝑓) = 0) → (𝑓 ≠ 0𝑝 → ¬ 𝑥 ∈ (𝑓 “ {0})))
4417, 43mpd 15 . . . . . . . . 9 ((𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ∧ (deg‘𝑓) = 0) → ¬ 𝑥 ∈ (𝑓 “ {0}))
4544eq0rdv 4338 . . . . . . . 8 ((𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ∧ (deg‘𝑓) = 0) → (𝑓 “ {0}) = ∅)
4645ex 413 . . . . . . 7 (𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) → ((deg‘𝑓) = 0 → (𝑓 “ {0}) = ∅))
47 dgrcl 25394 . . . . . . . . 9 (𝑓 ∈ (Poly‘ℂ) → (deg‘𝑓) ∈ ℕ0)
48 nn0ge0 12258 . . . . . . . . 9 ((deg‘𝑓) ∈ ℕ0 → 0 ≤ (deg‘𝑓))
4919, 47, 483syl 18 . . . . . . . 8 (𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) → 0 ≤ (deg‘𝑓))
50 id 22 . . . . . . . . . . 11 ((𝑓 “ {0}) = ∅ → (𝑓 “ {0}) = ∅)
51 0fin 8954 . . . . . . . . . . 11 ∅ ∈ Fin
5250, 51eqeltrdi 2847 . . . . . . . . . 10 ((𝑓 “ {0}) = ∅ → (𝑓 “ {0}) ∈ Fin)
5352biantrurd 533 . . . . . . . . 9 ((𝑓 “ {0}) = ∅ → ((♯‘(𝑓 “ {0})) ≤ (deg‘𝑓) ↔ ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓))))
54 fveq2 6774 . . . . . . . . . . 11 ((𝑓 “ {0}) = ∅ → (♯‘(𝑓 “ {0})) = (♯‘∅))
55 hash0 14082 . . . . . . . . . . 11 (♯‘∅) = 0
5654, 55eqtrdi 2794 . . . . . . . . . 10 ((𝑓 “ {0}) = ∅ → (♯‘(𝑓 “ {0})) = 0)
5756breq1d 5084 . . . . . . . . 9 ((𝑓 “ {0}) = ∅ → ((♯‘(𝑓 “ {0})) ≤ (deg‘𝑓) ↔ 0 ≤ (deg‘𝑓)))
5853, 57bitr3d 280 . . . . . . . 8 ((𝑓 “ {0}) = ∅ → (((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓)) ↔ 0 ≤ (deg‘𝑓)))
5949, 58syl5ibrcom 246 . . . . . . 7 (𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) → ((𝑓 “ {0}) = ∅ → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓))))
6046, 59syld 47 . . . . . 6 (𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}) → ((deg‘𝑓) = 0 → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓))))
6160rgen 3074 . . . . 5 𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑓) = 0 → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓)))
62 fveqeq2 6783 . . . . . . . 8 (𝑓 = 𝑔 → ((deg‘𝑓) = 𝑑 ↔ (deg‘𝑔) = 𝑑))
63 cnveq 5782 . . . . . . . . . . 11 (𝑓 = 𝑔𝑓 = 𝑔)
6463imaeq1d 5968 . . . . . . . . . 10 (𝑓 = 𝑔 → (𝑓 “ {0}) = (𝑔 “ {0}))
6564eleq1d 2823 . . . . . . . . 9 (𝑓 = 𝑔 → ((𝑓 “ {0}) ∈ Fin ↔ (𝑔 “ {0}) ∈ Fin))
6664fveq2d 6778 . . . . . . . . . 10 (𝑓 = 𝑔 → (♯‘(𝑓 “ {0})) = (♯‘(𝑔 “ {0})))
67 fveq2 6774 . . . . . . . . . 10 (𝑓 = 𝑔 → (deg‘𝑓) = (deg‘𝑔))
6866, 67breq12d 5087 . . . . . . . . 9 (𝑓 = 𝑔 → ((♯‘(𝑓 “ {0})) ≤ (deg‘𝑓) ↔ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔)))
6965, 68anbi12d 631 . . . . . . . 8 (𝑓 = 𝑔 → (((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓)) ↔ ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔))))
7062, 69imbi12d 345 . . . . . . 7 (𝑓 = 𝑔 → (((deg‘𝑓) = 𝑑 → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓))) ↔ ((deg‘𝑔) = 𝑑 → ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔)))))
7170cbvralvw 3383 . . . . . 6 (∀𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑓) = 𝑑 → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓))) ↔ ∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔))))
7249ad2antlr 724 . . . . . . . . . . . 12 (((𝑑 ∈ ℕ0𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})) ∧ (deg‘𝑓) = (𝑑 + 1)) → 0 ≤ (deg‘𝑓))
7372, 58syl5ibrcom 246 . . . . . . . . . . 11 (((𝑑 ∈ ℕ0𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})) ∧ (deg‘𝑓) = (𝑑 + 1)) → ((𝑓 “ {0}) = ∅ → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓))))
7473a1dd 50 . . . . . . . . . 10 (((𝑑 ∈ ℕ0𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})) ∧ (deg‘𝑓) = (𝑑 + 1)) → ((𝑓 “ {0}) = ∅ → (∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔))) → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓)))))
75 n0 4280 . . . . . . . . . . 11 ((𝑓 “ {0}) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑓 “ {0}))
76 eqid 2738 . . . . . . . . . . . . . 14 (𝑓 “ {0}) = (𝑓 “ {0})
77 simplll 772 . . . . . . . . . . . . . 14 ((((𝑑 ∈ ℕ0𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})) ∧ (deg‘𝑓) = (𝑑 + 1)) ∧ (𝑥 ∈ (𝑓 “ {0}) ∧ ∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔))))) → 𝑑 ∈ ℕ0)
78 simpllr 773 . . . . . . . . . . . . . 14 ((((𝑑 ∈ ℕ0𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})) ∧ (deg‘𝑓) = (𝑑 + 1)) ∧ (𝑥 ∈ (𝑓 “ {0}) ∧ ∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔))))) → 𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝}))
79 simplr 766 . . . . . . . . . . . . . 14 ((((𝑑 ∈ ℕ0𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})) ∧ (deg‘𝑓) = (𝑑 + 1)) ∧ (𝑥 ∈ (𝑓 “ {0}) ∧ ∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔))))) → (deg‘𝑓) = (𝑑 + 1))
80 simprl 768 . . . . . . . . . . . . . 14 ((((𝑑 ∈ ℕ0𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})) ∧ (deg‘𝑓) = (𝑑 + 1)) ∧ (𝑥 ∈ (𝑓 “ {0}) ∧ ∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔))))) → 𝑥 ∈ (𝑓 “ {0}))
81 simprr 770 . . . . . . . . . . . . . 14 ((((𝑑 ∈ ℕ0𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})) ∧ (deg‘𝑓) = (𝑑 + 1)) ∧ (𝑥 ∈ (𝑓 “ {0}) ∧ ∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔))))) → ∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔))))
8276, 77, 78, 79, 80, 81fta1lem 25467 . . . . . . . . . . . . 13 ((((𝑑 ∈ ℕ0𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})) ∧ (deg‘𝑓) = (𝑑 + 1)) ∧ (𝑥 ∈ (𝑓 “ {0}) ∧ ∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔))))) → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓)))
8382exp32 421 . . . . . . . . . . . 12 (((𝑑 ∈ ℕ0𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})) ∧ (deg‘𝑓) = (𝑑 + 1)) → (𝑥 ∈ (𝑓 “ {0}) → (∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔))) → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓)))))
8483exlimdv 1936 . . . . . . . . . . 11 (((𝑑 ∈ ℕ0𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})) ∧ (deg‘𝑓) = (𝑑 + 1)) → (∃𝑥 𝑥 ∈ (𝑓 “ {0}) → (∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔))) → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓)))))
8575, 84syl5bi 241 . . . . . . . . . 10 (((𝑑 ∈ ℕ0𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})) ∧ (deg‘𝑓) = (𝑑 + 1)) → ((𝑓 “ {0}) ≠ ∅ → (∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔))) → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓)))))
8674, 85pm2.61dne 3031 . . . . . . . . 9 (((𝑑 ∈ ℕ0𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})) ∧ (deg‘𝑓) = (𝑑 + 1)) → (∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔))) → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓))))
8786ex 413 . . . . . . . 8 ((𝑑 ∈ ℕ0𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})) → ((deg‘𝑓) = (𝑑 + 1) → (∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔))) → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓)))))
8887com23 86 . . . . . . 7 ((𝑑 ∈ ℕ0𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})) → (∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔))) → ((deg‘𝑓) = (𝑑 + 1) → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓)))))
8988ralrimdva 3106 . . . . . 6 (𝑑 ∈ ℕ0 → (∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝑑 → ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔))) → ∀𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑓) = (𝑑 + 1) → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓)))))
9071, 89syl5bi 241 . . . . 5 (𝑑 ∈ ℕ0 → (∀𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑓) = 𝑑 → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓))) → ∀𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑓) = (𝑑 + 1) → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓)))))
916, 9, 12, 15, 61, 90nn0ind 12415 . . . 4 ((deg‘𝐹) ∈ ℕ0 → ∀𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑓) = (deg‘𝐹) → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓))))
923, 91syl 17 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) → ∀𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑓) = (deg‘𝐹) → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓))))
93 plyssc 25361 . . . . 5 (Poly‘𝑆) ⊆ (Poly‘ℂ)
9493sseli 3917 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ))
95 eldifsn 4720 . . . . 5 (𝐹 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ↔ (𝐹 ∈ (Poly‘ℂ) ∧ 𝐹 ≠ 0𝑝))
96 fveqeq2 6783 . . . . . . 7 (𝑓 = 𝐹 → ((deg‘𝑓) = (deg‘𝐹) ↔ (deg‘𝐹) = (deg‘𝐹)))
97 cnveq 5782 . . . . . . . . . . 11 (𝑓 = 𝐹𝑓 = 𝐹)
9897imaeq1d 5968 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑓 “ {0}) = (𝐹 “ {0}))
99 fta1.1 . . . . . . . . . 10 𝑅 = (𝐹 “ {0})
10098, 99eqtr4di 2796 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓 “ {0}) = 𝑅)
101100eleq1d 2823 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑓 “ {0}) ∈ Fin ↔ 𝑅 ∈ Fin))
102100fveq2d 6778 . . . . . . . . 9 (𝑓 = 𝐹 → (♯‘(𝑓 “ {0})) = (♯‘𝑅))
103 fveq2 6774 . . . . . . . . 9 (𝑓 = 𝐹 → (deg‘𝑓) = (deg‘𝐹))
104102, 103breq12d 5087 . . . . . . . 8 (𝑓 = 𝐹 → ((♯‘(𝑓 “ {0})) ≤ (deg‘𝑓) ↔ (♯‘𝑅) ≤ (deg‘𝐹)))
105101, 104anbi12d 631 . . . . . . 7 (𝑓 = 𝐹 → (((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓)) ↔ (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹))))
10696, 105imbi12d 345 . . . . . 6 (𝑓 = 𝐹 → (((deg‘𝑓) = (deg‘𝐹) → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓))) ↔ ((deg‘𝐹) = (deg‘𝐹) → (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹)))))
107106rspcv 3557 . . . . 5 (𝐹 ∈ ((Poly‘ℂ) ∖ {0𝑝}) → (∀𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑓) = (deg‘𝐹) → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓))) → ((deg‘𝐹) = (deg‘𝐹) → (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹)))))
10895, 107sylbir 234 . . . 4 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐹 ≠ 0𝑝) → (∀𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑓) = (deg‘𝐹) → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓))) → ((deg‘𝐹) = (deg‘𝐹) → (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹)))))
10994, 108sylan 580 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) → (∀𝑓 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑓) = (deg‘𝐹) → ((𝑓 “ {0}) ∈ Fin ∧ (♯‘(𝑓 “ {0})) ≤ (deg‘𝑓))) → ((deg‘𝐹) = (deg‘𝐹) → (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹)))))
11092, 109mpd 15 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) → ((deg‘𝐹) = (deg‘𝐹) → (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹))))
1111, 110mpi 20 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) → (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  wne 2943  wral 3064  cdif 3884  c0 4256  {csn 4561   class class class wbr 5074   × cxp 5587  ccnv 5588  cima 5592   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  Fincfn 8733  cc 10869  0cc0 10871  1c1 10872   + caddc 10874  cle 11010  0cn0 12233  chash 14044  0𝑝c0p 24833  Polycply 25345  degcdgr 25348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-sum 15398  df-0p 24834  df-ply 25349  df-idp 25350  df-coe 25351  df-dgr 25352  df-quot 25451
This theorem is referenced by:  vieta1lem2  25471  vieta1  25472  plyexmo  25473  aannenlem1  25488  aalioulem2  25493  basellem4  26233  dchrfi  26403
  Copyright terms: Public domain W3C validator