| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0plef | Structured version Visualization version GIF version | ||
| Description: Two ways to say that the function 𝐹 on the reals is nonnegative. (Contributed by Mario Carneiro, 17-Aug-2014.) |
| Ref | Expression |
|---|---|
| 0plef | ⊢ (𝐹:ℝ⟶(0[,)+∞) ↔ (𝐹:ℝ⟶ℝ ∧ 0𝑝 ∘r ≤ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rge0ssre 13393 | . . 3 ⊢ (0[,)+∞) ⊆ ℝ | |
| 2 | fss 6686 | . . 3 ⊢ ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℝ⟶ℝ) | |
| 3 | 1, 2 | mpan2 691 | . 2 ⊢ (𝐹:ℝ⟶(0[,)+∞) → 𝐹:ℝ⟶ℝ) |
| 4 | ffvelcdm 7035 | . . . . 5 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℝ) | |
| 5 | elrege0 13391 | . . . . . 6 ⊢ ((𝐹‘𝑥) ∈ (0[,)+∞) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑥))) | |
| 6 | 5 | baib 535 | . . . . 5 ⊢ ((𝐹‘𝑥) ∈ ℝ → ((𝐹‘𝑥) ∈ (0[,)+∞) ↔ 0 ≤ (𝐹‘𝑥))) |
| 7 | 4, 6 | syl 17 | . . . 4 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) ∈ (0[,)+∞) ↔ 0 ≤ (𝐹‘𝑥))) |
| 8 | 7 | ralbidva 3154 | . . 3 ⊢ (𝐹:ℝ⟶ℝ → (∀𝑥 ∈ ℝ (𝐹‘𝑥) ∈ (0[,)+∞) ↔ ∀𝑥 ∈ ℝ 0 ≤ (𝐹‘𝑥))) |
| 9 | ffn 6670 | . . . 4 ⊢ (𝐹:ℝ⟶ℝ → 𝐹 Fn ℝ) | |
| 10 | ffnfv 7073 | . . . . 5 ⊢ (𝐹:ℝ⟶(0[,)+∞) ↔ (𝐹 Fn ℝ ∧ ∀𝑥 ∈ ℝ (𝐹‘𝑥) ∈ (0[,)+∞))) | |
| 11 | 10 | baib 535 | . . . 4 ⊢ (𝐹 Fn ℝ → (𝐹:ℝ⟶(0[,)+∞) ↔ ∀𝑥 ∈ ℝ (𝐹‘𝑥) ∈ (0[,)+∞))) |
| 12 | 9, 11 | syl 17 | . . 3 ⊢ (𝐹:ℝ⟶ℝ → (𝐹:ℝ⟶(0[,)+∞) ↔ ∀𝑥 ∈ ℝ (𝐹‘𝑥) ∈ (0[,)+∞))) |
| 13 | 0cn 11142 | . . . . . . 7 ⊢ 0 ∈ ℂ | |
| 14 | fnconstg 6730 | . . . . . . 7 ⊢ (0 ∈ ℂ → (ℂ × {0}) Fn ℂ) | |
| 15 | 13, 14 | ax-mp 5 | . . . . . 6 ⊢ (ℂ × {0}) Fn ℂ |
| 16 | df-0p 25547 | . . . . . . 7 ⊢ 0𝑝 = (ℂ × {0}) | |
| 17 | 16 | fneq1i 6597 | . . . . . 6 ⊢ (0𝑝 Fn ℂ ↔ (ℂ × {0}) Fn ℂ) |
| 18 | 15, 17 | mpbir 231 | . . . . 5 ⊢ 0𝑝 Fn ℂ |
| 19 | 18 | a1i 11 | . . . 4 ⊢ (𝐹:ℝ⟶ℝ → 0𝑝 Fn ℂ) |
| 20 | cnex 11125 | . . . . 5 ⊢ ℂ ∈ V | |
| 21 | 20 | a1i 11 | . . . 4 ⊢ (𝐹:ℝ⟶ℝ → ℂ ∈ V) |
| 22 | reex 11135 | . . . . 5 ⊢ ℝ ∈ V | |
| 23 | 22 | a1i 11 | . . . 4 ⊢ (𝐹:ℝ⟶ℝ → ℝ ∈ V) |
| 24 | ax-resscn 11101 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
| 25 | sseqin2 4182 | . . . . 5 ⊢ (ℝ ⊆ ℂ ↔ (ℂ ∩ ℝ) = ℝ) | |
| 26 | 24, 25 | mpbi 230 | . . . 4 ⊢ (ℂ ∩ ℝ) = ℝ |
| 27 | 0pval 25548 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (0𝑝‘𝑥) = 0) | |
| 28 | 27 | adantl 481 | . . . 4 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℂ) → (0𝑝‘𝑥) = 0) |
| 29 | eqidd 2730 | . . . 4 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
| 30 | 19, 9, 21, 23, 26, 28, 29 | ofrfval 7643 | . . 3 ⊢ (𝐹:ℝ⟶ℝ → (0𝑝 ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ ℝ 0 ≤ (𝐹‘𝑥))) |
| 31 | 8, 12, 30 | 3bitr4d 311 | . 2 ⊢ (𝐹:ℝ⟶ℝ → (𝐹:ℝ⟶(0[,)+∞) ↔ 0𝑝 ∘r ≤ 𝐹)) |
| 32 | 3, 31 | biadanii 821 | 1 ⊢ (𝐹:ℝ⟶(0[,)+∞) ↔ (𝐹:ℝ⟶ℝ ∧ 0𝑝 ∘r ≤ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3444 ∩ cin 3910 ⊆ wss 3911 {csn 4585 class class class wbr 5102 × cxp 5629 Fn wfn 6494 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ∘r cofr 7632 ℂcc 11042 ℝcr 11043 0cc0 11044 +∞cpnf 11181 ≤ cle 11185 [,)cico 13284 0𝑝c0p 25546 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-i2m1 11112 ax-rnegex 11115 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-ofr 7634 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-ico 13288 df-0p 25547 |
| This theorem is referenced by: itg2i1fseq 25632 itg2addlem 25635 ftc1anclem8 37667 |
| Copyright terms: Public domain | W3C validator |