MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0plef Structured version   Visualization version   GIF version

Theorem 0plef 24907
Description: Two ways to say that the function 𝐹 on the reals is nonnegative. (Contributed by Mario Carneiro, 17-Aug-2014.)
Assertion
Ref Expression
0plef (𝐹:ℝ⟶(0[,)+∞) ↔ (𝐹:ℝ⟶ℝ ∧ 0𝑝r𝐹))

Proof of Theorem 0plef
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rge0ssre 13258 . . 3 (0[,)+∞) ⊆ ℝ
2 fss 6652 . . 3 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℝ⟶ℝ)
31, 2mpan2 688 . 2 (𝐹:ℝ⟶(0[,)+∞) → 𝐹:ℝ⟶ℝ)
4 ffvelcdm 6996 . . . . 5 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
5 elrege0 13256 . . . . . 6 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
65baib 536 . . . . 5 ((𝐹𝑥) ∈ ℝ → ((𝐹𝑥) ∈ (0[,)+∞) ↔ 0 ≤ (𝐹𝑥)))
74, 6syl 17 . . . 4 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (0[,)+∞) ↔ 0 ≤ (𝐹𝑥)))
87ralbidva 3169 . . 3 (𝐹:ℝ⟶ℝ → (∀𝑥 ∈ ℝ (𝐹𝑥) ∈ (0[,)+∞) ↔ ∀𝑥 ∈ ℝ 0 ≤ (𝐹𝑥)))
9 ffn 6635 . . . 4 (𝐹:ℝ⟶ℝ → 𝐹 Fn ℝ)
10 ffnfv 7029 . . . . 5 (𝐹:ℝ⟶(0[,)+∞) ↔ (𝐹 Fn ℝ ∧ ∀𝑥 ∈ ℝ (𝐹𝑥) ∈ (0[,)+∞)))
1110baib 536 . . . 4 (𝐹 Fn ℝ → (𝐹:ℝ⟶(0[,)+∞) ↔ ∀𝑥 ∈ ℝ (𝐹𝑥) ∈ (0[,)+∞)))
129, 11syl 17 . . 3 (𝐹:ℝ⟶ℝ → (𝐹:ℝ⟶(0[,)+∞) ↔ ∀𝑥 ∈ ℝ (𝐹𝑥) ∈ (0[,)+∞)))
13 0cn 11037 . . . . . . 7 0 ∈ ℂ
14 fnconstg 6697 . . . . . . 7 (0 ∈ ℂ → (ℂ × {0}) Fn ℂ)
1513, 14ax-mp 5 . . . . . 6 (ℂ × {0}) Fn ℂ
16 df-0p 24905 . . . . . . 7 0𝑝 = (ℂ × {0})
1716fneq1i 6566 . . . . . 6 (0𝑝 Fn ℂ ↔ (ℂ × {0}) Fn ℂ)
1815, 17mpbir 230 . . . . 5 0𝑝 Fn ℂ
1918a1i 11 . . . 4 (𝐹:ℝ⟶ℝ → 0𝑝 Fn ℂ)
20 cnex 11022 . . . . 5 ℂ ∈ V
2120a1i 11 . . . 4 (𝐹:ℝ⟶ℝ → ℂ ∈ V)
22 reex 11032 . . . . 5 ℝ ∈ V
2322a1i 11 . . . 4 (𝐹:ℝ⟶ℝ → ℝ ∈ V)
24 ax-resscn 10998 . . . . 5 ℝ ⊆ ℂ
25 sseqin2 4159 . . . . 5 (ℝ ⊆ ℂ ↔ (ℂ ∩ ℝ) = ℝ)
2624, 25mpbi 229 . . . 4 (ℂ ∩ ℝ) = ℝ
27 0pval 24906 . . . . 5 (𝑥 ∈ ℂ → (0𝑝𝑥) = 0)
2827adantl 482 . . . 4 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℂ) → (0𝑝𝑥) = 0)
29 eqidd 2738 . . . 4 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) = (𝐹𝑥))
3019, 9, 21, 23, 26, 28, 29ofrfval 7581 . . 3 (𝐹:ℝ⟶ℝ → (0𝑝r𝐹 ↔ ∀𝑥 ∈ ℝ 0 ≤ (𝐹𝑥)))
318, 12, 303bitr4d 310 . 2 (𝐹:ℝ⟶ℝ → (𝐹:ℝ⟶(0[,)+∞) ↔ 0𝑝r𝐹))
323, 31biadanii 819 1 (𝐹:ℝ⟶(0[,)+∞) ↔ (𝐹:ℝ⟶ℝ ∧ 0𝑝r𝐹))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1540  wcel 2105  wral 3062  Vcvv 3441  cin 3895  wss 3896  {csn 4569   class class class wbr 5085   × cxp 5603   Fn wfn 6458  wf 6459  cfv 6463  (class class class)co 7313  r cofr 7570  cc 10939  cr 10940  0cc0 10941  +∞cpnf 11076  cle 11080  [,)cico 13151  0𝑝c0p 24904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5222  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626  ax-cnex 10997  ax-resscn 10998  ax-1cn 10999  ax-icn 11000  ax-addcl 11001  ax-addrcl 11002  ax-mulcl 11003  ax-i2m1 11009  ax-rnegex 11012  ax-cnre 11014  ax-pre-lttri 11015  ax-pre-lttrn 11016
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-iun 4937  df-br 5086  df-opab 5148  df-mpt 5169  df-id 5505  df-po 5519  df-so 5520  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-ov 7316  df-oprab 7317  df-mpo 7318  df-ofr 7572  df-er 8544  df-en 8780  df-dom 8781  df-sdom 8782  df-pnf 11081  df-mnf 11082  df-xr 11083  df-ltxr 11084  df-le 11085  df-ico 13155  df-0p 24905
This theorem is referenced by:  itg2i1fseq  24991  itg2addlem  24994  ftc1anclem8  35917
  Copyright terms: Public domain W3C validator