Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0plef | Structured version Visualization version GIF version |
Description: Two ways to say that the function 𝐹 on the reals is nonnegative. (Contributed by Mario Carneiro, 17-Aug-2014.) |
Ref | Expression |
---|---|
0plef | ⊢ (𝐹:ℝ⟶(0[,)+∞) ↔ (𝐹:ℝ⟶ℝ ∧ 0𝑝 ∘r ≤ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rge0ssre 12873 | . . 3 ⊢ (0[,)+∞) ⊆ ℝ | |
2 | fss 6505 | . . 3 ⊢ ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℝ⟶ℝ) | |
3 | 1, 2 | mpan2 691 | . 2 ⊢ (𝐹:ℝ⟶(0[,)+∞) → 𝐹:ℝ⟶ℝ) |
4 | ffvelrn 6833 | . . . . 5 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℝ) | |
5 | elrege0 12871 | . . . . . 6 ⊢ ((𝐹‘𝑥) ∈ (0[,)+∞) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑥))) | |
6 | 5 | baib 540 | . . . . 5 ⊢ ((𝐹‘𝑥) ∈ ℝ → ((𝐹‘𝑥) ∈ (0[,)+∞) ↔ 0 ≤ (𝐹‘𝑥))) |
7 | 4, 6 | syl 17 | . . . 4 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) ∈ (0[,)+∞) ↔ 0 ≤ (𝐹‘𝑥))) |
8 | 7 | ralbidva 3123 | . . 3 ⊢ (𝐹:ℝ⟶ℝ → (∀𝑥 ∈ ℝ (𝐹‘𝑥) ∈ (0[,)+∞) ↔ ∀𝑥 ∈ ℝ 0 ≤ (𝐹‘𝑥))) |
9 | ffn 6491 | . . . 4 ⊢ (𝐹:ℝ⟶ℝ → 𝐹 Fn ℝ) | |
10 | ffnfv 6866 | . . . . 5 ⊢ (𝐹:ℝ⟶(0[,)+∞) ↔ (𝐹 Fn ℝ ∧ ∀𝑥 ∈ ℝ (𝐹‘𝑥) ∈ (0[,)+∞))) | |
11 | 10 | baib 540 | . . . 4 ⊢ (𝐹 Fn ℝ → (𝐹:ℝ⟶(0[,)+∞) ↔ ∀𝑥 ∈ ℝ (𝐹‘𝑥) ∈ (0[,)+∞))) |
12 | 9, 11 | syl 17 | . . 3 ⊢ (𝐹:ℝ⟶ℝ → (𝐹:ℝ⟶(0[,)+∞) ↔ ∀𝑥 ∈ ℝ (𝐹‘𝑥) ∈ (0[,)+∞))) |
13 | 0cn 10656 | . . . . . . 7 ⊢ 0 ∈ ℂ | |
14 | fnconstg 6545 | . . . . . . 7 ⊢ (0 ∈ ℂ → (ℂ × {0}) Fn ℂ) | |
15 | 13, 14 | ax-mp 5 | . . . . . 6 ⊢ (ℂ × {0}) Fn ℂ |
16 | df-0p 24355 | . . . . . . 7 ⊢ 0𝑝 = (ℂ × {0}) | |
17 | 16 | fneq1i 6424 | . . . . . 6 ⊢ (0𝑝 Fn ℂ ↔ (ℂ × {0}) Fn ℂ) |
18 | 15, 17 | mpbir 234 | . . . . 5 ⊢ 0𝑝 Fn ℂ |
19 | 18 | a1i 11 | . . . 4 ⊢ (𝐹:ℝ⟶ℝ → 0𝑝 Fn ℂ) |
20 | cnex 10641 | . . . . 5 ⊢ ℂ ∈ V | |
21 | 20 | a1i 11 | . . . 4 ⊢ (𝐹:ℝ⟶ℝ → ℂ ∈ V) |
22 | reex 10651 | . . . . 5 ⊢ ℝ ∈ V | |
23 | 22 | a1i 11 | . . . 4 ⊢ (𝐹:ℝ⟶ℝ → ℝ ∈ V) |
24 | ax-resscn 10617 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
25 | sseqin2 4116 | . . . . 5 ⊢ (ℝ ⊆ ℂ ↔ (ℂ ∩ ℝ) = ℝ) | |
26 | 24, 25 | mpbi 233 | . . . 4 ⊢ (ℂ ∩ ℝ) = ℝ |
27 | 0pval 24356 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (0𝑝‘𝑥) = 0) | |
28 | 27 | adantl 486 | . . . 4 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℂ) → (0𝑝‘𝑥) = 0) |
29 | eqidd 2760 | . . . 4 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
30 | 19, 9, 21, 23, 26, 28, 29 | ofrfval 7407 | . . 3 ⊢ (𝐹:ℝ⟶ℝ → (0𝑝 ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ ℝ 0 ≤ (𝐹‘𝑥))) |
31 | 8, 12, 30 | 3bitr4d 315 | . 2 ⊢ (𝐹:ℝ⟶ℝ → (𝐹:ℝ⟶(0[,)+∞) ↔ 0𝑝 ∘r ≤ 𝐹)) |
32 | 3, 31 | biadanii 822 | 1 ⊢ (𝐹:ℝ⟶(0[,)+∞) ↔ (𝐹:ℝ⟶ℝ ∧ 0𝑝 ∘r ≤ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ∀wral 3068 Vcvv 3407 ∩ cin 3853 ⊆ wss 3854 {csn 4515 class class class wbr 5025 × cxp 5515 Fn wfn 6323 ⟶wf 6324 ‘cfv 6328 (class class class)co 7143 ∘r cofr 7397 ℂcc 10558 ℝcr 10559 0cc0 10560 +∞cpnf 10695 ≤ cle 10699 [,)cico 12766 0𝑝c0p 24354 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5149 ax-sep 5162 ax-nul 5169 ax-pow 5227 ax-pr 5291 ax-un 7452 ax-cnex 10616 ax-resscn 10617 ax-1cn 10618 ax-icn 10619 ax-addcl 10620 ax-addrcl 10621 ax-mulcl 10622 ax-i2m1 10628 ax-rnegex 10631 ax-cnre 10633 ax-pre-lttri 10634 ax-pre-lttrn 10635 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2899 df-ne 2950 df-nel 3054 df-ral 3073 df-rex 3074 df-reu 3075 df-rab 3077 df-v 3409 df-sbc 3694 df-csb 3802 df-dif 3857 df-un 3859 df-in 3861 df-ss 3871 df-nul 4222 df-if 4414 df-pw 4489 df-sn 4516 df-pr 4518 df-op 4522 df-uni 4792 df-iun 4878 df-br 5026 df-opab 5088 df-mpt 5106 df-id 5423 df-po 5436 df-so 5437 df-xp 5523 df-rel 5524 df-cnv 5525 df-co 5526 df-dm 5527 df-rn 5528 df-res 5529 df-ima 5530 df-iota 6287 df-fun 6330 df-fn 6331 df-f 6332 df-f1 6333 df-fo 6334 df-f1o 6335 df-fv 6336 df-ov 7146 df-oprab 7147 df-mpo 7148 df-ofr 7399 df-er 8292 df-en 8521 df-dom 8522 df-sdom 8523 df-pnf 10700 df-mnf 10701 df-xr 10702 df-ltxr 10703 df-le 10704 df-ico 12770 df-0p 24355 |
This theorem is referenced by: itg2i1fseq 24440 itg2addlem 24443 ftc1anclem8 35402 |
Copyright terms: Public domain | W3C validator |