Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  0plef Structured version   Visualization version   GIF version

Theorem 0plef 24357
 Description: Two ways to say that the function 𝐹 on the reals is nonnegative. (Contributed by Mario Carneiro, 17-Aug-2014.)
Assertion
Ref Expression
0plef (𝐹:ℝ⟶(0[,)+∞) ↔ (𝐹:ℝ⟶ℝ ∧ 0𝑝r𝐹))

Proof of Theorem 0plef
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rge0ssre 12873 . . 3 (0[,)+∞) ⊆ ℝ
2 fss 6505 . . 3 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℝ⟶ℝ)
31, 2mpan2 691 . 2 (𝐹:ℝ⟶(0[,)+∞) → 𝐹:ℝ⟶ℝ)
4 ffvelrn 6833 . . . . 5 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
5 elrege0 12871 . . . . . 6 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
65baib 540 . . . . 5 ((𝐹𝑥) ∈ ℝ → ((𝐹𝑥) ∈ (0[,)+∞) ↔ 0 ≤ (𝐹𝑥)))
74, 6syl 17 . . . 4 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (0[,)+∞) ↔ 0 ≤ (𝐹𝑥)))
87ralbidva 3123 . . 3 (𝐹:ℝ⟶ℝ → (∀𝑥 ∈ ℝ (𝐹𝑥) ∈ (0[,)+∞) ↔ ∀𝑥 ∈ ℝ 0 ≤ (𝐹𝑥)))
9 ffn 6491 . . . 4 (𝐹:ℝ⟶ℝ → 𝐹 Fn ℝ)
10 ffnfv 6866 . . . . 5 (𝐹:ℝ⟶(0[,)+∞) ↔ (𝐹 Fn ℝ ∧ ∀𝑥 ∈ ℝ (𝐹𝑥) ∈ (0[,)+∞)))
1110baib 540 . . . 4 (𝐹 Fn ℝ → (𝐹:ℝ⟶(0[,)+∞) ↔ ∀𝑥 ∈ ℝ (𝐹𝑥) ∈ (0[,)+∞)))
129, 11syl 17 . . 3 (𝐹:ℝ⟶ℝ → (𝐹:ℝ⟶(0[,)+∞) ↔ ∀𝑥 ∈ ℝ (𝐹𝑥) ∈ (0[,)+∞)))
13 0cn 10656 . . . . . . 7 0 ∈ ℂ
14 fnconstg 6545 . . . . . . 7 (0 ∈ ℂ → (ℂ × {0}) Fn ℂ)
1513, 14ax-mp 5 . . . . . 6 (ℂ × {0}) Fn ℂ
16 df-0p 24355 . . . . . . 7 0𝑝 = (ℂ × {0})
1716fneq1i 6424 . . . . . 6 (0𝑝 Fn ℂ ↔ (ℂ × {0}) Fn ℂ)
1815, 17mpbir 234 . . . . 5 0𝑝 Fn ℂ
1918a1i 11 . . . 4 (𝐹:ℝ⟶ℝ → 0𝑝 Fn ℂ)
20 cnex 10641 . . . . 5 ℂ ∈ V
2120a1i 11 . . . 4 (𝐹:ℝ⟶ℝ → ℂ ∈ V)
22 reex 10651 . . . . 5 ℝ ∈ V
2322a1i 11 . . . 4 (𝐹:ℝ⟶ℝ → ℝ ∈ V)
24 ax-resscn 10617 . . . . 5 ℝ ⊆ ℂ
25 sseqin2 4116 . . . . 5 (ℝ ⊆ ℂ ↔ (ℂ ∩ ℝ) = ℝ)
2624, 25mpbi 233 . . . 4 (ℂ ∩ ℝ) = ℝ
27 0pval 24356 . . . . 5 (𝑥 ∈ ℂ → (0𝑝𝑥) = 0)
2827adantl 486 . . . 4 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℂ) → (0𝑝𝑥) = 0)
29 eqidd 2760 . . . 4 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) = (𝐹𝑥))
3019, 9, 21, 23, 26, 28, 29ofrfval 7407 . . 3 (𝐹:ℝ⟶ℝ → (0𝑝r𝐹 ↔ ∀𝑥 ∈ ℝ 0 ≤ (𝐹𝑥)))
318, 12, 303bitr4d 315 . 2 (𝐹:ℝ⟶ℝ → (𝐹:ℝ⟶(0[,)+∞) ↔ 0𝑝r𝐹))
323, 31biadanii 822 1 (𝐹:ℝ⟶(0[,)+∞) ↔ (𝐹:ℝ⟶ℝ ∧ 0𝑝r𝐹))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∧ wa 400   = wceq 1539   ∈ wcel 2112  ∀wral 3068  Vcvv 3407   ∩ cin 3853   ⊆ wss 3854  {csn 4515   class class class wbr 5025   × cxp 5515   Fn wfn 6323  ⟶wf 6324  ‘cfv 6328  (class class class)co 7143   ∘r cofr 7397  ℂcc 10558  ℝcr 10559  0cc0 10560  +∞cpnf 10695   ≤ cle 10699  [,)cico 12766  0𝑝c0p 24354 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5149  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-i2m1 10628  ax-rnegex 10631  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-op 4522  df-uni 4792  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-id 5423  df-po 5436  df-so 5437  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7146  df-oprab 7147  df-mpo 7148  df-ofr 7399  df-er 8292  df-en 8521  df-dom 8522  df-sdom 8523  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-ico 12770  df-0p 24355 This theorem is referenced by:  itg2i1fseq  24440  itg2addlem  24443  ftc1anclem8  35402
 Copyright terms: Public domain W3C validator