| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0plef | Structured version Visualization version GIF version | ||
| Description: Two ways to say that the function 𝐹 on the reals is nonnegative. (Contributed by Mario Carneiro, 17-Aug-2014.) |
| Ref | Expression |
|---|---|
| 0plef | ⊢ (𝐹:ℝ⟶(0[,)+∞) ↔ (𝐹:ℝ⟶ℝ ∧ 0𝑝 ∘r ≤ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rge0ssre 13356 | . . 3 ⊢ (0[,)+∞) ⊆ ℝ | |
| 2 | fss 6667 | . . 3 ⊢ ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℝ⟶ℝ) | |
| 3 | 1, 2 | mpan2 691 | . 2 ⊢ (𝐹:ℝ⟶(0[,)+∞) → 𝐹:ℝ⟶ℝ) |
| 4 | ffvelcdm 7014 | . . . . 5 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℝ) | |
| 5 | elrege0 13354 | . . . . . 6 ⊢ ((𝐹‘𝑥) ∈ (0[,)+∞) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑥))) | |
| 6 | 5 | baib 535 | . . . . 5 ⊢ ((𝐹‘𝑥) ∈ ℝ → ((𝐹‘𝑥) ∈ (0[,)+∞) ↔ 0 ≤ (𝐹‘𝑥))) |
| 7 | 4, 6 | syl 17 | . . . 4 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) ∈ (0[,)+∞) ↔ 0 ≤ (𝐹‘𝑥))) |
| 8 | 7 | ralbidva 3153 | . . 3 ⊢ (𝐹:ℝ⟶ℝ → (∀𝑥 ∈ ℝ (𝐹‘𝑥) ∈ (0[,)+∞) ↔ ∀𝑥 ∈ ℝ 0 ≤ (𝐹‘𝑥))) |
| 9 | ffn 6651 | . . . 4 ⊢ (𝐹:ℝ⟶ℝ → 𝐹 Fn ℝ) | |
| 10 | ffnfv 7052 | . . . . 5 ⊢ (𝐹:ℝ⟶(0[,)+∞) ↔ (𝐹 Fn ℝ ∧ ∀𝑥 ∈ ℝ (𝐹‘𝑥) ∈ (0[,)+∞))) | |
| 11 | 10 | baib 535 | . . . 4 ⊢ (𝐹 Fn ℝ → (𝐹:ℝ⟶(0[,)+∞) ↔ ∀𝑥 ∈ ℝ (𝐹‘𝑥) ∈ (0[,)+∞))) |
| 12 | 9, 11 | syl 17 | . . 3 ⊢ (𝐹:ℝ⟶ℝ → (𝐹:ℝ⟶(0[,)+∞) ↔ ∀𝑥 ∈ ℝ (𝐹‘𝑥) ∈ (0[,)+∞))) |
| 13 | 0cn 11104 | . . . . . . 7 ⊢ 0 ∈ ℂ | |
| 14 | fnconstg 6711 | . . . . . . 7 ⊢ (0 ∈ ℂ → (ℂ × {0}) Fn ℂ) | |
| 15 | 13, 14 | ax-mp 5 | . . . . . 6 ⊢ (ℂ × {0}) Fn ℂ |
| 16 | df-0p 25598 | . . . . . . 7 ⊢ 0𝑝 = (ℂ × {0}) | |
| 17 | 16 | fneq1i 6578 | . . . . . 6 ⊢ (0𝑝 Fn ℂ ↔ (ℂ × {0}) Fn ℂ) |
| 18 | 15, 17 | mpbir 231 | . . . . 5 ⊢ 0𝑝 Fn ℂ |
| 19 | 18 | a1i 11 | . . . 4 ⊢ (𝐹:ℝ⟶ℝ → 0𝑝 Fn ℂ) |
| 20 | cnex 11087 | . . . . 5 ⊢ ℂ ∈ V | |
| 21 | 20 | a1i 11 | . . . 4 ⊢ (𝐹:ℝ⟶ℝ → ℂ ∈ V) |
| 22 | reex 11097 | . . . . 5 ⊢ ℝ ∈ V | |
| 23 | 22 | a1i 11 | . . . 4 ⊢ (𝐹:ℝ⟶ℝ → ℝ ∈ V) |
| 24 | ax-resscn 11063 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
| 25 | sseqin2 4170 | . . . . 5 ⊢ (ℝ ⊆ ℂ ↔ (ℂ ∩ ℝ) = ℝ) | |
| 26 | 24, 25 | mpbi 230 | . . . 4 ⊢ (ℂ ∩ ℝ) = ℝ |
| 27 | 0pval 25599 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (0𝑝‘𝑥) = 0) | |
| 28 | 27 | adantl 481 | . . . 4 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℂ) → (0𝑝‘𝑥) = 0) |
| 29 | eqidd 2732 | . . . 4 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
| 30 | 19, 9, 21, 23, 26, 28, 29 | ofrfval 7620 | . . 3 ⊢ (𝐹:ℝ⟶ℝ → (0𝑝 ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ ℝ 0 ≤ (𝐹‘𝑥))) |
| 31 | 8, 12, 30 | 3bitr4d 311 | . 2 ⊢ (𝐹:ℝ⟶ℝ → (𝐹:ℝ⟶(0[,)+∞) ↔ 0𝑝 ∘r ≤ 𝐹)) |
| 32 | 3, 31 | biadanii 821 | 1 ⊢ (𝐹:ℝ⟶(0[,)+∞) ↔ (𝐹:ℝ⟶ℝ ∧ 0𝑝 ∘r ≤ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ∩ cin 3896 ⊆ wss 3897 {csn 4573 class class class wbr 5089 × cxp 5612 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ∘r cofr 7609 ℂcc 11004 ℝcr 11005 0cc0 11006 +∞cpnf 11143 ≤ cle 11147 [,)cico 13247 0𝑝c0p 25597 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-i2m1 11074 ax-rnegex 11077 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-ofr 7611 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-ico 13251 df-0p 25598 |
| This theorem is referenced by: itg2i1fseq 25683 itg2addlem 25686 ftc1anclem8 37750 |
| Copyright terms: Public domain | W3C validator |