MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0plef Structured version   Visualization version   GIF version

Theorem 0plef 23730
Description: Two ways to say that the function 𝐹 on the reals is nonnegative. (Contributed by Mario Carneiro, 17-Aug-2014.)
Assertion
Ref Expression
0plef (𝐹:ℝ⟶(0[,)+∞) ↔ (𝐹:ℝ⟶ℝ ∧ 0𝑝𝑟𝐹))

Proof of Theorem 0plef
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rge0ssre 12484 . . 3 (0[,)+∞) ⊆ ℝ
2 fss 6236 . . 3 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℝ⟶ℝ)
31, 2mpan2 682 . 2 (𝐹:ℝ⟶(0[,)+∞) → 𝐹:ℝ⟶ℝ)
4 ffvelrn 6547 . . . . 5 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
5 elrege0 12482 . . . . . 6 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
65baib 531 . . . . 5 ((𝐹𝑥) ∈ ℝ → ((𝐹𝑥) ∈ (0[,)+∞) ↔ 0 ≤ (𝐹𝑥)))
74, 6syl 17 . . . 4 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (0[,)+∞) ↔ 0 ≤ (𝐹𝑥)))
87ralbidva 3132 . . 3 (𝐹:ℝ⟶ℝ → (∀𝑥 ∈ ℝ (𝐹𝑥) ∈ (0[,)+∞) ↔ ∀𝑥 ∈ ℝ 0 ≤ (𝐹𝑥)))
9 ffn 6223 . . . 4 (𝐹:ℝ⟶ℝ → 𝐹 Fn ℝ)
10 ffnfv 6578 . . . . 5 (𝐹:ℝ⟶(0[,)+∞) ↔ (𝐹 Fn ℝ ∧ ∀𝑥 ∈ ℝ (𝐹𝑥) ∈ (0[,)+∞)))
1110baib 531 . . . 4 (𝐹 Fn ℝ → (𝐹:ℝ⟶(0[,)+∞) ↔ ∀𝑥 ∈ ℝ (𝐹𝑥) ∈ (0[,)+∞)))
129, 11syl 17 . . 3 (𝐹:ℝ⟶ℝ → (𝐹:ℝ⟶(0[,)+∞) ↔ ∀𝑥 ∈ ℝ (𝐹𝑥) ∈ (0[,)+∞)))
13 0cn 10285 . . . . . . 7 0 ∈ ℂ
14 fnconstg 6275 . . . . . . 7 (0 ∈ ℂ → (ℂ × {0}) Fn ℂ)
1513, 14ax-mp 5 . . . . . 6 (ℂ × {0}) Fn ℂ
16 df-0p 23728 . . . . . . 7 0𝑝 = (ℂ × {0})
1716fneq1i 6163 . . . . . 6 (0𝑝 Fn ℂ ↔ (ℂ × {0}) Fn ℂ)
1815, 17mpbir 222 . . . . 5 0𝑝 Fn ℂ
1918a1i 11 . . . 4 (𝐹:ℝ⟶ℝ → 0𝑝 Fn ℂ)
20 cnex 10270 . . . . 5 ℂ ∈ V
2120a1i 11 . . . 4 (𝐹:ℝ⟶ℝ → ℂ ∈ V)
22 reex 10280 . . . . 5 ℝ ∈ V
2322a1i 11 . . . 4 (𝐹:ℝ⟶ℝ → ℝ ∈ V)
24 ax-resscn 10246 . . . . 5 ℝ ⊆ ℂ
25 sseqin2 3979 . . . . 5 (ℝ ⊆ ℂ ↔ (ℂ ∩ ℝ) = ℝ)
2624, 25mpbi 221 . . . 4 (ℂ ∩ ℝ) = ℝ
27 0pval 23729 . . . . 5 (𝑥 ∈ ℂ → (0𝑝𝑥) = 0)
2827adantl 473 . . . 4 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℂ) → (0𝑝𝑥) = 0)
29 eqidd 2766 . . . 4 ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) = (𝐹𝑥))
3019, 9, 21, 23, 26, 28, 29ofrfval 7103 . . 3 (𝐹:ℝ⟶ℝ → (0𝑝𝑟𝐹 ↔ ∀𝑥 ∈ ℝ 0 ≤ (𝐹𝑥)))
318, 12, 303bitr4d 302 . 2 (𝐹:ℝ⟶ℝ → (𝐹:ℝ⟶(0[,)+∞) ↔ 0𝑝𝑟𝐹))
323, 31biadan2 853 1 (𝐹:ℝ⟶(0[,)+∞) ↔ (𝐹:ℝ⟶ℝ ∧ 0𝑝𝑟𝐹))
Colors of variables: wff setvar class
Syntax hints:  wb 197  wa 384   = wceq 1652  wcel 2155  wral 3055  Vcvv 3350  cin 3731  wss 3732  {csn 4334   class class class wbr 4809   × cxp 5275   Fn wfn 6063  wf 6064  cfv 6068  (class class class)co 6842  𝑟 cofr 7094  cc 10187  cr 10188  0cc0 10189  +∞cpnf 10325  cle 10329  [,)cico 12379  0𝑝c0p 23727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-i2m1 10257  ax-rnegex 10260  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-po 5198  df-so 5199  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-ofr 7096  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-ico 12383  df-0p 23728
This theorem is referenced by:  itg2i1fseq  23813  itg2addlem  23816  ftc1anclem8  33915
  Copyright terms: Public domain W3C validator