![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0plef | Structured version Visualization version GIF version |
Description: Two ways to say that the function 𝐹 on the reals is nonnegative. (Contributed by Mario Carneiro, 17-Aug-2014.) |
Ref | Expression |
---|---|
0plef | ⊢ (𝐹:ℝ⟶(0[,)+∞) ↔ (𝐹:ℝ⟶ℝ ∧ 0𝑝 ∘𝑟 ≤ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rge0ssre 12694 | . . 3 ⊢ (0[,)+∞) ⊆ ℝ | |
2 | fss 6398 | . . 3 ⊢ ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℝ⟶ℝ) | |
3 | 1, 2 | mpan2 687 | . 2 ⊢ (𝐹:ℝ⟶(0[,)+∞) → 𝐹:ℝ⟶ℝ) |
4 | ffvelrn 6717 | . . . . 5 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℝ) | |
5 | elrege0 12692 | . . . . . 6 ⊢ ((𝐹‘𝑥) ∈ (0[,)+∞) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑥))) | |
6 | 5 | baib 536 | . . . . 5 ⊢ ((𝐹‘𝑥) ∈ ℝ → ((𝐹‘𝑥) ∈ (0[,)+∞) ↔ 0 ≤ (𝐹‘𝑥))) |
7 | 4, 6 | syl 17 | . . . 4 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) ∈ (0[,)+∞) ↔ 0 ≤ (𝐹‘𝑥))) |
8 | 7 | ralbidva 3162 | . . 3 ⊢ (𝐹:ℝ⟶ℝ → (∀𝑥 ∈ ℝ (𝐹‘𝑥) ∈ (0[,)+∞) ↔ ∀𝑥 ∈ ℝ 0 ≤ (𝐹‘𝑥))) |
9 | ffn 6385 | . . . 4 ⊢ (𝐹:ℝ⟶ℝ → 𝐹 Fn ℝ) | |
10 | ffnfv 6748 | . . . . 5 ⊢ (𝐹:ℝ⟶(0[,)+∞) ↔ (𝐹 Fn ℝ ∧ ∀𝑥 ∈ ℝ (𝐹‘𝑥) ∈ (0[,)+∞))) | |
11 | 10 | baib 536 | . . . 4 ⊢ (𝐹 Fn ℝ → (𝐹:ℝ⟶(0[,)+∞) ↔ ∀𝑥 ∈ ℝ (𝐹‘𝑥) ∈ (0[,)+∞))) |
12 | 9, 11 | syl 17 | . . 3 ⊢ (𝐹:ℝ⟶ℝ → (𝐹:ℝ⟶(0[,)+∞) ↔ ∀𝑥 ∈ ℝ (𝐹‘𝑥) ∈ (0[,)+∞))) |
13 | 0cn 10482 | . . . . . . 7 ⊢ 0 ∈ ℂ | |
14 | fnconstg 6438 | . . . . . . 7 ⊢ (0 ∈ ℂ → (ℂ × {0}) Fn ℂ) | |
15 | 13, 14 | ax-mp 5 | . . . . . 6 ⊢ (ℂ × {0}) Fn ℂ |
16 | df-0p 23954 | . . . . . . 7 ⊢ 0𝑝 = (ℂ × {0}) | |
17 | 16 | fneq1i 6323 | . . . . . 6 ⊢ (0𝑝 Fn ℂ ↔ (ℂ × {0}) Fn ℂ) |
18 | 15, 17 | mpbir 232 | . . . . 5 ⊢ 0𝑝 Fn ℂ |
19 | 18 | a1i 11 | . . . 4 ⊢ (𝐹:ℝ⟶ℝ → 0𝑝 Fn ℂ) |
20 | cnex 10467 | . . . . 5 ⊢ ℂ ∈ V | |
21 | 20 | a1i 11 | . . . 4 ⊢ (𝐹:ℝ⟶ℝ → ℂ ∈ V) |
22 | reex 10477 | . . . . 5 ⊢ ℝ ∈ V | |
23 | 22 | a1i 11 | . . . 4 ⊢ (𝐹:ℝ⟶ℝ → ℝ ∈ V) |
24 | ax-resscn 10443 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
25 | sseqin2 4114 | . . . . 5 ⊢ (ℝ ⊆ ℂ ↔ (ℂ ∩ ℝ) = ℝ) | |
26 | 24, 25 | mpbi 231 | . . . 4 ⊢ (ℂ ∩ ℝ) = ℝ |
27 | 0pval 23955 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (0𝑝‘𝑥) = 0) | |
28 | 27 | adantl 482 | . . . 4 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℂ) → (0𝑝‘𝑥) = 0) |
29 | eqidd 2795 | . . . 4 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
30 | 19, 9, 21, 23, 26, 28, 29 | ofrfval 7278 | . . 3 ⊢ (𝐹:ℝ⟶ℝ → (0𝑝 ∘𝑟 ≤ 𝐹 ↔ ∀𝑥 ∈ ℝ 0 ≤ (𝐹‘𝑥))) |
31 | 8, 12, 30 | 3bitr4d 312 | . 2 ⊢ (𝐹:ℝ⟶ℝ → (𝐹:ℝ⟶(0[,)+∞) ↔ 0𝑝 ∘𝑟 ≤ 𝐹)) |
32 | 3, 31 | biadanii 819 | 1 ⊢ (𝐹:ℝ⟶(0[,)+∞) ↔ (𝐹:ℝ⟶ℝ ∧ 0𝑝 ∘𝑟 ≤ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 207 ∧ wa 396 = wceq 1522 ∈ wcel 2080 ∀wral 3104 Vcvv 3436 ∩ cin 3860 ⊆ wss 3861 {csn 4474 class class class wbr 4964 × cxp 5444 Fn wfn 6223 ⟶wf 6224 ‘cfv 6228 (class class class)co 7019 ∘𝑟 cofr 7269 ℂcc 10384 ℝcr 10385 0cc0 10386 +∞cpnf 10521 ≤ cle 10525 [,)cico 12590 0𝑝c0p 23953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1778 ax-4 1792 ax-5 1889 ax-6 1948 ax-7 1993 ax-8 2082 ax-9 2090 ax-10 2111 ax-11 2125 ax-12 2140 ax-13 2343 ax-ext 2768 ax-rep 5084 ax-sep 5097 ax-nul 5104 ax-pow 5160 ax-pr 5224 ax-un 7322 ax-cnex 10442 ax-resscn 10443 ax-1cn 10444 ax-icn 10445 ax-addcl 10446 ax-addrcl 10447 ax-mulcl 10448 ax-i2m1 10454 ax-rnegex 10457 ax-cnre 10459 ax-pre-lttri 10460 ax-pre-lttrn 10461 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1763 df-nf 1767 df-sb 2042 df-mo 2575 df-eu 2611 df-clab 2775 df-cleq 2787 df-clel 2862 df-nfc 2934 df-ne 2984 df-nel 3090 df-ral 3109 df-rex 3110 df-reu 3111 df-rab 3113 df-v 3438 df-sbc 3708 df-csb 3814 df-dif 3864 df-un 3866 df-in 3868 df-ss 3876 df-nul 4214 df-if 4384 df-pw 4457 df-sn 4475 df-pr 4477 df-op 4481 df-uni 4748 df-iun 4829 df-br 4965 df-opab 5027 df-mpt 5044 df-id 5351 df-po 5365 df-so 5366 df-xp 5452 df-rel 5453 df-cnv 5454 df-co 5455 df-dm 5456 df-rn 5457 df-res 5458 df-ima 5459 df-iota 6192 df-fun 6230 df-fn 6231 df-f 6232 df-f1 6233 df-fo 6234 df-f1o 6235 df-fv 6236 df-ov 7022 df-oprab 7023 df-mpo 7024 df-ofr 7271 df-er 8142 df-en 8361 df-dom 8362 df-sdom 8363 df-pnf 10526 df-mnf 10527 df-xr 10528 df-ltxr 10529 df-le 10530 df-ico 12594 df-0p 23954 |
This theorem is referenced by: itg2i1fseq 24039 itg2addlem 24042 ftc1anclem8 34518 |
Copyright terms: Public domain | W3C validator |