![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > plymul02 | Structured version Visualization version GIF version |
Description: Product of a polynomial with the zero polynomial. (Contributed by Thierry Arnoux, 26-Sep-2018.) |
Ref | Expression |
---|---|
plymul02 | β’ (πΉ β (Polyβπ) β (0π βf Β· πΉ) = 0π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plyf 25948 | . . . . 5 β’ (πΉ β (Polyβπ) β πΉ:ββΆβ) | |
2 | 1 | ffvelcdmda 7086 | . . . 4 β’ ((πΉ β (Polyβπ) β§ π₯ β β) β (πΉβπ₯) β β) |
3 | 2 | mul02d 11417 | . . 3 β’ ((πΉ β (Polyβπ) β§ π₯ β β) β (0 Β· (πΉβπ₯)) = 0) |
4 | 3 | mpteq2dva 5248 | . 2 β’ (πΉ β (Polyβπ) β (π₯ β β β¦ (0 Β· (πΉβπ₯))) = (π₯ β β β¦ 0)) |
5 | c0ex 11213 | . . . . . 6 β’ 0 β V | |
6 | 5 | fconst 6777 | . . . . 5 β’ (β Γ {0}):ββΆ{0} |
7 | df-0p 25420 | . . . . . 6 β’ 0π = (β Γ {0}) | |
8 | 7 | feq1i 6708 | . . . . 5 β’ (0π:ββΆ{0} β (β Γ {0}):ββΆ{0}) |
9 | 6, 8 | mpbir 230 | . . . 4 β’ 0π:ββΆ{0} |
10 | ffn 6717 | . . . 4 β’ (0π:ββΆ{0} β 0π Fn β) | |
11 | 9, 10 | mp1i 13 | . . 3 β’ (πΉ β (Polyβπ) β 0π Fn β) |
12 | 1 | ffnd 6718 | . . 3 β’ (πΉ β (Polyβπ) β πΉ Fn β) |
13 | cnex 11195 | . . . 4 β’ β β V | |
14 | 13 | a1i 11 | . . 3 β’ (πΉ β (Polyβπ) β β β V) |
15 | inidm 4218 | . . 3 β’ (β β© β) = β | |
16 | 0pval 25421 | . . . 4 β’ (π₯ β β β (0πβπ₯) = 0) | |
17 | 16 | adantl 481 | . . 3 β’ ((πΉ β (Polyβπ) β§ π₯ β β) β (0πβπ₯) = 0) |
18 | eqidd 2732 | . . 3 β’ ((πΉ β (Polyβπ) β§ π₯ β β) β (πΉβπ₯) = (πΉβπ₯)) | |
19 | 11, 12, 14, 14, 15, 17, 18 | offval 7683 | . 2 β’ (πΉ β (Polyβπ) β (0π βf Β· πΉ) = (π₯ β β β¦ (0 Β· (πΉβπ₯)))) |
20 | fconstmpt 5738 | . . . 4 β’ (β Γ {0}) = (π₯ β β β¦ 0) | |
21 | 7, 20 | eqtri 2759 | . . 3 β’ 0π = (π₯ β β β¦ 0) |
22 | 21 | a1i 11 | . 2 β’ (πΉ β (Polyβπ) β 0π = (π₯ β β β¦ 0)) |
23 | 4, 19, 22 | 3eqtr4d 2781 | 1 β’ (πΉ β (Polyβπ) β (0π βf Β· πΉ) = 0π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 Vcvv 3473 {csn 4628 β¦ cmpt 5231 Γ cxp 5674 Fn wfn 6538 βΆwf 6539 βcfv 6543 (class class class)co 7412 βf cof 7672 βcc 11112 0cc0 11114 Β· cmul 11119 0πc0p 25419 Polycply 25934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9640 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-map 8826 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-sup 9441 df-oi 9509 df-card 9938 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-n0 12478 df-z 12564 df-uz 12828 df-rp 12980 df-fz 13490 df-fzo 13633 df-seq 13972 df-exp 14033 df-hash 14296 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-clim 15437 df-sum 15638 df-0p 25420 df-ply 25938 |
This theorem is referenced by: plymulx 33858 |
Copyright terms: Public domain | W3C validator |