Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpaaeu Structured version   Visualization version   GIF version

Theorem mpaaeu 40975
Description: An algebraic number has exactly one monic polynomial of the least degree. (Contributed by Stefan O'Rear, 25-Nov-2014.)
Assertion
Ref Expression
mpaaeu (𝐴 ∈ 𝔸 → ∃!𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1))
Distinct variable group:   𝐴,𝑝

Proof of Theorem mpaaeu
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qsscn 12700 . . . . . 6 ℚ ⊆ ℂ
2 eldifi 4061 . . . . . . . . . 10 (𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝}) → 𝑎 ∈ (Poly‘ℚ))
32ad2antlr 724 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → 𝑎 ∈ (Poly‘ℚ))
4 zssq 12696 . . . . . . . . . 10 ℤ ⊆ ℚ
5 0z 12330 . . . . . . . . . 10 0 ∈ ℤ
64, 5sselii 3918 . . . . . . . . 9 0 ∈ ℚ
7 eqid 2738 . . . . . . . . . 10 (coeff‘𝑎) = (coeff‘𝑎)
87coef2 25392 . . . . . . . . 9 ((𝑎 ∈ (Poly‘ℚ) ∧ 0 ∈ ℚ) → (coeff‘𝑎):ℕ0⟶ℚ)
93, 6, 8sylancl 586 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (coeff‘𝑎):ℕ0⟶ℚ)
10 dgrcl 25394 . . . . . . . . 9 (𝑎 ∈ (Poly‘ℚ) → (deg‘𝑎) ∈ ℕ0)
113, 10syl 17 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (deg‘𝑎) ∈ ℕ0)
129, 11ffvelrnd 6962 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → ((coeff‘𝑎)‘(deg‘𝑎)) ∈ ℚ)
13 eldifsni 4723 . . . . . . . . 9 (𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝}) → 𝑎 ≠ 0𝑝)
1413ad2antlr 724 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → 𝑎 ≠ 0𝑝)
15 eqid 2738 . . . . . . . . . . 11 (deg‘𝑎) = (deg‘𝑎)
1615, 7dgreq0 25426 . . . . . . . . . 10 (𝑎 ∈ (Poly‘ℚ) → (𝑎 = 0𝑝 ↔ ((coeff‘𝑎)‘(deg‘𝑎)) = 0))
1716necon3bid 2988 . . . . . . . . 9 (𝑎 ∈ (Poly‘ℚ) → (𝑎 ≠ 0𝑝 ↔ ((coeff‘𝑎)‘(deg‘𝑎)) ≠ 0))
183, 17syl 17 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (𝑎 ≠ 0𝑝 ↔ ((coeff‘𝑎)‘(deg‘𝑎)) ≠ 0))
1914, 18mpbid 231 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → ((coeff‘𝑎)‘(deg‘𝑎)) ≠ 0)
20 qreccl 12709 . . . . . . 7 ((((coeff‘𝑎)‘(deg‘𝑎)) ∈ ℚ ∧ ((coeff‘𝑎)‘(deg‘𝑎)) ≠ 0) → (1 / ((coeff‘𝑎)‘(deg‘𝑎))) ∈ ℚ)
2112, 19, 20syl2anc 584 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (1 / ((coeff‘𝑎)‘(deg‘𝑎))) ∈ ℚ)
22 plyconst 25367 . . . . . 6 ((ℚ ⊆ ℂ ∧ (1 / ((coeff‘𝑎)‘(deg‘𝑎))) ∈ ℚ) → (ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∈ (Poly‘ℚ))
231, 21, 22sylancr 587 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∈ (Poly‘ℚ))
24 simpl 483 . . . . . 6 (((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) → (ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∈ (Poly‘ℚ))
25 simpr 485 . . . . . 6 (((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) → 𝑎 ∈ (Poly‘ℚ))
26 qaddcl 12705 . . . . . . 7 ((𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ) → (𝑏 + 𝑐) ∈ ℚ)
2726adantl 482 . . . . . 6 ((((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ (𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ)) → (𝑏 + 𝑐) ∈ ℚ)
28 qmulcl 12707 . . . . . . 7 ((𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ) → (𝑏 · 𝑐) ∈ ℚ)
2928adantl 482 . . . . . 6 ((((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ (𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ)) → (𝑏 · 𝑐) ∈ ℚ)
3024, 25, 27, 29plymul 25379 . . . . 5 (((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) → ((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) ∈ (Poly‘ℚ))
3123, 3, 30syl2anc 584 . . . 4 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → ((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) ∈ (Poly‘ℚ))
327coef3 25393 . . . . . . . . 9 (𝑎 ∈ (Poly‘ℚ) → (coeff‘𝑎):ℕ0⟶ℂ)
333, 32syl 17 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (coeff‘𝑎):ℕ0⟶ℂ)
3433, 11ffvelrnd 6962 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → ((coeff‘𝑎)‘(deg‘𝑎)) ∈ ℂ)
3534, 19reccld 11744 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (1 / ((coeff‘𝑎)‘(deg‘𝑎))) ∈ ℂ)
3634, 19recne0d 11745 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (1 / ((coeff‘𝑎)‘(deg‘𝑎))) ≠ 0)
37 dgrmulc 25432 . . . . . 6 (((1 / ((coeff‘𝑎)‘(deg‘𝑎))) ∈ ℂ ∧ (1 / ((coeff‘𝑎)‘(deg‘𝑎))) ≠ 0 ∧ 𝑎 ∈ (Poly‘ℚ)) → (deg‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)) = (deg‘𝑎))
3835, 36, 3, 37syl3anc 1370 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (deg‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)) = (deg‘𝑎))
39 simprl 768 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (deg‘𝑎) = (degAA𝐴))
4038, 39eqtrd 2778 . . . 4 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (deg‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)) = (degAA𝐴))
41 aacn 25477 . . . . . . 7 (𝐴 ∈ 𝔸 → 𝐴 ∈ ℂ)
4241ad2antrr 723 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → 𝐴 ∈ ℂ)
43 ovex 7308 . . . . . . . 8 (1 / ((coeff‘𝑎)‘(deg‘𝑎))) ∈ V
44 fnconstg 6662 . . . . . . . 8 ((1 / ((coeff‘𝑎)‘(deg‘𝑎))) ∈ V → (ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) Fn ℂ)
4543, 44mp1i 13 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) Fn ℂ)
46 plyf 25359 . . . . . . . 8 (𝑎 ∈ (Poly‘ℚ) → 𝑎:ℂ⟶ℂ)
47 ffn 6600 . . . . . . . 8 (𝑎:ℂ⟶ℂ → 𝑎 Fn ℂ)
483, 46, 473syl 18 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → 𝑎 Fn ℂ)
49 cnex 10952 . . . . . . . 8 ℂ ∈ V
5049a1i 11 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → ℂ ∈ V)
51 inidm 4152 . . . . . . 7 (ℂ ∩ ℂ) = ℂ
5243fvconst2 7079 . . . . . . . 8 (𝐴 ∈ ℂ → ((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))})‘𝐴) = (1 / ((coeff‘𝑎)‘(deg‘𝑎))))
5352adantl 482 . . . . . . 7 ((((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) ∧ 𝐴 ∈ ℂ) → ((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))})‘𝐴) = (1 / ((coeff‘𝑎)‘(deg‘𝑎))))
54 simplrr 775 . . . . . . 7 ((((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) ∧ 𝐴 ∈ ℂ) → (𝑎𝐴) = 0)
5545, 48, 50, 50, 51, 53, 54ofval 7544 . . . . . 6 ((((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) ∧ 𝐴 ∈ ℂ) → (((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)‘𝐴) = ((1 / ((coeff‘𝑎)‘(deg‘𝑎))) · 0))
5642, 55mpdan 684 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)‘𝐴) = ((1 / ((coeff‘𝑎)‘(deg‘𝑎))) · 0))
5735mul01d 11174 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → ((1 / ((coeff‘𝑎)‘(deg‘𝑎))) · 0) = 0)
5856, 57eqtrd 2778 . . . 4 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)‘𝐴) = 0)
59 coemulc 25416 . . . . . . 7 (((1 / ((coeff‘𝑎)‘(deg‘𝑎))) ∈ ℂ ∧ 𝑎 ∈ (Poly‘ℚ)) → (coeff‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)) = ((ℕ0 × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · (coeff‘𝑎)))
6035, 3, 59syl2anc 584 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (coeff‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)) = ((ℕ0 × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · (coeff‘𝑎)))
6160fveq1d 6776 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → ((coeff‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎))‘(degAA𝐴)) = (((ℕ0 × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · (coeff‘𝑎))‘(degAA𝐴)))
62 dgraacl 40971 . . . . . . . 8 (𝐴 ∈ 𝔸 → (degAA𝐴) ∈ ℕ)
6362ad2antrr 723 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (degAA𝐴) ∈ ℕ)
6463nnnn0d 12293 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (degAA𝐴) ∈ ℕ0)
65 fnconstg 6662 . . . . . . . 8 ((1 / ((coeff‘𝑎)‘(deg‘𝑎))) ∈ V → (ℕ0 × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) Fn ℕ0)
6643, 65mp1i 13 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (ℕ0 × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) Fn ℕ0)
6733ffnd 6601 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (coeff‘𝑎) Fn ℕ0)
68 nn0ex 12239 . . . . . . . 8 0 ∈ V
6968a1i 11 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → ℕ0 ∈ V)
70 inidm 4152 . . . . . . 7 (ℕ0 ∩ ℕ0) = ℕ0
7143fvconst2 7079 . . . . . . . 8 ((degAA𝐴) ∈ ℕ0 → ((ℕ0 × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))})‘(degAA𝐴)) = (1 / ((coeff‘𝑎)‘(deg‘𝑎))))
7271adantl 482 . . . . . . 7 ((((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) ∧ (degAA𝐴) ∈ ℕ0) → ((ℕ0 × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))})‘(degAA𝐴)) = (1 / ((coeff‘𝑎)‘(deg‘𝑎))))
73 simplrl 774 . . . . . . . . 9 ((((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) ∧ (degAA𝐴) ∈ ℕ0) → (deg‘𝑎) = (degAA𝐴))
7473eqcomd 2744 . . . . . . . 8 ((((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) ∧ (degAA𝐴) ∈ ℕ0) → (degAA𝐴) = (deg‘𝑎))
7574fveq2d 6778 . . . . . . 7 ((((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) ∧ (degAA𝐴) ∈ ℕ0) → ((coeff‘𝑎)‘(degAA𝐴)) = ((coeff‘𝑎)‘(deg‘𝑎)))
7666, 67, 69, 69, 70, 72, 75ofval 7544 . . . . . 6 ((((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) ∧ (degAA𝐴) ∈ ℕ0) → (((ℕ0 × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · (coeff‘𝑎))‘(degAA𝐴)) = ((1 / ((coeff‘𝑎)‘(deg‘𝑎))) · ((coeff‘𝑎)‘(deg‘𝑎))))
7764, 76mpdan 684 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (((ℕ0 × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · (coeff‘𝑎))‘(degAA𝐴)) = ((1 / ((coeff‘𝑎)‘(deg‘𝑎))) · ((coeff‘𝑎)‘(deg‘𝑎))))
7834, 19recid2d 11747 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → ((1 / ((coeff‘𝑎)‘(deg‘𝑎))) · ((coeff‘𝑎)‘(deg‘𝑎))) = 1)
7961, 77, 783eqtrd 2782 . . . 4 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → ((coeff‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎))‘(degAA𝐴)) = 1)
80 fveqeq2 6783 . . . . . 6 (𝑝 = ((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) → ((deg‘𝑝) = (degAA𝐴) ↔ (deg‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)) = (degAA𝐴)))
81 fveq1 6773 . . . . . . 7 (𝑝 = ((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) → (𝑝𝐴) = (((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)‘𝐴))
8281eqeq1d 2740 . . . . . 6 (𝑝 = ((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) → ((𝑝𝐴) = 0 ↔ (((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)‘𝐴) = 0))
83 fveq2 6774 . . . . . . . 8 (𝑝 = ((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) → (coeff‘𝑝) = (coeff‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)))
8483fveq1d 6776 . . . . . . 7 (𝑝 = ((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) → ((coeff‘𝑝)‘(degAA𝐴)) = ((coeff‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎))‘(degAA𝐴)))
8584eqeq1d 2740 . . . . . 6 (𝑝 = ((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) → (((coeff‘𝑝)‘(degAA𝐴)) = 1 ↔ ((coeff‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎))‘(degAA𝐴)) = 1))
8680, 82, 853anbi123d 1435 . . . . 5 (𝑝 = ((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) → (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ↔ ((deg‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)) = (degAA𝐴) ∧ (((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)‘𝐴) = 0 ∧ ((coeff‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎))‘(degAA𝐴)) = 1)))
8786rspcev 3561 . . . 4 ((((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) ∈ (Poly‘ℚ) ∧ ((deg‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)) = (degAA𝐴) ∧ (((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)‘𝐴) = 0 ∧ ((coeff‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎))‘(degAA𝐴)) = 1)) → ∃𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1))
8831, 40, 58, 79, 87syl13anc 1371 . . 3 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → ∃𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1))
89 dgraalem 40970 . . . 4 (𝐴 ∈ 𝔸 → ((degAA𝐴) ∈ ℕ ∧ ∃𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)))
9089simprd 496 . . 3 (𝐴 ∈ 𝔸 → ∃𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0))
9188, 90r19.29a 3218 . 2 (𝐴 ∈ 𝔸 → ∃𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1))
92 simp2 1136 . . . . . . . . . . 11 (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) → (𝑝𝐴) = 0)
93 simp2 1136 . . . . . . . . . . 11 (((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1) → (𝑎𝐴) = 0)
9492, 93anim12i 613 . . . . . . . . . 10 ((((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1)) → ((𝑝𝐴) = 0 ∧ (𝑎𝐴) = 0))
95 plyf 25359 . . . . . . . . . . . . . . . 16 (𝑝 ∈ (Poly‘ℚ) → 𝑝:ℂ⟶ℂ)
9695ffnd 6601 . . . . . . . . . . . . . . 15 (𝑝 ∈ (Poly‘ℚ) → 𝑝 Fn ℂ)
9796ad2antrr 723 . . . . . . . . . . . . . 14 (((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ ((𝑝𝐴) = 0 ∧ (𝑎𝐴) = 0)) → 𝑝 Fn ℂ)
9846ffnd 6601 . . . . . . . . . . . . . . 15 (𝑎 ∈ (Poly‘ℚ) → 𝑎 Fn ℂ)
9998ad2antlr 724 . . . . . . . . . . . . . 14 (((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ ((𝑝𝐴) = 0 ∧ (𝑎𝐴) = 0)) → 𝑎 Fn ℂ)
10049a1i 11 . . . . . . . . . . . . . 14 (((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ ((𝑝𝐴) = 0 ∧ (𝑎𝐴) = 0)) → ℂ ∈ V)
101 simplrl 774 . . . . . . . . . . . . . 14 ((((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ ((𝑝𝐴) = 0 ∧ (𝑎𝐴) = 0)) ∧ 𝐴 ∈ ℂ) → (𝑝𝐴) = 0)
102 simplrr 775 . . . . . . . . . . . . . 14 ((((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ ((𝑝𝐴) = 0 ∧ (𝑎𝐴) = 0)) ∧ 𝐴 ∈ ℂ) → (𝑎𝐴) = 0)
10397, 99, 100, 100, 51, 101, 102ofval 7544 . . . . . . . . . . . . 13 ((((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ ((𝑝𝐴) = 0 ∧ (𝑎𝐴) = 0)) ∧ 𝐴 ∈ ℂ) → ((𝑝f𝑎)‘𝐴) = (0 − 0))
10441, 103sylan2 593 . . . . . . . . . . . 12 ((((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ ((𝑝𝐴) = 0 ∧ (𝑎𝐴) = 0)) ∧ 𝐴 ∈ 𝔸) → ((𝑝f𝑎)‘𝐴) = (0 − 0))
105 0m0e0 12093 . . . . . . . . . . . 12 (0 − 0) = 0
106104, 105eqtrdi 2794 . . . . . . . . . . 11 ((((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ ((𝑝𝐴) = 0 ∧ (𝑎𝐴) = 0)) ∧ 𝐴 ∈ 𝔸) → ((𝑝f𝑎)‘𝐴) = 0)
107106ex 413 . . . . . . . . . 10 (((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ ((𝑝𝐴) = 0 ∧ (𝑎𝐴) = 0)) → (𝐴 ∈ 𝔸 → ((𝑝f𝑎)‘𝐴) = 0))
10894, 107sylan2 593 . . . . . . . . 9 (((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (𝐴 ∈ 𝔸 → ((𝑝f𝑎)‘𝐴) = 0))
109108com12 32 . . . . . . . 8 (𝐴 ∈ 𝔸 → (((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → ((𝑝f𝑎)‘𝐴) = 0))
110109impl 456 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → ((𝑝f𝑎)‘𝐴) = 0)
111 simpll 764 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → 𝐴 ∈ 𝔸)
112 simpl 483 . . . . . . . . . 10 ((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) → 𝑝 ∈ (Poly‘ℚ))
113 simpr 485 . . . . . . . . . 10 ((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) → 𝑎 ∈ (Poly‘ℚ))
11426adantl 482 . . . . . . . . . 10 (((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ (𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ)) → (𝑏 + 𝑐) ∈ ℚ)
11528adantl 482 . . . . . . . . . 10 (((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ (𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ)) → (𝑏 · 𝑐) ∈ ℚ)
116 1z 12350 . . . . . . . . . . . 12 1 ∈ ℤ
117 zq 12694 . . . . . . . . . . . 12 (1 ∈ ℤ → 1 ∈ ℚ)
118 qnegcl 12706 . . . . . . . . . . . 12 (1 ∈ ℚ → -1 ∈ ℚ)
119116, 117, 118mp2b 10 . . . . . . . . . . 11 -1 ∈ ℚ
120119a1i 11 . . . . . . . . . 10 ((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) → -1 ∈ ℚ)
121112, 113, 114, 115, 120plysub 25380 . . . . . . . . 9 ((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) → (𝑝f𝑎) ∈ (Poly‘ℚ))
122121ad2antlr 724 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (𝑝f𝑎) ∈ (Poly‘ℚ))
123 simplrl 774 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → 𝑝 ∈ (Poly‘ℚ))
124 simplrr 775 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → 𝑎 ∈ (Poly‘ℚ))
125 simprr1 1220 . . . . . . . . . . 11 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (deg‘𝑎) = (degAA𝐴))
126 simprl1 1217 . . . . . . . . . . 11 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (deg‘𝑝) = (degAA𝐴))
127125, 126eqtr4d 2781 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (deg‘𝑎) = (deg‘𝑝))
12862ad2antrr 723 . . . . . . . . . . 11 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (degAA𝐴) ∈ ℕ)
129126, 128eqeltrd 2839 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (deg‘𝑝) ∈ ℕ)
130 simprl3 1219 . . . . . . . . . . 11 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → ((coeff‘𝑝)‘(degAA𝐴)) = 1)
131126fveq2d 6778 . . . . . . . . . . 11 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → ((coeff‘𝑝)‘(deg‘𝑝)) = ((coeff‘𝑝)‘(degAA𝐴)))
132126fveq2d 6778 . . . . . . . . . . . 12 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → ((coeff‘𝑎)‘(deg‘𝑝)) = ((coeff‘𝑎)‘(degAA𝐴)))
133 simprr3 1222 . . . . . . . . . . . 12 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → ((coeff‘𝑎)‘(degAA𝐴)) = 1)
134132, 133eqtrd 2778 . . . . . . . . . . 11 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → ((coeff‘𝑎)‘(deg‘𝑝)) = 1)
135130, 131, 1343eqtr4d 2788 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → ((coeff‘𝑝)‘(deg‘𝑝)) = ((coeff‘𝑎)‘(deg‘𝑝)))
136 eqid 2738 . . . . . . . . . . 11 (deg‘𝑝) = (deg‘𝑝)
137136dgrsub2 40960 . . . . . . . . . 10 (((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ ((deg‘𝑎) = (deg‘𝑝) ∧ (deg‘𝑝) ∈ ℕ ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = ((coeff‘𝑎)‘(deg‘𝑝)))) → (deg‘(𝑝f𝑎)) < (deg‘𝑝))
138123, 124, 127, 129, 135, 137syl23anc 1376 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (deg‘(𝑝f𝑎)) < (deg‘𝑝))
139138, 126breqtrd 5100 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (deg‘(𝑝f𝑎)) < (degAA𝐴))
140 dgraa0p 40974 . . . . . . . 8 ((𝐴 ∈ 𝔸 ∧ (𝑝f𝑎) ∈ (Poly‘ℚ) ∧ (deg‘(𝑝f𝑎)) < (degAA𝐴)) → (((𝑝f𝑎)‘𝐴) = 0 ↔ (𝑝f𝑎) = 0𝑝))
141111, 122, 139, 140syl3anc 1370 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (((𝑝f𝑎)‘𝐴) = 0 ↔ (𝑝f𝑎) = 0𝑝))
142110, 141mpbid 231 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (𝑝f𝑎) = 0𝑝)
143 df-0p 24834 . . . . . 6 0𝑝 = (ℂ × {0})
144142, 143eqtrdi 2794 . . . . 5 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (𝑝f𝑎) = (ℂ × {0}))
145 ofsubeq0 11970 . . . . . . . 8 ((ℂ ∈ V ∧ 𝑝:ℂ⟶ℂ ∧ 𝑎:ℂ⟶ℂ) → ((𝑝f𝑎) = (ℂ × {0}) ↔ 𝑝 = 𝑎))
14649, 145mp3an1 1447 . . . . . . 7 ((𝑝:ℂ⟶ℂ ∧ 𝑎:ℂ⟶ℂ) → ((𝑝f𝑎) = (ℂ × {0}) ↔ 𝑝 = 𝑎))
14795, 46, 146syl2an 596 . . . . . 6 ((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) → ((𝑝f𝑎) = (ℂ × {0}) ↔ 𝑝 = 𝑎))
148147ad2antlr 724 . . . . 5 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → ((𝑝f𝑎) = (ℂ × {0}) ↔ 𝑝 = 𝑎))
149144, 148mpbid 231 . . . 4 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → 𝑝 = 𝑎)
150149ex 413 . . 3 ((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) → ((((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1)) → 𝑝 = 𝑎))
151150ralrimivva 3123 . 2 (𝐴 ∈ 𝔸 → ∀𝑝 ∈ (Poly‘ℚ)∀𝑎 ∈ (Poly‘ℚ)((((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1)) → 𝑝 = 𝑎))
152 fveqeq2 6783 . . . 4 (𝑝 = 𝑎 → ((deg‘𝑝) = (degAA𝐴) ↔ (deg‘𝑎) = (degAA𝐴)))
153 fveq1 6773 . . . . 5 (𝑝 = 𝑎 → (𝑝𝐴) = (𝑎𝐴))
154153eqeq1d 2740 . . . 4 (𝑝 = 𝑎 → ((𝑝𝐴) = 0 ↔ (𝑎𝐴) = 0))
155 fveq2 6774 . . . . . 6 (𝑝 = 𝑎 → (coeff‘𝑝) = (coeff‘𝑎))
156155fveq1d 6776 . . . . 5 (𝑝 = 𝑎 → ((coeff‘𝑝)‘(degAA𝐴)) = ((coeff‘𝑎)‘(degAA𝐴)))
157156eqeq1d 2740 . . . 4 (𝑝 = 𝑎 → (((coeff‘𝑝)‘(degAA𝐴)) = 1 ↔ ((coeff‘𝑎)‘(degAA𝐴)) = 1))
158152, 154, 1573anbi123d 1435 . . 3 (𝑝 = 𝑎 → (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ↔ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1)))
159158reu4 3666 . 2 (∃!𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ↔ (∃𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ∀𝑝 ∈ (Poly‘ℚ)∀𝑎 ∈ (Poly‘ℚ)((((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1)) → 𝑝 = 𝑎)))
16091, 151, 159sylanbrc 583 1 (𝐴 ∈ 𝔸 → ∃!𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  ∃!wreu 3066  Vcvv 3432  cdif 3884  wss 3887  {csn 4561   class class class wbr 5074   × cxp 5587   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  f cof 7531  cc 10869  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cmin 11205  -cneg 11206   / cdiv 11632  cn 11973  0cn0 12233  cz 12319  cq 12688  0𝑝c0p 24833  Polycply 25345  coeffccoe 25347  degcdgr 25348  𝔸caa 25474  degAAcdgraa 40965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-sum 15398  df-0p 24834  df-ply 25349  df-coe 25351  df-dgr 25352  df-aa 25475  df-dgraa 40967
This theorem is referenced by:  mpaalem  40977
  Copyright terms: Public domain W3C validator