| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | qsscn 13003 | . . . . . 6
⊢ ℚ
⊆ ℂ | 
| 2 |  | eldifi 4130 | . . . . . . . . . 10
⊢ (𝑎 ∈ ((Poly‘ℚ)
∖ {0𝑝}) → 𝑎 ∈
(Poly‘ℚ)) | 
| 3 | 2 | ad2antlr 727 | . . . . . . . . 9
⊢ (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ)
∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA‘𝐴) ∧ (𝑎‘𝐴) = 0)) → 𝑎 ∈
(Poly‘ℚ)) | 
| 4 |  | zssq 12999 | . . . . . . . . . 10
⊢ ℤ
⊆ ℚ | 
| 5 |  | 0z 12626 | . . . . . . . . . 10
⊢ 0 ∈
ℤ | 
| 6 | 4, 5 | sselii 3979 | . . . . . . . . 9
⊢ 0 ∈
ℚ | 
| 7 |  | eqid 2736 | . . . . . . . . . 10
⊢
(coeff‘𝑎) =
(coeff‘𝑎) | 
| 8 | 7 | coef2 26271 | . . . . . . . . 9
⊢ ((𝑎 ∈ (Poly‘ℚ)
∧ 0 ∈ ℚ) → (coeff‘𝑎):ℕ0⟶ℚ) | 
| 9 | 3, 6, 8 | sylancl 586 | . . . . . . . 8
⊢ (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ)
∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA‘𝐴) ∧ (𝑎‘𝐴) = 0)) → (coeff‘𝑎):ℕ0⟶ℚ) | 
| 10 |  | dgrcl 26273 | . . . . . . . . 9
⊢ (𝑎 ∈ (Poly‘ℚ)
→ (deg‘𝑎) ∈
ℕ0) | 
| 11 | 3, 10 | syl 17 | . . . . . . . 8
⊢ (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ)
∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA‘𝐴) ∧ (𝑎‘𝐴) = 0)) → (deg‘𝑎) ∈
ℕ0) | 
| 12 | 9, 11 | ffvelcdmd 7104 | . . . . . . 7
⊢ (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ)
∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA‘𝐴) ∧ (𝑎‘𝐴) = 0)) → ((coeff‘𝑎)‘(deg‘𝑎)) ∈
ℚ) | 
| 13 |  | eldifsni 4789 | . . . . . . . . 9
⊢ (𝑎 ∈ ((Poly‘ℚ)
∖ {0𝑝}) → 𝑎 ≠ 0𝑝) | 
| 14 | 13 | ad2antlr 727 | . . . . . . . 8
⊢ (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ)
∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA‘𝐴) ∧ (𝑎‘𝐴) = 0)) → 𝑎 ≠ 0𝑝) | 
| 15 |  | eqid 2736 | . . . . . . . . . . 11
⊢
(deg‘𝑎) =
(deg‘𝑎) | 
| 16 | 15, 7 | dgreq0 26306 | . . . . . . . . . 10
⊢ (𝑎 ∈ (Poly‘ℚ)
→ (𝑎 =
0𝑝 ↔ ((coeff‘𝑎)‘(deg‘𝑎)) = 0)) | 
| 17 | 16 | necon3bid 2984 | . . . . . . . . 9
⊢ (𝑎 ∈ (Poly‘ℚ)
→ (𝑎 ≠
0𝑝 ↔ ((coeff‘𝑎)‘(deg‘𝑎)) ≠ 0)) | 
| 18 | 3, 17 | syl 17 | . . . . . . . 8
⊢ (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ)
∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA‘𝐴) ∧ (𝑎‘𝐴) = 0)) → (𝑎 ≠ 0𝑝 ↔
((coeff‘𝑎)‘(deg‘𝑎)) ≠ 0)) | 
| 19 | 14, 18 | mpbid 232 | . . . . . . 7
⊢ (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ)
∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA‘𝐴) ∧ (𝑎‘𝐴) = 0)) → ((coeff‘𝑎)‘(deg‘𝑎)) ≠ 0) | 
| 20 |  | qreccl 13012 | . . . . . . 7
⊢
((((coeff‘𝑎)‘(deg‘𝑎)) ∈ ℚ ∧ ((coeff‘𝑎)‘(deg‘𝑎)) ≠ 0) → (1 /
((coeff‘𝑎)‘(deg‘𝑎))) ∈ ℚ) | 
| 21 | 12, 19, 20 | syl2anc 584 | . . . . . 6
⊢ (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ)
∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA‘𝐴) ∧ (𝑎‘𝐴) = 0)) → (1 / ((coeff‘𝑎)‘(deg‘𝑎))) ∈
ℚ) | 
| 22 |  | plyconst 26246 | . . . . . 6
⊢ ((ℚ
⊆ ℂ ∧ (1 / ((coeff‘𝑎)‘(deg‘𝑎))) ∈ ℚ) → (ℂ ×
{(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∈
(Poly‘ℚ)) | 
| 23 | 1, 21, 22 | sylancr 587 | . . . . 5
⊢ (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ)
∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA‘𝐴) ∧ (𝑎‘𝐴) = 0)) → (ℂ × {(1 /
((coeff‘𝑎)‘(deg‘𝑎)))}) ∈
(Poly‘ℚ)) | 
| 24 |  | simpl 482 | . . . . . 6
⊢
(((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))
→ (ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∈
(Poly‘ℚ)) | 
| 25 |  | simpr 484 | . . . . . 6
⊢
(((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))
→ 𝑎 ∈
(Poly‘ℚ)) | 
| 26 |  | qaddcl 13008 | . . . . . . 7
⊢ ((𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ) → (𝑏 + 𝑐) ∈ ℚ) | 
| 27 | 26 | adantl 481 | . . . . . 6
⊢
((((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))
∧ (𝑏 ∈ ℚ
∧ 𝑐 ∈ ℚ))
→ (𝑏 + 𝑐) ∈
ℚ) | 
| 28 |  | qmulcl 13010 | . . . . . . 7
⊢ ((𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ) → (𝑏 · 𝑐) ∈ ℚ) | 
| 29 | 28 | adantl 481 | . . . . . 6
⊢
((((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))
∧ (𝑏 ∈ ℚ
∧ 𝑐 ∈ ℚ))
→ (𝑏 · 𝑐) ∈
ℚ) | 
| 30 | 24, 25, 27, 29 | plymul 26258 | . . . . 5
⊢
(((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))
→ ((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) ∈
(Poly‘ℚ)) | 
| 31 | 23, 3, 30 | syl2anc 584 | . . . 4
⊢ (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ)
∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA‘𝐴) ∧ (𝑎‘𝐴) = 0)) → ((ℂ × {(1 /
((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) ∈
(Poly‘ℚ)) | 
| 32 | 7 | coef3 26272 | . . . . . . . . 9
⊢ (𝑎 ∈ (Poly‘ℚ)
→ (coeff‘𝑎):ℕ0⟶ℂ) | 
| 33 | 3, 32 | syl 17 | . . . . . . . 8
⊢ (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ)
∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA‘𝐴) ∧ (𝑎‘𝐴) = 0)) → (coeff‘𝑎):ℕ0⟶ℂ) | 
| 34 | 33, 11 | ffvelcdmd 7104 | . . . . . . 7
⊢ (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ)
∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA‘𝐴) ∧ (𝑎‘𝐴) = 0)) → ((coeff‘𝑎)‘(deg‘𝑎)) ∈
ℂ) | 
| 35 | 34, 19 | reccld 12037 | . . . . . 6
⊢ (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ)
∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA‘𝐴) ∧ (𝑎‘𝐴) = 0)) → (1 / ((coeff‘𝑎)‘(deg‘𝑎))) ∈
ℂ) | 
| 36 | 34, 19 | recne0d 12038 | . . . . . 6
⊢ (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ)
∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA‘𝐴) ∧ (𝑎‘𝐴) = 0)) → (1 / ((coeff‘𝑎)‘(deg‘𝑎))) ≠ 0) | 
| 37 |  | dgrmulc 26312 | . . . . . 6
⊢ (((1 /
((coeff‘𝑎)‘(deg‘𝑎))) ∈ ℂ ∧ (1 /
((coeff‘𝑎)‘(deg‘𝑎))) ≠ 0 ∧ 𝑎 ∈ (Poly‘ℚ)) →
(deg‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)) = (deg‘𝑎)) | 
| 38 | 35, 36, 3, 37 | syl3anc 1372 | . . . . 5
⊢ (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ)
∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA‘𝐴) ∧ (𝑎‘𝐴) = 0)) → (deg‘((ℂ ×
{(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)) = (deg‘𝑎)) | 
| 39 |  | simprl 770 | . . . . 5
⊢ (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ)
∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA‘𝐴) ∧ (𝑎‘𝐴) = 0)) → (deg‘𝑎) = (degAA‘𝐴)) | 
| 40 | 38, 39 | eqtrd 2776 | . . . 4
⊢ (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ)
∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA‘𝐴) ∧ (𝑎‘𝐴) = 0)) → (deg‘((ℂ ×
{(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)) =
(degAA‘𝐴)) | 
| 41 |  | aacn 26360 | . . . . . . 7
⊢ (𝐴 ∈ 𝔸 → 𝐴 ∈
ℂ) | 
| 42 | 41 | ad2antrr 726 | . . . . . 6
⊢ (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ)
∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA‘𝐴) ∧ (𝑎‘𝐴) = 0)) → 𝐴 ∈ ℂ) | 
| 43 |  | ovex 7465 | . . . . . . . 8
⊢ (1 /
((coeff‘𝑎)‘(deg‘𝑎))) ∈ V | 
| 44 |  | fnconstg 6795 | . . . . . . . 8
⊢ ((1 /
((coeff‘𝑎)‘(deg‘𝑎))) ∈ V → (ℂ × {(1 /
((coeff‘𝑎)‘(deg‘𝑎)))}) Fn ℂ) | 
| 45 | 43, 44 | mp1i 13 | . . . . . . 7
⊢ (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ)
∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA‘𝐴) ∧ (𝑎‘𝐴) = 0)) → (ℂ × {(1 /
((coeff‘𝑎)‘(deg‘𝑎)))}) Fn ℂ) | 
| 46 |  | plyf 26238 | . . . . . . . 8
⊢ (𝑎 ∈ (Poly‘ℚ)
→ 𝑎:ℂ⟶ℂ) | 
| 47 |  | ffn 6735 | . . . . . . . 8
⊢ (𝑎:ℂ⟶ℂ →
𝑎 Fn
ℂ) | 
| 48 | 3, 46, 47 | 3syl 18 | . . . . . . 7
⊢ (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ)
∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA‘𝐴) ∧ (𝑎‘𝐴) = 0)) → 𝑎 Fn ℂ) | 
| 49 |  | cnex 11237 | . . . . . . . 8
⊢ ℂ
∈ V | 
| 50 | 49 | a1i 11 | . . . . . . 7
⊢ (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ)
∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA‘𝐴) ∧ (𝑎‘𝐴) = 0)) → ℂ ∈
V) | 
| 51 |  | inidm 4226 | . . . . . . 7
⊢ (ℂ
∩ ℂ) = ℂ | 
| 52 | 43 | fvconst2 7225 | . . . . . . . 8
⊢ (𝐴 ∈ ℂ → ((ℂ
× {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))})‘𝐴) = (1 / ((coeff‘𝑎)‘(deg‘𝑎)))) | 
| 53 | 52 | adantl 481 | . . . . . . 7
⊢ ((((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ)
∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA‘𝐴) ∧ (𝑎‘𝐴) = 0)) ∧ 𝐴 ∈ ℂ) → ((ℂ ×
{(1 / ((coeff‘𝑎)‘(deg‘𝑎)))})‘𝐴) = (1 / ((coeff‘𝑎)‘(deg‘𝑎)))) | 
| 54 |  | simplrr 777 | . . . . . . 7
⊢ ((((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ)
∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA‘𝐴) ∧ (𝑎‘𝐴) = 0)) ∧ 𝐴 ∈ ℂ) → (𝑎‘𝐴) = 0) | 
| 55 | 45, 48, 50, 50, 51, 53, 54 | ofval 7709 | . . . . . 6
⊢ ((((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ)
∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA‘𝐴) ∧ (𝑎‘𝐴) = 0)) ∧ 𝐴 ∈ ℂ) → (((ℂ ×
{(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)‘𝐴) = ((1 / ((coeff‘𝑎)‘(deg‘𝑎))) · 0)) | 
| 56 | 42, 55 | mpdan 687 | . . . . 5
⊢ (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ)
∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA‘𝐴) ∧ (𝑎‘𝐴) = 0)) → (((ℂ × {(1 /
((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)‘𝐴) = ((1 / ((coeff‘𝑎)‘(deg‘𝑎))) · 0)) | 
| 57 | 35 | mul01d 11461 | . . . . 5
⊢ (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ)
∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA‘𝐴) ∧ (𝑎‘𝐴) = 0)) → ((1 / ((coeff‘𝑎)‘(deg‘𝑎))) · 0) =
0) | 
| 58 | 56, 57 | eqtrd 2776 | . . . 4
⊢ (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ)
∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA‘𝐴) ∧ (𝑎‘𝐴) = 0)) → (((ℂ × {(1 /
((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)‘𝐴) = 0) | 
| 59 |  | coemulc 26295 | . . . . . . 7
⊢ (((1 /
((coeff‘𝑎)‘(deg‘𝑎))) ∈ ℂ ∧ 𝑎 ∈ (Poly‘ℚ)) →
(coeff‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)) = ((ℕ0
× {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f ·
(coeff‘𝑎))) | 
| 60 | 35, 3, 59 | syl2anc 584 | . . . . . 6
⊢ (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ)
∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA‘𝐴) ∧ (𝑎‘𝐴) = 0)) → (coeff‘((ℂ
× {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)) = ((ℕ0
× {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f ·
(coeff‘𝑎))) | 
| 61 | 60 | fveq1d 6907 | . . . . 5
⊢ (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ)
∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA‘𝐴) ∧ (𝑎‘𝐴) = 0)) → ((coeff‘((ℂ
× {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎))‘(degAA‘𝐴)) = (((ℕ0
× {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f ·
(coeff‘𝑎))‘(degAA‘𝐴))) | 
| 62 |  | dgraacl 43163 | . . . . . . . 8
⊢ (𝐴 ∈ 𝔸 →
(degAA‘𝐴)
∈ ℕ) | 
| 63 | 62 | ad2antrr 726 | . . . . . . 7
⊢ (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ)
∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA‘𝐴) ∧ (𝑎‘𝐴) = 0)) → (degAA‘𝐴) ∈
ℕ) | 
| 64 | 63 | nnnn0d 12589 | . . . . . 6
⊢ (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ)
∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA‘𝐴) ∧ (𝑎‘𝐴) = 0)) → (degAA‘𝐴) ∈
ℕ0) | 
| 65 |  | fnconstg 6795 | . . . . . . . 8
⊢ ((1 /
((coeff‘𝑎)‘(deg‘𝑎))) ∈ V → (ℕ0
× {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) Fn
ℕ0) | 
| 66 | 43, 65 | mp1i 13 | . . . . . . 7
⊢ (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ)
∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA‘𝐴) ∧ (𝑎‘𝐴) = 0)) → (ℕ0 ×
{(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) Fn
ℕ0) | 
| 67 | 33 | ffnd 6736 | . . . . . . 7
⊢ (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ)
∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA‘𝐴) ∧ (𝑎‘𝐴) = 0)) → (coeff‘𝑎) Fn
ℕ0) | 
| 68 |  | nn0ex 12534 | . . . . . . . 8
⊢
ℕ0 ∈ V | 
| 69 | 68 | a1i 11 | . . . . . . 7
⊢ (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ)
∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA‘𝐴) ∧ (𝑎‘𝐴) = 0)) → ℕ0 ∈
V) | 
| 70 |  | inidm 4226 | . . . . . . 7
⊢
(ℕ0 ∩ ℕ0) =
ℕ0 | 
| 71 | 43 | fvconst2 7225 | . . . . . . . 8
⊢
((degAA‘𝐴) ∈ ℕ0 →
((ℕ0 × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))})‘(degAA‘𝐴)) = (1 / ((coeff‘𝑎)‘(deg‘𝑎)))) | 
| 72 | 71 | adantl 481 | . . . . . . 7
⊢ ((((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ)
∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA‘𝐴) ∧ (𝑎‘𝐴) = 0)) ∧ (degAA‘𝐴) ∈ ℕ0)
→ ((ℕ0 × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))})‘(degAA‘𝐴)) = (1 / ((coeff‘𝑎)‘(deg‘𝑎)))) | 
| 73 |  | simplrl 776 | . . . . . . . . 9
⊢ ((((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ)
∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA‘𝐴) ∧ (𝑎‘𝐴) = 0)) ∧ (degAA‘𝐴) ∈ ℕ0)
→ (deg‘𝑎) =
(degAA‘𝐴)) | 
| 74 | 73 | eqcomd 2742 | . . . . . . . 8
⊢ ((((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ)
∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA‘𝐴) ∧ (𝑎‘𝐴) = 0)) ∧ (degAA‘𝐴) ∈ ℕ0)
→ (degAA‘𝐴) = (deg‘𝑎)) | 
| 75 | 74 | fveq2d 6909 | . . . . . . 7
⊢ ((((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ)
∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA‘𝐴) ∧ (𝑎‘𝐴) = 0)) ∧ (degAA‘𝐴) ∈ ℕ0)
→ ((coeff‘𝑎)‘(degAA‘𝐴)) = ((coeff‘𝑎)‘(deg‘𝑎))) | 
| 76 | 66, 67, 69, 69, 70, 72, 75 | ofval 7709 | . . . . . 6
⊢ ((((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ)
∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA‘𝐴) ∧ (𝑎‘𝐴) = 0)) ∧ (degAA‘𝐴) ∈ ℕ0)
→ (((ℕ0 × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f ·
(coeff‘𝑎))‘(degAA‘𝐴)) = ((1 / ((coeff‘𝑎)‘(deg‘𝑎))) · ((coeff‘𝑎)‘(deg‘𝑎)))) | 
| 77 | 64, 76 | mpdan 687 | . . . . 5
⊢ (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ)
∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA‘𝐴) ∧ (𝑎‘𝐴) = 0)) → (((ℕ0
× {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f ·
(coeff‘𝑎))‘(degAA‘𝐴)) = ((1 / ((coeff‘𝑎)‘(deg‘𝑎))) · ((coeff‘𝑎)‘(deg‘𝑎)))) | 
| 78 | 34, 19 | recid2d 12040 | . . . . 5
⊢ (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ)
∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA‘𝐴) ∧ (𝑎‘𝐴) = 0)) → ((1 / ((coeff‘𝑎)‘(deg‘𝑎))) · ((coeff‘𝑎)‘(deg‘𝑎))) = 1) | 
| 79 | 61, 77, 78 | 3eqtrd 2780 | . . . 4
⊢ (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ)
∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA‘𝐴) ∧ (𝑎‘𝐴) = 0)) → ((coeff‘((ℂ
× {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎))‘(degAA‘𝐴)) = 1) | 
| 80 |  | fveqeq2 6914 | . . . . . 6
⊢ (𝑝 = ((ℂ × {(1 /
((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) → ((deg‘𝑝) =
(degAA‘𝐴)
↔ (deg‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)) =
(degAA‘𝐴))) | 
| 81 |  | fveq1 6904 | . . . . . . 7
⊢ (𝑝 = ((ℂ × {(1 /
((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) → (𝑝‘𝐴) = (((ℂ × {(1 /
((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)‘𝐴)) | 
| 82 | 81 | eqeq1d 2738 | . . . . . 6
⊢ (𝑝 = ((ℂ × {(1 /
((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) → ((𝑝‘𝐴) = 0 ↔ (((ℂ × {(1 /
((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)‘𝐴) = 0)) | 
| 83 |  | fveq2 6905 | . . . . . . . 8
⊢ (𝑝 = ((ℂ × {(1 /
((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) → (coeff‘𝑝) = (coeff‘((ℂ
× {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎))) | 
| 84 | 83 | fveq1d 6907 | . . . . . . 7
⊢ (𝑝 = ((ℂ × {(1 /
((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) → ((coeff‘𝑝)‘(degAA‘𝐴)) = ((coeff‘((ℂ
× {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎))‘(degAA‘𝐴))) | 
| 85 | 84 | eqeq1d 2738 | . . . . . 6
⊢ (𝑝 = ((ℂ × {(1 /
((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) → (((coeff‘𝑝)‘(degAA‘𝐴)) = 1 ↔
((coeff‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎))‘(degAA‘𝐴)) = 1)) | 
| 86 | 80, 82, 85 | 3anbi123d 1437 | . . . . 5
⊢ (𝑝 = ((ℂ × {(1 /
((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) → (((deg‘𝑝) =
(degAA‘𝐴)
∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1) ↔
((deg‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)) =
(degAA‘𝐴)
∧ (((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)‘𝐴) = 0 ∧ ((coeff‘((ℂ ×
{(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎))‘(degAA‘𝐴)) = 1))) | 
| 87 | 86 | rspcev 3621 | . . . 4
⊢
((((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) ∈ (Poly‘ℚ)
∧ ((deg‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)) =
(degAA‘𝐴)
∧ (((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)‘𝐴) = 0 ∧ ((coeff‘((ℂ ×
{(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎))‘(degAA‘𝐴)) = 1)) → ∃𝑝 ∈
(Poly‘ℚ)((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1)) | 
| 88 | 31, 40, 58, 79, 87 | syl13anc 1373 | . . 3
⊢ (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ)
∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA‘𝐴) ∧ (𝑎‘𝐴) = 0)) → ∃𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) =
(degAA‘𝐴)
∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1)) | 
| 89 |  | dgraalem 43162 | . . . 4
⊢ (𝐴 ∈ 𝔸 →
((degAA‘𝐴)
∈ ℕ ∧ ∃𝑎 ∈ ((Poly‘ℚ) ∖
{0𝑝})((deg‘𝑎) = (degAA‘𝐴) ∧ (𝑎‘𝐴) = 0))) | 
| 90 | 89 | simprd 495 | . . 3
⊢ (𝐴 ∈ 𝔸 →
∃𝑎 ∈
((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑎) =
(degAA‘𝐴)
∧ (𝑎‘𝐴) = 0)) | 
| 91 | 88, 90 | r19.29a 3161 | . 2
⊢ (𝐴 ∈ 𝔸 →
∃𝑝 ∈
(Poly‘ℚ)((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1)) | 
| 92 |  | simp2 1137 | . . . . . . . . . . 11
⊢
(((deg‘𝑝) =
(degAA‘𝐴)
∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1) → (𝑝‘𝐴) = 0) | 
| 93 |  | simp2 1137 | . . . . . . . . . . 11
⊢
(((deg‘𝑎) =
(degAA‘𝐴)
∧ (𝑎‘𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA‘𝐴)) = 1) → (𝑎‘𝐴) = 0) | 
| 94 | 92, 93 | anim12i 613 | . . . . . . . . . 10
⊢
((((deg‘𝑝) =
(degAA‘𝐴)
∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1) ∧ ((deg‘𝑎) =
(degAA‘𝐴)
∧ (𝑎‘𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA‘𝐴)) = 1)) → ((𝑝‘𝐴) = 0 ∧ (𝑎‘𝐴) = 0)) | 
| 95 |  | plyf 26238 | . . . . . . . . . . . . . . . 16
⊢ (𝑝 ∈ (Poly‘ℚ)
→ 𝑝:ℂ⟶ℂ) | 
| 96 | 95 | ffnd 6736 | . . . . . . . . . . . . . . 15
⊢ (𝑝 ∈ (Poly‘ℚ)
→ 𝑝 Fn
ℂ) | 
| 97 | 96 | ad2antrr 726 | . . . . . . . . . . . . . 14
⊢ (((𝑝 ∈ (Poly‘ℚ)
∧ 𝑎 ∈
(Poly‘ℚ)) ∧ ((𝑝‘𝐴) = 0 ∧ (𝑎‘𝐴) = 0)) → 𝑝 Fn ℂ) | 
| 98 | 46 | ffnd 6736 | . . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ (Poly‘ℚ)
→ 𝑎 Fn
ℂ) | 
| 99 | 98 | ad2antlr 727 | . . . . . . . . . . . . . 14
⊢ (((𝑝 ∈ (Poly‘ℚ)
∧ 𝑎 ∈
(Poly‘ℚ)) ∧ ((𝑝‘𝐴) = 0 ∧ (𝑎‘𝐴) = 0)) → 𝑎 Fn ℂ) | 
| 100 | 49 | a1i 11 | . . . . . . . . . . . . . 14
⊢ (((𝑝 ∈ (Poly‘ℚ)
∧ 𝑎 ∈
(Poly‘ℚ)) ∧ ((𝑝‘𝐴) = 0 ∧ (𝑎‘𝐴) = 0)) → ℂ ∈
V) | 
| 101 |  | simplrl 776 | . . . . . . . . . . . . . 14
⊢ ((((𝑝 ∈ (Poly‘ℚ)
∧ 𝑎 ∈
(Poly‘ℚ)) ∧ ((𝑝‘𝐴) = 0 ∧ (𝑎‘𝐴) = 0)) ∧ 𝐴 ∈ ℂ) → (𝑝‘𝐴) = 0) | 
| 102 |  | simplrr 777 | . . . . . . . . . . . . . 14
⊢ ((((𝑝 ∈ (Poly‘ℚ)
∧ 𝑎 ∈
(Poly‘ℚ)) ∧ ((𝑝‘𝐴) = 0 ∧ (𝑎‘𝐴) = 0)) ∧ 𝐴 ∈ ℂ) → (𝑎‘𝐴) = 0) | 
| 103 | 97, 99, 100, 100, 51, 101, 102 | ofval 7709 | . . . . . . . . . . . . 13
⊢ ((((𝑝 ∈ (Poly‘ℚ)
∧ 𝑎 ∈
(Poly‘ℚ)) ∧ ((𝑝‘𝐴) = 0 ∧ (𝑎‘𝐴) = 0)) ∧ 𝐴 ∈ ℂ) → ((𝑝 ∘f − 𝑎)‘𝐴) = (0 − 0)) | 
| 104 | 41, 103 | sylan2 593 | . . . . . . . . . . . 12
⊢ ((((𝑝 ∈ (Poly‘ℚ)
∧ 𝑎 ∈
(Poly‘ℚ)) ∧ ((𝑝‘𝐴) = 0 ∧ (𝑎‘𝐴) = 0)) ∧ 𝐴 ∈ 𝔸) → ((𝑝 ∘f −
𝑎)‘𝐴) = (0 − 0)) | 
| 105 |  | 0m0e0 12387 | . . . . . . . . . . . 12
⊢ (0
− 0) = 0 | 
| 106 | 104, 105 | eqtrdi 2792 | . . . . . . . . . . 11
⊢ ((((𝑝 ∈ (Poly‘ℚ)
∧ 𝑎 ∈
(Poly‘ℚ)) ∧ ((𝑝‘𝐴) = 0 ∧ (𝑎‘𝐴) = 0)) ∧ 𝐴 ∈ 𝔸) → ((𝑝 ∘f −
𝑎)‘𝐴) = 0) | 
| 107 | 106 | ex 412 | . . . . . . . . . 10
⊢ (((𝑝 ∈ (Poly‘ℚ)
∧ 𝑎 ∈
(Poly‘ℚ)) ∧ ((𝑝‘𝐴) = 0 ∧ (𝑎‘𝐴) = 0)) → (𝐴 ∈ 𝔸 → ((𝑝 ∘f −
𝑎)‘𝐴) = 0)) | 
| 108 | 94, 107 | sylan2 593 | . . . . . . . . 9
⊢ (((𝑝 ∈ (Poly‘ℚ)
∧ 𝑎 ∈
(Poly‘ℚ)) ∧ (((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1) ∧ ((deg‘𝑎) =
(degAA‘𝐴)
∧ (𝑎‘𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA‘𝐴)) = 1))) → (𝐴 ∈ 𝔸 → ((𝑝 ∘f −
𝑎)‘𝐴) = 0)) | 
| 109 | 108 | com12 32 | . . . . . . . 8
⊢ (𝐴 ∈ 𝔸 →
(((𝑝 ∈
(Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧
(((deg‘𝑝) =
(degAA‘𝐴)
∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1) ∧ ((deg‘𝑎) =
(degAA‘𝐴)
∧ (𝑎‘𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA‘𝐴)) = 1))) → ((𝑝 ∘f −
𝑎)‘𝐴) = 0)) | 
| 110 | 109 | impl 455 | . . . . . . 7
⊢ (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ)
∧ 𝑎 ∈
(Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1) ∧ ((deg‘𝑎) =
(degAA‘𝐴)
∧ (𝑎‘𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA‘𝐴)) = 1))) → ((𝑝 ∘f −
𝑎)‘𝐴) = 0) | 
| 111 |  | simpll 766 | . . . . . . . 8
⊢ (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ)
∧ 𝑎 ∈
(Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1) ∧ ((deg‘𝑎) =
(degAA‘𝐴)
∧ (𝑎‘𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA‘𝐴)) = 1))) → 𝐴 ∈
𝔸) | 
| 112 |  | simpl 482 | . . . . . . . . . 10
⊢ ((𝑝 ∈ (Poly‘ℚ)
∧ 𝑎 ∈
(Poly‘ℚ)) → 𝑝 ∈
(Poly‘ℚ)) | 
| 113 |  | simpr 484 | . . . . . . . . . 10
⊢ ((𝑝 ∈ (Poly‘ℚ)
∧ 𝑎 ∈
(Poly‘ℚ)) → 𝑎 ∈
(Poly‘ℚ)) | 
| 114 | 26 | adantl 481 | . . . . . . . . . 10
⊢ (((𝑝 ∈ (Poly‘ℚ)
∧ 𝑎 ∈
(Poly‘ℚ)) ∧ (𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ)) → (𝑏 + 𝑐) ∈ ℚ) | 
| 115 | 28 | adantl 481 | . . . . . . . . . 10
⊢ (((𝑝 ∈ (Poly‘ℚ)
∧ 𝑎 ∈
(Poly‘ℚ)) ∧ (𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ)) → (𝑏 · 𝑐) ∈ ℚ) | 
| 116 |  | 1z 12649 | . . . . . . . . . . . 12
⊢ 1 ∈
ℤ | 
| 117 |  | zq 12997 | . . . . . . . . . . . 12
⊢ (1 ∈
ℤ → 1 ∈ ℚ) | 
| 118 |  | qnegcl 13009 | . . . . . . . . . . . 12
⊢ (1 ∈
ℚ → -1 ∈ ℚ) | 
| 119 | 116, 117,
118 | mp2b 10 | . . . . . . . . . . 11
⊢ -1 ∈
ℚ | 
| 120 | 119 | a1i 11 | . . . . . . . . . 10
⊢ ((𝑝 ∈ (Poly‘ℚ)
∧ 𝑎 ∈
(Poly‘ℚ)) → -1 ∈ ℚ) | 
| 121 | 112, 113,
114, 115, 120 | plysub 26259 | . . . . . . . . 9
⊢ ((𝑝 ∈ (Poly‘ℚ)
∧ 𝑎 ∈
(Poly‘ℚ)) → (𝑝 ∘f − 𝑎) ∈
(Poly‘ℚ)) | 
| 122 | 121 | ad2antlr 727 | . . . . . . . 8
⊢ (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ)
∧ 𝑎 ∈
(Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1) ∧ ((deg‘𝑎) =
(degAA‘𝐴)
∧ (𝑎‘𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA‘𝐴)) = 1))) → (𝑝 ∘f −
𝑎) ∈
(Poly‘ℚ)) | 
| 123 |  | simplrl 776 | . . . . . . . . . 10
⊢ (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ)
∧ 𝑎 ∈
(Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1) ∧ ((deg‘𝑎) =
(degAA‘𝐴)
∧ (𝑎‘𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA‘𝐴)) = 1))) → 𝑝 ∈
(Poly‘ℚ)) | 
| 124 |  | simplrr 777 | . . . . . . . . . 10
⊢ (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ)
∧ 𝑎 ∈
(Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1) ∧ ((deg‘𝑎) =
(degAA‘𝐴)
∧ (𝑎‘𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA‘𝐴)) = 1))) → 𝑎 ∈
(Poly‘ℚ)) | 
| 125 |  | simprr1 1221 | . . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ)
∧ 𝑎 ∈
(Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1) ∧ ((deg‘𝑎) =
(degAA‘𝐴)
∧ (𝑎‘𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA‘𝐴)) = 1))) →
(deg‘𝑎) =
(degAA‘𝐴)) | 
| 126 |  | simprl1 1218 | . . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ)
∧ 𝑎 ∈
(Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1) ∧ ((deg‘𝑎) =
(degAA‘𝐴)
∧ (𝑎‘𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA‘𝐴)) = 1))) →
(deg‘𝑝) =
(degAA‘𝐴)) | 
| 127 | 125, 126 | eqtr4d 2779 | . . . . . . . . . 10
⊢ (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ)
∧ 𝑎 ∈
(Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1) ∧ ((deg‘𝑎) =
(degAA‘𝐴)
∧ (𝑎‘𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA‘𝐴)) = 1))) →
(deg‘𝑎) =
(deg‘𝑝)) | 
| 128 | 62 | ad2antrr 726 | . . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ)
∧ 𝑎 ∈
(Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1) ∧ ((deg‘𝑎) =
(degAA‘𝐴)
∧ (𝑎‘𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA‘𝐴)) = 1))) →
(degAA‘𝐴)
∈ ℕ) | 
| 129 | 126, 128 | eqeltrd 2840 | . . . . . . . . . 10
⊢ (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ)
∧ 𝑎 ∈
(Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1) ∧ ((deg‘𝑎) =
(degAA‘𝐴)
∧ (𝑎‘𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA‘𝐴)) = 1))) →
(deg‘𝑝) ∈
ℕ) | 
| 130 |  | simprl3 1220 | . . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ)
∧ 𝑎 ∈
(Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1) ∧ ((deg‘𝑎) =
(degAA‘𝐴)
∧ (𝑎‘𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA‘𝐴)) = 1))) →
((coeff‘𝑝)‘(degAA‘𝐴)) = 1) | 
| 131 | 126 | fveq2d 6909 | . . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ)
∧ 𝑎 ∈
(Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1) ∧ ((deg‘𝑎) =
(degAA‘𝐴)
∧ (𝑎‘𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA‘𝐴)) = 1))) →
((coeff‘𝑝)‘(deg‘𝑝)) = ((coeff‘𝑝)‘(degAA‘𝐴))) | 
| 132 | 126 | fveq2d 6909 | . . . . . . . . . . . 12
⊢ (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ)
∧ 𝑎 ∈
(Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1) ∧ ((deg‘𝑎) =
(degAA‘𝐴)
∧ (𝑎‘𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA‘𝐴)) = 1))) →
((coeff‘𝑎)‘(deg‘𝑝)) = ((coeff‘𝑎)‘(degAA‘𝐴))) | 
| 133 |  | simprr3 1223 | . . . . . . . . . . . 12
⊢ (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ)
∧ 𝑎 ∈
(Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1) ∧ ((deg‘𝑎) =
(degAA‘𝐴)
∧ (𝑎‘𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA‘𝐴)) = 1))) →
((coeff‘𝑎)‘(degAA‘𝐴)) = 1) | 
| 134 | 132, 133 | eqtrd 2776 | . . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ)
∧ 𝑎 ∈
(Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1) ∧ ((deg‘𝑎) =
(degAA‘𝐴)
∧ (𝑎‘𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA‘𝐴)) = 1))) →
((coeff‘𝑎)‘(deg‘𝑝)) = 1) | 
| 135 | 130, 131,
134 | 3eqtr4d 2786 | . . . . . . . . . 10
⊢ (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ)
∧ 𝑎 ∈
(Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1) ∧ ((deg‘𝑎) =
(degAA‘𝐴)
∧ (𝑎‘𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA‘𝐴)) = 1))) →
((coeff‘𝑝)‘(deg‘𝑝)) = ((coeff‘𝑎)‘(deg‘𝑝))) | 
| 136 |  | eqid 2736 | . . . . . . . . . . 11
⊢
(deg‘𝑝) =
(deg‘𝑝) | 
| 137 | 136 | dgrsub2 43152 | . . . . . . . . . 10
⊢ (((𝑝 ∈ (Poly‘ℚ)
∧ 𝑎 ∈
(Poly‘ℚ)) ∧ ((deg‘𝑎) = (deg‘𝑝) ∧ (deg‘𝑝) ∈ ℕ ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = ((coeff‘𝑎)‘(deg‘𝑝)))) → (deg‘(𝑝 ∘f −
𝑎)) < (deg‘𝑝)) | 
| 138 | 123, 124,
127, 129, 135, 137 | syl23anc 1378 | . . . . . . . . 9
⊢ (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ)
∧ 𝑎 ∈
(Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1) ∧ ((deg‘𝑎) =
(degAA‘𝐴)
∧ (𝑎‘𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA‘𝐴)) = 1))) →
(deg‘(𝑝
∘f − 𝑎)) < (deg‘𝑝)) | 
| 139 | 138, 126 | breqtrd 5168 | . . . . . . . 8
⊢ (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ)
∧ 𝑎 ∈
(Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1) ∧ ((deg‘𝑎) =
(degAA‘𝐴)
∧ (𝑎‘𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA‘𝐴)) = 1))) →
(deg‘(𝑝
∘f − 𝑎)) < (degAA‘𝐴)) | 
| 140 |  | dgraa0p 43166 | . . . . . . . 8
⊢ ((𝐴 ∈ 𝔸 ∧ (𝑝 ∘f −
𝑎) ∈
(Poly‘ℚ) ∧ (deg‘(𝑝 ∘f − 𝑎)) <
(degAA‘𝐴))
→ (((𝑝
∘f − 𝑎)‘𝐴) = 0 ↔ (𝑝 ∘f − 𝑎) =
0𝑝)) | 
| 141 | 111, 122,
139, 140 | syl3anc 1372 | . . . . . . 7
⊢ (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ)
∧ 𝑎 ∈
(Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1) ∧ ((deg‘𝑎) =
(degAA‘𝐴)
∧ (𝑎‘𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA‘𝐴)) = 1))) → (((𝑝 ∘f −
𝑎)‘𝐴) = 0 ↔ (𝑝 ∘f − 𝑎) =
0𝑝)) | 
| 142 | 110, 141 | mpbid 232 | . . . . . 6
⊢ (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ)
∧ 𝑎 ∈
(Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1) ∧ ((deg‘𝑎) =
(degAA‘𝐴)
∧ (𝑎‘𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA‘𝐴)) = 1))) → (𝑝 ∘f −
𝑎) =
0𝑝) | 
| 143 |  | df-0p 25706 | . . . . . 6
⊢
0𝑝 = (ℂ × {0}) | 
| 144 | 142, 143 | eqtrdi 2792 | . . . . 5
⊢ (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ)
∧ 𝑎 ∈
(Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1) ∧ ((deg‘𝑎) =
(degAA‘𝐴)
∧ (𝑎‘𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA‘𝐴)) = 1))) → (𝑝 ∘f −
𝑎) = (ℂ ×
{0})) | 
| 145 |  | ofsubeq0 12264 | . . . . . . . 8
⊢ ((ℂ
∈ V ∧ 𝑝:ℂ⟶ℂ ∧ 𝑎:ℂ⟶ℂ) →
((𝑝 ∘f
− 𝑎) = (ℂ
× {0}) ↔ 𝑝 =
𝑎)) | 
| 146 | 49, 145 | mp3an1 1449 | . . . . . . 7
⊢ ((𝑝:ℂ⟶ℂ ∧
𝑎:ℂ⟶ℂ)
→ ((𝑝
∘f − 𝑎) = (ℂ × {0}) ↔ 𝑝 = 𝑎)) | 
| 147 | 95, 46, 146 | syl2an 596 | . . . . . 6
⊢ ((𝑝 ∈ (Poly‘ℚ)
∧ 𝑎 ∈
(Poly‘ℚ)) → ((𝑝 ∘f − 𝑎) = (ℂ × {0}) ↔
𝑝 = 𝑎)) | 
| 148 | 147 | ad2antlr 727 | . . . . 5
⊢ (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ)
∧ 𝑎 ∈
(Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1) ∧ ((deg‘𝑎) =
(degAA‘𝐴)
∧ (𝑎‘𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA‘𝐴)) = 1))) → ((𝑝 ∘f −
𝑎) = (ℂ × {0})
↔ 𝑝 = 𝑎)) | 
| 149 | 144, 148 | mpbid 232 | . . . 4
⊢ (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ)
∧ 𝑎 ∈
(Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1) ∧ ((deg‘𝑎) =
(degAA‘𝐴)
∧ (𝑎‘𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA‘𝐴)) = 1))) → 𝑝 = 𝑎) | 
| 150 | 149 | ex 412 | . . 3
⊢ ((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ)
∧ 𝑎 ∈
(Poly‘ℚ))) → ((((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1) ∧ ((deg‘𝑎) =
(degAA‘𝐴)
∧ (𝑎‘𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA‘𝐴)) = 1)) → 𝑝 = 𝑎)) | 
| 151 | 150 | ralrimivva 3201 | . 2
⊢ (𝐴 ∈ 𝔸 →
∀𝑝 ∈
(Poly‘ℚ)∀𝑎 ∈
(Poly‘ℚ)((((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1) ∧ ((deg‘𝑎) =
(degAA‘𝐴)
∧ (𝑎‘𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA‘𝐴)) = 1)) → 𝑝 = 𝑎)) | 
| 152 |  | fveqeq2 6914 | . . . 4
⊢ (𝑝 = 𝑎 → ((deg‘𝑝) = (degAA‘𝐴) ↔ (deg‘𝑎) = (degAA‘𝐴))) | 
| 153 |  | fveq1 6904 | . . . . 5
⊢ (𝑝 = 𝑎 → (𝑝‘𝐴) = (𝑎‘𝐴)) | 
| 154 | 153 | eqeq1d 2738 | . . . 4
⊢ (𝑝 = 𝑎 → ((𝑝‘𝐴) = 0 ↔ (𝑎‘𝐴) = 0)) | 
| 155 |  | fveq2 6905 | . . . . . 6
⊢ (𝑝 = 𝑎 → (coeff‘𝑝) = (coeff‘𝑎)) | 
| 156 | 155 | fveq1d 6907 | . . . . 5
⊢ (𝑝 = 𝑎 → ((coeff‘𝑝)‘(degAA‘𝐴)) = ((coeff‘𝑎)‘(degAA‘𝐴))) | 
| 157 | 156 | eqeq1d 2738 | . . . 4
⊢ (𝑝 = 𝑎 → (((coeff‘𝑝)‘(degAA‘𝐴)) = 1 ↔
((coeff‘𝑎)‘(degAA‘𝐴)) = 1)) | 
| 158 | 152, 154,
157 | 3anbi123d 1437 | . . 3
⊢ (𝑝 = 𝑎 → (((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1) ↔ ((deg‘𝑎) =
(degAA‘𝐴)
∧ (𝑎‘𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA‘𝐴)) = 1))) | 
| 159 | 158 | reu4 3736 | . 2
⊢
(∃!𝑝 ∈
(Poly‘ℚ)((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1) ↔ (∃𝑝 ∈
(Poly‘ℚ)((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1) ∧ ∀𝑝 ∈
(Poly‘ℚ)∀𝑎 ∈
(Poly‘ℚ)((((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1) ∧ ((deg‘𝑎) =
(degAA‘𝐴)
∧ (𝑎‘𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA‘𝐴)) = 1)) → 𝑝 = 𝑎))) | 
| 160 | 91, 151, 159 | sylanbrc 583 | 1
⊢ (𝐴 ∈ 𝔸 →
∃!𝑝 ∈
(Poly‘ℚ)((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1)) |