Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpaaeu Structured version   Visualization version   GIF version

Theorem mpaaeu 43146
Description: An algebraic number has exactly one monic polynomial of the least degree. (Contributed by Stefan O'Rear, 25-Nov-2014.)
Assertion
Ref Expression
mpaaeu (𝐴 ∈ 𝔸 → ∃!𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1))
Distinct variable group:   𝐴,𝑝

Proof of Theorem mpaaeu
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qsscn 12926 . . . . . 6 ℚ ⊆ ℂ
2 eldifi 4097 . . . . . . . . . 10 (𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝}) → 𝑎 ∈ (Poly‘ℚ))
32ad2antlr 727 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → 𝑎 ∈ (Poly‘ℚ))
4 zssq 12922 . . . . . . . . . 10 ℤ ⊆ ℚ
5 0z 12547 . . . . . . . . . 10 0 ∈ ℤ
64, 5sselii 3946 . . . . . . . . 9 0 ∈ ℚ
7 eqid 2730 . . . . . . . . . 10 (coeff‘𝑎) = (coeff‘𝑎)
87coef2 26143 . . . . . . . . 9 ((𝑎 ∈ (Poly‘ℚ) ∧ 0 ∈ ℚ) → (coeff‘𝑎):ℕ0⟶ℚ)
93, 6, 8sylancl 586 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (coeff‘𝑎):ℕ0⟶ℚ)
10 dgrcl 26145 . . . . . . . . 9 (𝑎 ∈ (Poly‘ℚ) → (deg‘𝑎) ∈ ℕ0)
113, 10syl 17 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (deg‘𝑎) ∈ ℕ0)
129, 11ffvelcdmd 7060 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → ((coeff‘𝑎)‘(deg‘𝑎)) ∈ ℚ)
13 eldifsni 4757 . . . . . . . . 9 (𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝}) → 𝑎 ≠ 0𝑝)
1413ad2antlr 727 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → 𝑎 ≠ 0𝑝)
15 eqid 2730 . . . . . . . . . . 11 (deg‘𝑎) = (deg‘𝑎)
1615, 7dgreq0 26178 . . . . . . . . . 10 (𝑎 ∈ (Poly‘ℚ) → (𝑎 = 0𝑝 ↔ ((coeff‘𝑎)‘(deg‘𝑎)) = 0))
1716necon3bid 2970 . . . . . . . . 9 (𝑎 ∈ (Poly‘ℚ) → (𝑎 ≠ 0𝑝 ↔ ((coeff‘𝑎)‘(deg‘𝑎)) ≠ 0))
183, 17syl 17 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (𝑎 ≠ 0𝑝 ↔ ((coeff‘𝑎)‘(deg‘𝑎)) ≠ 0))
1914, 18mpbid 232 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → ((coeff‘𝑎)‘(deg‘𝑎)) ≠ 0)
20 qreccl 12935 . . . . . . 7 ((((coeff‘𝑎)‘(deg‘𝑎)) ∈ ℚ ∧ ((coeff‘𝑎)‘(deg‘𝑎)) ≠ 0) → (1 / ((coeff‘𝑎)‘(deg‘𝑎))) ∈ ℚ)
2112, 19, 20syl2anc 584 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (1 / ((coeff‘𝑎)‘(deg‘𝑎))) ∈ ℚ)
22 plyconst 26118 . . . . . 6 ((ℚ ⊆ ℂ ∧ (1 / ((coeff‘𝑎)‘(deg‘𝑎))) ∈ ℚ) → (ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∈ (Poly‘ℚ))
231, 21, 22sylancr 587 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∈ (Poly‘ℚ))
24 simpl 482 . . . . . 6 (((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) → (ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∈ (Poly‘ℚ))
25 simpr 484 . . . . . 6 (((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) → 𝑎 ∈ (Poly‘ℚ))
26 qaddcl 12931 . . . . . . 7 ((𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ) → (𝑏 + 𝑐) ∈ ℚ)
2726adantl 481 . . . . . 6 ((((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ (𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ)) → (𝑏 + 𝑐) ∈ ℚ)
28 qmulcl 12933 . . . . . . 7 ((𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ) → (𝑏 · 𝑐) ∈ ℚ)
2928adantl 481 . . . . . 6 ((((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ (𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ)) → (𝑏 · 𝑐) ∈ ℚ)
3024, 25, 27, 29plymul 26130 . . . . 5 (((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) → ((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) ∈ (Poly‘ℚ))
3123, 3, 30syl2anc 584 . . . 4 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → ((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) ∈ (Poly‘ℚ))
327coef3 26144 . . . . . . . . 9 (𝑎 ∈ (Poly‘ℚ) → (coeff‘𝑎):ℕ0⟶ℂ)
333, 32syl 17 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (coeff‘𝑎):ℕ0⟶ℂ)
3433, 11ffvelcdmd 7060 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → ((coeff‘𝑎)‘(deg‘𝑎)) ∈ ℂ)
3534, 19reccld 11958 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (1 / ((coeff‘𝑎)‘(deg‘𝑎))) ∈ ℂ)
3634, 19recne0d 11959 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (1 / ((coeff‘𝑎)‘(deg‘𝑎))) ≠ 0)
37 dgrmulc 26184 . . . . . 6 (((1 / ((coeff‘𝑎)‘(deg‘𝑎))) ∈ ℂ ∧ (1 / ((coeff‘𝑎)‘(deg‘𝑎))) ≠ 0 ∧ 𝑎 ∈ (Poly‘ℚ)) → (deg‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)) = (deg‘𝑎))
3835, 36, 3, 37syl3anc 1373 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (deg‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)) = (deg‘𝑎))
39 simprl 770 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (deg‘𝑎) = (degAA𝐴))
4038, 39eqtrd 2765 . . . 4 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (deg‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)) = (degAA𝐴))
41 aacn 26232 . . . . . . 7 (𝐴 ∈ 𝔸 → 𝐴 ∈ ℂ)
4241ad2antrr 726 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → 𝐴 ∈ ℂ)
43 ovex 7423 . . . . . . . 8 (1 / ((coeff‘𝑎)‘(deg‘𝑎))) ∈ V
44 fnconstg 6751 . . . . . . . 8 ((1 / ((coeff‘𝑎)‘(deg‘𝑎))) ∈ V → (ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) Fn ℂ)
4543, 44mp1i 13 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) Fn ℂ)
46 plyf 26110 . . . . . . . 8 (𝑎 ∈ (Poly‘ℚ) → 𝑎:ℂ⟶ℂ)
47 ffn 6691 . . . . . . . 8 (𝑎:ℂ⟶ℂ → 𝑎 Fn ℂ)
483, 46, 473syl 18 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → 𝑎 Fn ℂ)
49 cnex 11156 . . . . . . . 8 ℂ ∈ V
5049a1i 11 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → ℂ ∈ V)
51 inidm 4193 . . . . . . 7 (ℂ ∩ ℂ) = ℂ
5243fvconst2 7181 . . . . . . . 8 (𝐴 ∈ ℂ → ((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))})‘𝐴) = (1 / ((coeff‘𝑎)‘(deg‘𝑎))))
5352adantl 481 . . . . . . 7 ((((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) ∧ 𝐴 ∈ ℂ) → ((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))})‘𝐴) = (1 / ((coeff‘𝑎)‘(deg‘𝑎))))
54 simplrr 777 . . . . . . 7 ((((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) ∧ 𝐴 ∈ ℂ) → (𝑎𝐴) = 0)
5545, 48, 50, 50, 51, 53, 54ofval 7667 . . . . . 6 ((((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) ∧ 𝐴 ∈ ℂ) → (((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)‘𝐴) = ((1 / ((coeff‘𝑎)‘(deg‘𝑎))) · 0))
5642, 55mpdan 687 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)‘𝐴) = ((1 / ((coeff‘𝑎)‘(deg‘𝑎))) · 0))
5735mul01d 11380 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → ((1 / ((coeff‘𝑎)‘(deg‘𝑎))) · 0) = 0)
5856, 57eqtrd 2765 . . . 4 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)‘𝐴) = 0)
59 coemulc 26167 . . . . . . 7 (((1 / ((coeff‘𝑎)‘(deg‘𝑎))) ∈ ℂ ∧ 𝑎 ∈ (Poly‘ℚ)) → (coeff‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)) = ((ℕ0 × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · (coeff‘𝑎)))
6035, 3, 59syl2anc 584 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (coeff‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)) = ((ℕ0 × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · (coeff‘𝑎)))
6160fveq1d 6863 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → ((coeff‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎))‘(degAA𝐴)) = (((ℕ0 × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · (coeff‘𝑎))‘(degAA𝐴)))
62 dgraacl 43142 . . . . . . . 8 (𝐴 ∈ 𝔸 → (degAA𝐴) ∈ ℕ)
6362ad2antrr 726 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (degAA𝐴) ∈ ℕ)
6463nnnn0d 12510 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (degAA𝐴) ∈ ℕ0)
65 fnconstg 6751 . . . . . . . 8 ((1 / ((coeff‘𝑎)‘(deg‘𝑎))) ∈ V → (ℕ0 × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) Fn ℕ0)
6643, 65mp1i 13 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (ℕ0 × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) Fn ℕ0)
6733ffnd 6692 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (coeff‘𝑎) Fn ℕ0)
68 nn0ex 12455 . . . . . . . 8 0 ∈ V
6968a1i 11 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → ℕ0 ∈ V)
70 inidm 4193 . . . . . . 7 (ℕ0 ∩ ℕ0) = ℕ0
7143fvconst2 7181 . . . . . . . 8 ((degAA𝐴) ∈ ℕ0 → ((ℕ0 × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))})‘(degAA𝐴)) = (1 / ((coeff‘𝑎)‘(deg‘𝑎))))
7271adantl 481 . . . . . . 7 ((((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) ∧ (degAA𝐴) ∈ ℕ0) → ((ℕ0 × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))})‘(degAA𝐴)) = (1 / ((coeff‘𝑎)‘(deg‘𝑎))))
73 simplrl 776 . . . . . . . . 9 ((((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) ∧ (degAA𝐴) ∈ ℕ0) → (deg‘𝑎) = (degAA𝐴))
7473eqcomd 2736 . . . . . . . 8 ((((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) ∧ (degAA𝐴) ∈ ℕ0) → (degAA𝐴) = (deg‘𝑎))
7574fveq2d 6865 . . . . . . 7 ((((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) ∧ (degAA𝐴) ∈ ℕ0) → ((coeff‘𝑎)‘(degAA𝐴)) = ((coeff‘𝑎)‘(deg‘𝑎)))
7666, 67, 69, 69, 70, 72, 75ofval 7667 . . . . . 6 ((((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) ∧ (degAA𝐴) ∈ ℕ0) → (((ℕ0 × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · (coeff‘𝑎))‘(degAA𝐴)) = ((1 / ((coeff‘𝑎)‘(deg‘𝑎))) · ((coeff‘𝑎)‘(deg‘𝑎))))
7764, 76mpdan 687 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (((ℕ0 × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · (coeff‘𝑎))‘(degAA𝐴)) = ((1 / ((coeff‘𝑎)‘(deg‘𝑎))) · ((coeff‘𝑎)‘(deg‘𝑎))))
7834, 19recid2d 11961 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → ((1 / ((coeff‘𝑎)‘(deg‘𝑎))) · ((coeff‘𝑎)‘(deg‘𝑎))) = 1)
7961, 77, 783eqtrd 2769 . . . 4 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → ((coeff‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎))‘(degAA𝐴)) = 1)
80 fveqeq2 6870 . . . . . 6 (𝑝 = ((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) → ((deg‘𝑝) = (degAA𝐴) ↔ (deg‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)) = (degAA𝐴)))
81 fveq1 6860 . . . . . . 7 (𝑝 = ((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) → (𝑝𝐴) = (((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)‘𝐴))
8281eqeq1d 2732 . . . . . 6 (𝑝 = ((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) → ((𝑝𝐴) = 0 ↔ (((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)‘𝐴) = 0))
83 fveq2 6861 . . . . . . . 8 (𝑝 = ((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) → (coeff‘𝑝) = (coeff‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)))
8483fveq1d 6863 . . . . . . 7 (𝑝 = ((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) → ((coeff‘𝑝)‘(degAA𝐴)) = ((coeff‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎))‘(degAA𝐴)))
8584eqeq1d 2732 . . . . . 6 (𝑝 = ((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) → (((coeff‘𝑝)‘(degAA𝐴)) = 1 ↔ ((coeff‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎))‘(degAA𝐴)) = 1))
8680, 82, 853anbi123d 1438 . . . . 5 (𝑝 = ((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) → (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ↔ ((deg‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)) = (degAA𝐴) ∧ (((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)‘𝐴) = 0 ∧ ((coeff‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎))‘(degAA𝐴)) = 1)))
8786rspcev 3591 . . . 4 ((((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) ∈ (Poly‘ℚ) ∧ ((deg‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)) = (degAA𝐴) ∧ (((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)‘𝐴) = 0 ∧ ((coeff‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎))‘(degAA𝐴)) = 1)) → ∃𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1))
8831, 40, 58, 79, 87syl13anc 1374 . . 3 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → ∃𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1))
89 dgraalem 43141 . . . 4 (𝐴 ∈ 𝔸 → ((degAA𝐴) ∈ ℕ ∧ ∃𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)))
9089simprd 495 . . 3 (𝐴 ∈ 𝔸 → ∃𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0))
9188, 90r19.29a 3142 . 2 (𝐴 ∈ 𝔸 → ∃𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1))
92 simp2 1137 . . . . . . . . . . 11 (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) → (𝑝𝐴) = 0)
93 simp2 1137 . . . . . . . . . . 11 (((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1) → (𝑎𝐴) = 0)
9492, 93anim12i 613 . . . . . . . . . 10 ((((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1)) → ((𝑝𝐴) = 0 ∧ (𝑎𝐴) = 0))
95 plyf 26110 . . . . . . . . . . . . . . . 16 (𝑝 ∈ (Poly‘ℚ) → 𝑝:ℂ⟶ℂ)
9695ffnd 6692 . . . . . . . . . . . . . . 15 (𝑝 ∈ (Poly‘ℚ) → 𝑝 Fn ℂ)
9796ad2antrr 726 . . . . . . . . . . . . . 14 (((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ ((𝑝𝐴) = 0 ∧ (𝑎𝐴) = 0)) → 𝑝 Fn ℂ)
9846ffnd 6692 . . . . . . . . . . . . . . 15 (𝑎 ∈ (Poly‘ℚ) → 𝑎 Fn ℂ)
9998ad2antlr 727 . . . . . . . . . . . . . 14 (((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ ((𝑝𝐴) = 0 ∧ (𝑎𝐴) = 0)) → 𝑎 Fn ℂ)
10049a1i 11 . . . . . . . . . . . . . 14 (((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ ((𝑝𝐴) = 0 ∧ (𝑎𝐴) = 0)) → ℂ ∈ V)
101 simplrl 776 . . . . . . . . . . . . . 14 ((((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ ((𝑝𝐴) = 0 ∧ (𝑎𝐴) = 0)) ∧ 𝐴 ∈ ℂ) → (𝑝𝐴) = 0)
102 simplrr 777 . . . . . . . . . . . . . 14 ((((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ ((𝑝𝐴) = 0 ∧ (𝑎𝐴) = 0)) ∧ 𝐴 ∈ ℂ) → (𝑎𝐴) = 0)
10397, 99, 100, 100, 51, 101, 102ofval 7667 . . . . . . . . . . . . 13 ((((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ ((𝑝𝐴) = 0 ∧ (𝑎𝐴) = 0)) ∧ 𝐴 ∈ ℂ) → ((𝑝f𝑎)‘𝐴) = (0 − 0))
10441, 103sylan2 593 . . . . . . . . . . . 12 ((((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ ((𝑝𝐴) = 0 ∧ (𝑎𝐴) = 0)) ∧ 𝐴 ∈ 𝔸) → ((𝑝f𝑎)‘𝐴) = (0 − 0))
105 0m0e0 12308 . . . . . . . . . . . 12 (0 − 0) = 0
106104, 105eqtrdi 2781 . . . . . . . . . . 11 ((((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ ((𝑝𝐴) = 0 ∧ (𝑎𝐴) = 0)) ∧ 𝐴 ∈ 𝔸) → ((𝑝f𝑎)‘𝐴) = 0)
107106ex 412 . . . . . . . . . 10 (((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ ((𝑝𝐴) = 0 ∧ (𝑎𝐴) = 0)) → (𝐴 ∈ 𝔸 → ((𝑝f𝑎)‘𝐴) = 0))
10894, 107sylan2 593 . . . . . . . . 9 (((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (𝐴 ∈ 𝔸 → ((𝑝f𝑎)‘𝐴) = 0))
109108com12 32 . . . . . . . 8 (𝐴 ∈ 𝔸 → (((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → ((𝑝f𝑎)‘𝐴) = 0))
110109impl 455 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → ((𝑝f𝑎)‘𝐴) = 0)
111 simpll 766 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → 𝐴 ∈ 𝔸)
112 simpl 482 . . . . . . . . . 10 ((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) → 𝑝 ∈ (Poly‘ℚ))
113 simpr 484 . . . . . . . . . 10 ((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) → 𝑎 ∈ (Poly‘ℚ))
11426adantl 481 . . . . . . . . . 10 (((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ (𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ)) → (𝑏 + 𝑐) ∈ ℚ)
11528adantl 481 . . . . . . . . . 10 (((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ (𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ)) → (𝑏 · 𝑐) ∈ ℚ)
116 1z 12570 . . . . . . . . . . . 12 1 ∈ ℤ
117 zq 12920 . . . . . . . . . . . 12 (1 ∈ ℤ → 1 ∈ ℚ)
118 qnegcl 12932 . . . . . . . . . . . 12 (1 ∈ ℚ → -1 ∈ ℚ)
119116, 117, 118mp2b 10 . . . . . . . . . . 11 -1 ∈ ℚ
120119a1i 11 . . . . . . . . . 10 ((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) → -1 ∈ ℚ)
121112, 113, 114, 115, 120plysub 26131 . . . . . . . . 9 ((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) → (𝑝f𝑎) ∈ (Poly‘ℚ))
122121ad2antlr 727 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (𝑝f𝑎) ∈ (Poly‘ℚ))
123 simplrl 776 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → 𝑝 ∈ (Poly‘ℚ))
124 simplrr 777 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → 𝑎 ∈ (Poly‘ℚ))
125 simprr1 1222 . . . . . . . . . . 11 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (deg‘𝑎) = (degAA𝐴))
126 simprl1 1219 . . . . . . . . . . 11 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (deg‘𝑝) = (degAA𝐴))
127125, 126eqtr4d 2768 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (deg‘𝑎) = (deg‘𝑝))
12862ad2antrr 726 . . . . . . . . . . 11 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (degAA𝐴) ∈ ℕ)
129126, 128eqeltrd 2829 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (deg‘𝑝) ∈ ℕ)
130 simprl3 1221 . . . . . . . . . . 11 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → ((coeff‘𝑝)‘(degAA𝐴)) = 1)
131126fveq2d 6865 . . . . . . . . . . 11 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → ((coeff‘𝑝)‘(deg‘𝑝)) = ((coeff‘𝑝)‘(degAA𝐴)))
132126fveq2d 6865 . . . . . . . . . . . 12 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → ((coeff‘𝑎)‘(deg‘𝑝)) = ((coeff‘𝑎)‘(degAA𝐴)))
133 simprr3 1224 . . . . . . . . . . . 12 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → ((coeff‘𝑎)‘(degAA𝐴)) = 1)
134132, 133eqtrd 2765 . . . . . . . . . . 11 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → ((coeff‘𝑎)‘(deg‘𝑝)) = 1)
135130, 131, 1343eqtr4d 2775 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → ((coeff‘𝑝)‘(deg‘𝑝)) = ((coeff‘𝑎)‘(deg‘𝑝)))
136 eqid 2730 . . . . . . . . . . 11 (deg‘𝑝) = (deg‘𝑝)
137136dgrsub2 43131 . . . . . . . . . 10 (((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ ((deg‘𝑎) = (deg‘𝑝) ∧ (deg‘𝑝) ∈ ℕ ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = ((coeff‘𝑎)‘(deg‘𝑝)))) → (deg‘(𝑝f𝑎)) < (deg‘𝑝))
138123, 124, 127, 129, 135, 137syl23anc 1379 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (deg‘(𝑝f𝑎)) < (deg‘𝑝))
139138, 126breqtrd 5136 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (deg‘(𝑝f𝑎)) < (degAA𝐴))
140 dgraa0p 43145 . . . . . . . 8 ((𝐴 ∈ 𝔸 ∧ (𝑝f𝑎) ∈ (Poly‘ℚ) ∧ (deg‘(𝑝f𝑎)) < (degAA𝐴)) → (((𝑝f𝑎)‘𝐴) = 0 ↔ (𝑝f𝑎) = 0𝑝))
141111, 122, 139, 140syl3anc 1373 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (((𝑝f𝑎)‘𝐴) = 0 ↔ (𝑝f𝑎) = 0𝑝))
142110, 141mpbid 232 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (𝑝f𝑎) = 0𝑝)
143 df-0p 25578 . . . . . 6 0𝑝 = (ℂ × {0})
144142, 143eqtrdi 2781 . . . . 5 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (𝑝f𝑎) = (ℂ × {0}))
145 ofsubeq0 12190 . . . . . . . 8 ((ℂ ∈ V ∧ 𝑝:ℂ⟶ℂ ∧ 𝑎:ℂ⟶ℂ) → ((𝑝f𝑎) = (ℂ × {0}) ↔ 𝑝 = 𝑎))
14649, 145mp3an1 1450 . . . . . . 7 ((𝑝:ℂ⟶ℂ ∧ 𝑎:ℂ⟶ℂ) → ((𝑝f𝑎) = (ℂ × {0}) ↔ 𝑝 = 𝑎))
14795, 46, 146syl2an 596 . . . . . 6 ((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) → ((𝑝f𝑎) = (ℂ × {0}) ↔ 𝑝 = 𝑎))
148147ad2antlr 727 . . . . 5 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → ((𝑝f𝑎) = (ℂ × {0}) ↔ 𝑝 = 𝑎))
149144, 148mpbid 232 . . . 4 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → 𝑝 = 𝑎)
150149ex 412 . . 3 ((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) → ((((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1)) → 𝑝 = 𝑎))
151150ralrimivva 3181 . 2 (𝐴 ∈ 𝔸 → ∀𝑝 ∈ (Poly‘ℚ)∀𝑎 ∈ (Poly‘ℚ)((((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1)) → 𝑝 = 𝑎))
152 fveqeq2 6870 . . . 4 (𝑝 = 𝑎 → ((deg‘𝑝) = (degAA𝐴) ↔ (deg‘𝑎) = (degAA𝐴)))
153 fveq1 6860 . . . . 5 (𝑝 = 𝑎 → (𝑝𝐴) = (𝑎𝐴))
154153eqeq1d 2732 . . . 4 (𝑝 = 𝑎 → ((𝑝𝐴) = 0 ↔ (𝑎𝐴) = 0))
155 fveq2 6861 . . . . . 6 (𝑝 = 𝑎 → (coeff‘𝑝) = (coeff‘𝑎))
156155fveq1d 6863 . . . . 5 (𝑝 = 𝑎 → ((coeff‘𝑝)‘(degAA𝐴)) = ((coeff‘𝑎)‘(degAA𝐴)))
157156eqeq1d 2732 . . . 4 (𝑝 = 𝑎 → (((coeff‘𝑝)‘(degAA𝐴)) = 1 ↔ ((coeff‘𝑎)‘(degAA𝐴)) = 1))
158152, 154, 1573anbi123d 1438 . . 3 (𝑝 = 𝑎 → (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ↔ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1)))
159158reu4 3705 . 2 (∃!𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ↔ (∃𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ∀𝑝 ∈ (Poly‘ℚ)∀𝑎 ∈ (Poly‘ℚ)((((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1)) → 𝑝 = 𝑎)))
16091, 151, 159sylanbrc 583 1 (𝐴 ∈ 𝔸 → ∃!𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  ∃!wreu 3354  Vcvv 3450  cdif 3914  wss 3917  {csn 4592   class class class wbr 5110   × cxp 5639   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  f cof 7654  cc 11073  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cmin 11412  -cneg 11413   / cdiv 11842  cn 12193  0cn0 12449  cz 12536  cq 12914  0𝑝c0p 25577  Polycply 26096  coeffccoe 26098  degcdgr 26099  𝔸caa 26229  degAAcdgraa 43136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660  df-0p 25578  df-ply 26100  df-coe 26102  df-dgr 26103  df-aa 26230  df-dgraa 43138
This theorem is referenced by:  mpaalem  43148
  Copyright terms: Public domain W3C validator