Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpaaeu Structured version   Visualization version   GIF version

Theorem mpaaeu 43167
Description: An algebraic number has exactly one monic polynomial of the least degree. (Contributed by Stefan O'Rear, 25-Nov-2014.)
Assertion
Ref Expression
mpaaeu (𝐴 ∈ 𝔸 → ∃!𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1))
Distinct variable group:   𝐴,𝑝

Proof of Theorem mpaaeu
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qsscn 13003 . . . . . 6 ℚ ⊆ ℂ
2 eldifi 4130 . . . . . . . . . 10 (𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝}) → 𝑎 ∈ (Poly‘ℚ))
32ad2antlr 727 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → 𝑎 ∈ (Poly‘ℚ))
4 zssq 12999 . . . . . . . . . 10 ℤ ⊆ ℚ
5 0z 12626 . . . . . . . . . 10 0 ∈ ℤ
64, 5sselii 3979 . . . . . . . . 9 0 ∈ ℚ
7 eqid 2736 . . . . . . . . . 10 (coeff‘𝑎) = (coeff‘𝑎)
87coef2 26271 . . . . . . . . 9 ((𝑎 ∈ (Poly‘ℚ) ∧ 0 ∈ ℚ) → (coeff‘𝑎):ℕ0⟶ℚ)
93, 6, 8sylancl 586 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (coeff‘𝑎):ℕ0⟶ℚ)
10 dgrcl 26273 . . . . . . . . 9 (𝑎 ∈ (Poly‘ℚ) → (deg‘𝑎) ∈ ℕ0)
113, 10syl 17 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (deg‘𝑎) ∈ ℕ0)
129, 11ffvelcdmd 7104 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → ((coeff‘𝑎)‘(deg‘𝑎)) ∈ ℚ)
13 eldifsni 4789 . . . . . . . . 9 (𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝}) → 𝑎 ≠ 0𝑝)
1413ad2antlr 727 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → 𝑎 ≠ 0𝑝)
15 eqid 2736 . . . . . . . . . . 11 (deg‘𝑎) = (deg‘𝑎)
1615, 7dgreq0 26306 . . . . . . . . . 10 (𝑎 ∈ (Poly‘ℚ) → (𝑎 = 0𝑝 ↔ ((coeff‘𝑎)‘(deg‘𝑎)) = 0))
1716necon3bid 2984 . . . . . . . . 9 (𝑎 ∈ (Poly‘ℚ) → (𝑎 ≠ 0𝑝 ↔ ((coeff‘𝑎)‘(deg‘𝑎)) ≠ 0))
183, 17syl 17 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (𝑎 ≠ 0𝑝 ↔ ((coeff‘𝑎)‘(deg‘𝑎)) ≠ 0))
1914, 18mpbid 232 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → ((coeff‘𝑎)‘(deg‘𝑎)) ≠ 0)
20 qreccl 13012 . . . . . . 7 ((((coeff‘𝑎)‘(deg‘𝑎)) ∈ ℚ ∧ ((coeff‘𝑎)‘(deg‘𝑎)) ≠ 0) → (1 / ((coeff‘𝑎)‘(deg‘𝑎))) ∈ ℚ)
2112, 19, 20syl2anc 584 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (1 / ((coeff‘𝑎)‘(deg‘𝑎))) ∈ ℚ)
22 plyconst 26246 . . . . . 6 ((ℚ ⊆ ℂ ∧ (1 / ((coeff‘𝑎)‘(deg‘𝑎))) ∈ ℚ) → (ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∈ (Poly‘ℚ))
231, 21, 22sylancr 587 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∈ (Poly‘ℚ))
24 simpl 482 . . . . . 6 (((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) → (ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∈ (Poly‘ℚ))
25 simpr 484 . . . . . 6 (((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) → 𝑎 ∈ (Poly‘ℚ))
26 qaddcl 13008 . . . . . . 7 ((𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ) → (𝑏 + 𝑐) ∈ ℚ)
2726adantl 481 . . . . . 6 ((((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ (𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ)) → (𝑏 + 𝑐) ∈ ℚ)
28 qmulcl 13010 . . . . . . 7 ((𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ) → (𝑏 · 𝑐) ∈ ℚ)
2928adantl 481 . . . . . 6 ((((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ (𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ)) → (𝑏 · 𝑐) ∈ ℚ)
3024, 25, 27, 29plymul 26258 . . . . 5 (((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) → ((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) ∈ (Poly‘ℚ))
3123, 3, 30syl2anc 584 . . . 4 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → ((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) ∈ (Poly‘ℚ))
327coef3 26272 . . . . . . . . 9 (𝑎 ∈ (Poly‘ℚ) → (coeff‘𝑎):ℕ0⟶ℂ)
333, 32syl 17 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (coeff‘𝑎):ℕ0⟶ℂ)
3433, 11ffvelcdmd 7104 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → ((coeff‘𝑎)‘(deg‘𝑎)) ∈ ℂ)
3534, 19reccld 12037 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (1 / ((coeff‘𝑎)‘(deg‘𝑎))) ∈ ℂ)
3634, 19recne0d 12038 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (1 / ((coeff‘𝑎)‘(deg‘𝑎))) ≠ 0)
37 dgrmulc 26312 . . . . . 6 (((1 / ((coeff‘𝑎)‘(deg‘𝑎))) ∈ ℂ ∧ (1 / ((coeff‘𝑎)‘(deg‘𝑎))) ≠ 0 ∧ 𝑎 ∈ (Poly‘ℚ)) → (deg‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)) = (deg‘𝑎))
3835, 36, 3, 37syl3anc 1372 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (deg‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)) = (deg‘𝑎))
39 simprl 770 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (deg‘𝑎) = (degAA𝐴))
4038, 39eqtrd 2776 . . . 4 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (deg‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)) = (degAA𝐴))
41 aacn 26360 . . . . . . 7 (𝐴 ∈ 𝔸 → 𝐴 ∈ ℂ)
4241ad2antrr 726 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → 𝐴 ∈ ℂ)
43 ovex 7465 . . . . . . . 8 (1 / ((coeff‘𝑎)‘(deg‘𝑎))) ∈ V
44 fnconstg 6795 . . . . . . . 8 ((1 / ((coeff‘𝑎)‘(deg‘𝑎))) ∈ V → (ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) Fn ℂ)
4543, 44mp1i 13 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) Fn ℂ)
46 plyf 26238 . . . . . . . 8 (𝑎 ∈ (Poly‘ℚ) → 𝑎:ℂ⟶ℂ)
47 ffn 6735 . . . . . . . 8 (𝑎:ℂ⟶ℂ → 𝑎 Fn ℂ)
483, 46, 473syl 18 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → 𝑎 Fn ℂ)
49 cnex 11237 . . . . . . . 8 ℂ ∈ V
5049a1i 11 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → ℂ ∈ V)
51 inidm 4226 . . . . . . 7 (ℂ ∩ ℂ) = ℂ
5243fvconst2 7225 . . . . . . . 8 (𝐴 ∈ ℂ → ((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))})‘𝐴) = (1 / ((coeff‘𝑎)‘(deg‘𝑎))))
5352adantl 481 . . . . . . 7 ((((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) ∧ 𝐴 ∈ ℂ) → ((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))})‘𝐴) = (1 / ((coeff‘𝑎)‘(deg‘𝑎))))
54 simplrr 777 . . . . . . 7 ((((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) ∧ 𝐴 ∈ ℂ) → (𝑎𝐴) = 0)
5545, 48, 50, 50, 51, 53, 54ofval 7709 . . . . . 6 ((((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) ∧ 𝐴 ∈ ℂ) → (((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)‘𝐴) = ((1 / ((coeff‘𝑎)‘(deg‘𝑎))) · 0))
5642, 55mpdan 687 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)‘𝐴) = ((1 / ((coeff‘𝑎)‘(deg‘𝑎))) · 0))
5735mul01d 11461 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → ((1 / ((coeff‘𝑎)‘(deg‘𝑎))) · 0) = 0)
5856, 57eqtrd 2776 . . . 4 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)‘𝐴) = 0)
59 coemulc 26295 . . . . . . 7 (((1 / ((coeff‘𝑎)‘(deg‘𝑎))) ∈ ℂ ∧ 𝑎 ∈ (Poly‘ℚ)) → (coeff‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)) = ((ℕ0 × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · (coeff‘𝑎)))
6035, 3, 59syl2anc 584 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (coeff‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)) = ((ℕ0 × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · (coeff‘𝑎)))
6160fveq1d 6907 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → ((coeff‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎))‘(degAA𝐴)) = (((ℕ0 × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · (coeff‘𝑎))‘(degAA𝐴)))
62 dgraacl 43163 . . . . . . . 8 (𝐴 ∈ 𝔸 → (degAA𝐴) ∈ ℕ)
6362ad2antrr 726 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (degAA𝐴) ∈ ℕ)
6463nnnn0d 12589 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (degAA𝐴) ∈ ℕ0)
65 fnconstg 6795 . . . . . . . 8 ((1 / ((coeff‘𝑎)‘(deg‘𝑎))) ∈ V → (ℕ0 × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) Fn ℕ0)
6643, 65mp1i 13 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (ℕ0 × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) Fn ℕ0)
6733ffnd 6736 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (coeff‘𝑎) Fn ℕ0)
68 nn0ex 12534 . . . . . . . 8 0 ∈ V
6968a1i 11 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → ℕ0 ∈ V)
70 inidm 4226 . . . . . . 7 (ℕ0 ∩ ℕ0) = ℕ0
7143fvconst2 7225 . . . . . . . 8 ((degAA𝐴) ∈ ℕ0 → ((ℕ0 × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))})‘(degAA𝐴)) = (1 / ((coeff‘𝑎)‘(deg‘𝑎))))
7271adantl 481 . . . . . . 7 ((((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) ∧ (degAA𝐴) ∈ ℕ0) → ((ℕ0 × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))})‘(degAA𝐴)) = (1 / ((coeff‘𝑎)‘(deg‘𝑎))))
73 simplrl 776 . . . . . . . . 9 ((((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) ∧ (degAA𝐴) ∈ ℕ0) → (deg‘𝑎) = (degAA𝐴))
7473eqcomd 2742 . . . . . . . 8 ((((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) ∧ (degAA𝐴) ∈ ℕ0) → (degAA𝐴) = (deg‘𝑎))
7574fveq2d 6909 . . . . . . 7 ((((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) ∧ (degAA𝐴) ∈ ℕ0) → ((coeff‘𝑎)‘(degAA𝐴)) = ((coeff‘𝑎)‘(deg‘𝑎)))
7666, 67, 69, 69, 70, 72, 75ofval 7709 . . . . . 6 ((((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) ∧ (degAA𝐴) ∈ ℕ0) → (((ℕ0 × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · (coeff‘𝑎))‘(degAA𝐴)) = ((1 / ((coeff‘𝑎)‘(deg‘𝑎))) · ((coeff‘𝑎)‘(deg‘𝑎))))
7764, 76mpdan 687 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (((ℕ0 × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · (coeff‘𝑎))‘(degAA𝐴)) = ((1 / ((coeff‘𝑎)‘(deg‘𝑎))) · ((coeff‘𝑎)‘(deg‘𝑎))))
7834, 19recid2d 12040 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → ((1 / ((coeff‘𝑎)‘(deg‘𝑎))) · ((coeff‘𝑎)‘(deg‘𝑎))) = 1)
7961, 77, 783eqtrd 2780 . . . 4 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → ((coeff‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎))‘(degAA𝐴)) = 1)
80 fveqeq2 6914 . . . . . 6 (𝑝 = ((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) → ((deg‘𝑝) = (degAA𝐴) ↔ (deg‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)) = (degAA𝐴)))
81 fveq1 6904 . . . . . . 7 (𝑝 = ((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) → (𝑝𝐴) = (((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)‘𝐴))
8281eqeq1d 2738 . . . . . 6 (𝑝 = ((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) → ((𝑝𝐴) = 0 ↔ (((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)‘𝐴) = 0))
83 fveq2 6905 . . . . . . . 8 (𝑝 = ((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) → (coeff‘𝑝) = (coeff‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)))
8483fveq1d 6907 . . . . . . 7 (𝑝 = ((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) → ((coeff‘𝑝)‘(degAA𝐴)) = ((coeff‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎))‘(degAA𝐴)))
8584eqeq1d 2738 . . . . . 6 (𝑝 = ((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) → (((coeff‘𝑝)‘(degAA𝐴)) = 1 ↔ ((coeff‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎))‘(degAA𝐴)) = 1))
8680, 82, 853anbi123d 1437 . . . . 5 (𝑝 = ((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) → (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ↔ ((deg‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)) = (degAA𝐴) ∧ (((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)‘𝐴) = 0 ∧ ((coeff‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎))‘(degAA𝐴)) = 1)))
8786rspcev 3621 . . . 4 ((((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) ∈ (Poly‘ℚ) ∧ ((deg‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)) = (degAA𝐴) ∧ (((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)‘𝐴) = 0 ∧ ((coeff‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎))‘(degAA𝐴)) = 1)) → ∃𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1))
8831, 40, 58, 79, 87syl13anc 1373 . . 3 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → ∃𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1))
89 dgraalem 43162 . . . 4 (𝐴 ∈ 𝔸 → ((degAA𝐴) ∈ ℕ ∧ ∃𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)))
9089simprd 495 . . 3 (𝐴 ∈ 𝔸 → ∃𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0))
9188, 90r19.29a 3161 . 2 (𝐴 ∈ 𝔸 → ∃𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1))
92 simp2 1137 . . . . . . . . . . 11 (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) → (𝑝𝐴) = 0)
93 simp2 1137 . . . . . . . . . . 11 (((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1) → (𝑎𝐴) = 0)
9492, 93anim12i 613 . . . . . . . . . 10 ((((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1)) → ((𝑝𝐴) = 0 ∧ (𝑎𝐴) = 0))
95 plyf 26238 . . . . . . . . . . . . . . . 16 (𝑝 ∈ (Poly‘ℚ) → 𝑝:ℂ⟶ℂ)
9695ffnd 6736 . . . . . . . . . . . . . . 15 (𝑝 ∈ (Poly‘ℚ) → 𝑝 Fn ℂ)
9796ad2antrr 726 . . . . . . . . . . . . . 14 (((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ ((𝑝𝐴) = 0 ∧ (𝑎𝐴) = 0)) → 𝑝 Fn ℂ)
9846ffnd 6736 . . . . . . . . . . . . . . 15 (𝑎 ∈ (Poly‘ℚ) → 𝑎 Fn ℂ)
9998ad2antlr 727 . . . . . . . . . . . . . 14 (((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ ((𝑝𝐴) = 0 ∧ (𝑎𝐴) = 0)) → 𝑎 Fn ℂ)
10049a1i 11 . . . . . . . . . . . . . 14 (((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ ((𝑝𝐴) = 0 ∧ (𝑎𝐴) = 0)) → ℂ ∈ V)
101 simplrl 776 . . . . . . . . . . . . . 14 ((((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ ((𝑝𝐴) = 0 ∧ (𝑎𝐴) = 0)) ∧ 𝐴 ∈ ℂ) → (𝑝𝐴) = 0)
102 simplrr 777 . . . . . . . . . . . . . 14 ((((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ ((𝑝𝐴) = 0 ∧ (𝑎𝐴) = 0)) ∧ 𝐴 ∈ ℂ) → (𝑎𝐴) = 0)
10397, 99, 100, 100, 51, 101, 102ofval 7709 . . . . . . . . . . . . 13 ((((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ ((𝑝𝐴) = 0 ∧ (𝑎𝐴) = 0)) ∧ 𝐴 ∈ ℂ) → ((𝑝f𝑎)‘𝐴) = (0 − 0))
10441, 103sylan2 593 . . . . . . . . . . . 12 ((((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ ((𝑝𝐴) = 0 ∧ (𝑎𝐴) = 0)) ∧ 𝐴 ∈ 𝔸) → ((𝑝f𝑎)‘𝐴) = (0 − 0))
105 0m0e0 12387 . . . . . . . . . . . 12 (0 − 0) = 0
106104, 105eqtrdi 2792 . . . . . . . . . . 11 ((((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ ((𝑝𝐴) = 0 ∧ (𝑎𝐴) = 0)) ∧ 𝐴 ∈ 𝔸) → ((𝑝f𝑎)‘𝐴) = 0)
107106ex 412 . . . . . . . . . 10 (((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ ((𝑝𝐴) = 0 ∧ (𝑎𝐴) = 0)) → (𝐴 ∈ 𝔸 → ((𝑝f𝑎)‘𝐴) = 0))
10894, 107sylan2 593 . . . . . . . . 9 (((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (𝐴 ∈ 𝔸 → ((𝑝f𝑎)‘𝐴) = 0))
109108com12 32 . . . . . . . 8 (𝐴 ∈ 𝔸 → (((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → ((𝑝f𝑎)‘𝐴) = 0))
110109impl 455 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → ((𝑝f𝑎)‘𝐴) = 0)
111 simpll 766 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → 𝐴 ∈ 𝔸)
112 simpl 482 . . . . . . . . . 10 ((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) → 𝑝 ∈ (Poly‘ℚ))
113 simpr 484 . . . . . . . . . 10 ((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) → 𝑎 ∈ (Poly‘ℚ))
11426adantl 481 . . . . . . . . . 10 (((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ (𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ)) → (𝑏 + 𝑐) ∈ ℚ)
11528adantl 481 . . . . . . . . . 10 (((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ (𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ)) → (𝑏 · 𝑐) ∈ ℚ)
116 1z 12649 . . . . . . . . . . . 12 1 ∈ ℤ
117 zq 12997 . . . . . . . . . . . 12 (1 ∈ ℤ → 1 ∈ ℚ)
118 qnegcl 13009 . . . . . . . . . . . 12 (1 ∈ ℚ → -1 ∈ ℚ)
119116, 117, 118mp2b 10 . . . . . . . . . . 11 -1 ∈ ℚ
120119a1i 11 . . . . . . . . . 10 ((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) → -1 ∈ ℚ)
121112, 113, 114, 115, 120plysub 26259 . . . . . . . . 9 ((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) → (𝑝f𝑎) ∈ (Poly‘ℚ))
122121ad2antlr 727 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (𝑝f𝑎) ∈ (Poly‘ℚ))
123 simplrl 776 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → 𝑝 ∈ (Poly‘ℚ))
124 simplrr 777 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → 𝑎 ∈ (Poly‘ℚ))
125 simprr1 1221 . . . . . . . . . . 11 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (deg‘𝑎) = (degAA𝐴))
126 simprl1 1218 . . . . . . . . . . 11 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (deg‘𝑝) = (degAA𝐴))
127125, 126eqtr4d 2779 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (deg‘𝑎) = (deg‘𝑝))
12862ad2antrr 726 . . . . . . . . . . 11 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (degAA𝐴) ∈ ℕ)
129126, 128eqeltrd 2840 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (deg‘𝑝) ∈ ℕ)
130 simprl3 1220 . . . . . . . . . . 11 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → ((coeff‘𝑝)‘(degAA𝐴)) = 1)
131126fveq2d 6909 . . . . . . . . . . 11 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → ((coeff‘𝑝)‘(deg‘𝑝)) = ((coeff‘𝑝)‘(degAA𝐴)))
132126fveq2d 6909 . . . . . . . . . . . 12 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → ((coeff‘𝑎)‘(deg‘𝑝)) = ((coeff‘𝑎)‘(degAA𝐴)))
133 simprr3 1223 . . . . . . . . . . . 12 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → ((coeff‘𝑎)‘(degAA𝐴)) = 1)
134132, 133eqtrd 2776 . . . . . . . . . . 11 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → ((coeff‘𝑎)‘(deg‘𝑝)) = 1)
135130, 131, 1343eqtr4d 2786 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → ((coeff‘𝑝)‘(deg‘𝑝)) = ((coeff‘𝑎)‘(deg‘𝑝)))
136 eqid 2736 . . . . . . . . . . 11 (deg‘𝑝) = (deg‘𝑝)
137136dgrsub2 43152 . . . . . . . . . 10 (((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ ((deg‘𝑎) = (deg‘𝑝) ∧ (deg‘𝑝) ∈ ℕ ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = ((coeff‘𝑎)‘(deg‘𝑝)))) → (deg‘(𝑝f𝑎)) < (deg‘𝑝))
138123, 124, 127, 129, 135, 137syl23anc 1378 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (deg‘(𝑝f𝑎)) < (deg‘𝑝))
139138, 126breqtrd 5168 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (deg‘(𝑝f𝑎)) < (degAA𝐴))
140 dgraa0p 43166 . . . . . . . 8 ((𝐴 ∈ 𝔸 ∧ (𝑝f𝑎) ∈ (Poly‘ℚ) ∧ (deg‘(𝑝f𝑎)) < (degAA𝐴)) → (((𝑝f𝑎)‘𝐴) = 0 ↔ (𝑝f𝑎) = 0𝑝))
141111, 122, 139, 140syl3anc 1372 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (((𝑝f𝑎)‘𝐴) = 0 ↔ (𝑝f𝑎) = 0𝑝))
142110, 141mpbid 232 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (𝑝f𝑎) = 0𝑝)
143 df-0p 25706 . . . . . 6 0𝑝 = (ℂ × {0})
144142, 143eqtrdi 2792 . . . . 5 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (𝑝f𝑎) = (ℂ × {0}))
145 ofsubeq0 12264 . . . . . . . 8 ((ℂ ∈ V ∧ 𝑝:ℂ⟶ℂ ∧ 𝑎:ℂ⟶ℂ) → ((𝑝f𝑎) = (ℂ × {0}) ↔ 𝑝 = 𝑎))
14649, 145mp3an1 1449 . . . . . . 7 ((𝑝:ℂ⟶ℂ ∧ 𝑎:ℂ⟶ℂ) → ((𝑝f𝑎) = (ℂ × {0}) ↔ 𝑝 = 𝑎))
14795, 46, 146syl2an 596 . . . . . 6 ((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) → ((𝑝f𝑎) = (ℂ × {0}) ↔ 𝑝 = 𝑎))
148147ad2antlr 727 . . . . 5 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → ((𝑝f𝑎) = (ℂ × {0}) ↔ 𝑝 = 𝑎))
149144, 148mpbid 232 . . . 4 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → 𝑝 = 𝑎)
150149ex 412 . . 3 ((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) → ((((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1)) → 𝑝 = 𝑎))
151150ralrimivva 3201 . 2 (𝐴 ∈ 𝔸 → ∀𝑝 ∈ (Poly‘ℚ)∀𝑎 ∈ (Poly‘ℚ)((((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1)) → 𝑝 = 𝑎))
152 fveqeq2 6914 . . . 4 (𝑝 = 𝑎 → ((deg‘𝑝) = (degAA𝐴) ↔ (deg‘𝑎) = (degAA𝐴)))
153 fveq1 6904 . . . . 5 (𝑝 = 𝑎 → (𝑝𝐴) = (𝑎𝐴))
154153eqeq1d 2738 . . . 4 (𝑝 = 𝑎 → ((𝑝𝐴) = 0 ↔ (𝑎𝐴) = 0))
155 fveq2 6905 . . . . . 6 (𝑝 = 𝑎 → (coeff‘𝑝) = (coeff‘𝑎))
156155fveq1d 6907 . . . . 5 (𝑝 = 𝑎 → ((coeff‘𝑝)‘(degAA𝐴)) = ((coeff‘𝑎)‘(degAA𝐴)))
157156eqeq1d 2738 . . . 4 (𝑝 = 𝑎 → (((coeff‘𝑝)‘(degAA𝐴)) = 1 ↔ ((coeff‘𝑎)‘(degAA𝐴)) = 1))
158152, 154, 1573anbi123d 1437 . . 3 (𝑝 = 𝑎 → (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ↔ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1)))
159158reu4 3736 . 2 (∃!𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ↔ (∃𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ∀𝑝 ∈ (Poly‘ℚ)∀𝑎 ∈ (Poly‘ℚ)((((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1)) → 𝑝 = 𝑎)))
16091, 151, 159sylanbrc 583 1 (𝐴 ∈ 𝔸 → ∃!𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2939  wral 3060  wrex 3069  ∃!wreu 3377  Vcvv 3479  cdif 3947  wss 3950  {csn 4625   class class class wbr 5142   × cxp 5682   Fn wfn 6555  wf 6556  cfv 6560  (class class class)co 7432  f cof 7696  cc 11154  0cc0 11156  1c1 11157   + caddc 11159   · cmul 11161   < clt 11296  cmin 11493  -cneg 11494   / cdiv 11921  cn 12267  0cn0 12528  cz 12615  cq 12991  0𝑝c0p 25705  Polycply 26224  coeffccoe 26226  degcdgr 26227  𝔸caa 26357  degAAcdgraa 43157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-pm 8870  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-inf 9484  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-n0 12529  df-z 12616  df-uz 12880  df-q 12992  df-rp 13036  df-fz 13549  df-fzo 13696  df-fl 13833  df-mod 13911  df-seq 14044  df-exp 14104  df-hash 14371  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-clim 15525  df-rlim 15526  df-sum 15724  df-0p 25706  df-ply 26228  df-coe 26230  df-dgr 26231  df-aa 26358  df-dgraa 43159
This theorem is referenced by:  mpaalem  43169
  Copyright terms: Public domain W3C validator