Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpaaeu Structured version   Visualization version   GIF version

Theorem mpaaeu 43107
Description: An algebraic number has exactly one monic polynomial of the least degree. (Contributed by Stefan O'Rear, 25-Nov-2014.)
Assertion
Ref Expression
mpaaeu (𝐴 ∈ 𝔸 → ∃!𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1))
Distinct variable group:   𝐴,𝑝

Proof of Theorem mpaaeu
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qsscn 13025 . . . . . 6 ℚ ⊆ ℂ
2 eldifi 4154 . . . . . . . . . 10 (𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝}) → 𝑎 ∈ (Poly‘ℚ))
32ad2antlr 726 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → 𝑎 ∈ (Poly‘ℚ))
4 zssq 13021 . . . . . . . . . 10 ℤ ⊆ ℚ
5 0z 12650 . . . . . . . . . 10 0 ∈ ℤ
64, 5sselii 4005 . . . . . . . . 9 0 ∈ ℚ
7 eqid 2740 . . . . . . . . . 10 (coeff‘𝑎) = (coeff‘𝑎)
87coef2 26290 . . . . . . . . 9 ((𝑎 ∈ (Poly‘ℚ) ∧ 0 ∈ ℚ) → (coeff‘𝑎):ℕ0⟶ℚ)
93, 6, 8sylancl 585 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (coeff‘𝑎):ℕ0⟶ℚ)
10 dgrcl 26292 . . . . . . . . 9 (𝑎 ∈ (Poly‘ℚ) → (deg‘𝑎) ∈ ℕ0)
113, 10syl 17 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (deg‘𝑎) ∈ ℕ0)
129, 11ffvelcdmd 7119 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → ((coeff‘𝑎)‘(deg‘𝑎)) ∈ ℚ)
13 eldifsni 4815 . . . . . . . . 9 (𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝}) → 𝑎 ≠ 0𝑝)
1413ad2antlr 726 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → 𝑎 ≠ 0𝑝)
15 eqid 2740 . . . . . . . . . . 11 (deg‘𝑎) = (deg‘𝑎)
1615, 7dgreq0 26325 . . . . . . . . . 10 (𝑎 ∈ (Poly‘ℚ) → (𝑎 = 0𝑝 ↔ ((coeff‘𝑎)‘(deg‘𝑎)) = 0))
1716necon3bid 2991 . . . . . . . . 9 (𝑎 ∈ (Poly‘ℚ) → (𝑎 ≠ 0𝑝 ↔ ((coeff‘𝑎)‘(deg‘𝑎)) ≠ 0))
183, 17syl 17 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (𝑎 ≠ 0𝑝 ↔ ((coeff‘𝑎)‘(deg‘𝑎)) ≠ 0))
1914, 18mpbid 232 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → ((coeff‘𝑎)‘(deg‘𝑎)) ≠ 0)
20 qreccl 13034 . . . . . . 7 ((((coeff‘𝑎)‘(deg‘𝑎)) ∈ ℚ ∧ ((coeff‘𝑎)‘(deg‘𝑎)) ≠ 0) → (1 / ((coeff‘𝑎)‘(deg‘𝑎))) ∈ ℚ)
2112, 19, 20syl2anc 583 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (1 / ((coeff‘𝑎)‘(deg‘𝑎))) ∈ ℚ)
22 plyconst 26265 . . . . . 6 ((ℚ ⊆ ℂ ∧ (1 / ((coeff‘𝑎)‘(deg‘𝑎))) ∈ ℚ) → (ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∈ (Poly‘ℚ))
231, 21, 22sylancr 586 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∈ (Poly‘ℚ))
24 simpl 482 . . . . . 6 (((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) → (ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∈ (Poly‘ℚ))
25 simpr 484 . . . . . 6 (((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) → 𝑎 ∈ (Poly‘ℚ))
26 qaddcl 13030 . . . . . . 7 ((𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ) → (𝑏 + 𝑐) ∈ ℚ)
2726adantl 481 . . . . . 6 ((((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ (𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ)) → (𝑏 + 𝑐) ∈ ℚ)
28 qmulcl 13032 . . . . . . 7 ((𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ) → (𝑏 · 𝑐) ∈ ℚ)
2928adantl 481 . . . . . 6 ((((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ (𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ)) → (𝑏 · 𝑐) ∈ ℚ)
3024, 25, 27, 29plymul 26277 . . . . 5 (((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) → ((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) ∈ (Poly‘ℚ))
3123, 3, 30syl2anc 583 . . . 4 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → ((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) ∈ (Poly‘ℚ))
327coef3 26291 . . . . . . . . 9 (𝑎 ∈ (Poly‘ℚ) → (coeff‘𝑎):ℕ0⟶ℂ)
333, 32syl 17 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (coeff‘𝑎):ℕ0⟶ℂ)
3433, 11ffvelcdmd 7119 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → ((coeff‘𝑎)‘(deg‘𝑎)) ∈ ℂ)
3534, 19reccld 12063 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (1 / ((coeff‘𝑎)‘(deg‘𝑎))) ∈ ℂ)
3634, 19recne0d 12064 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (1 / ((coeff‘𝑎)‘(deg‘𝑎))) ≠ 0)
37 dgrmulc 26331 . . . . . 6 (((1 / ((coeff‘𝑎)‘(deg‘𝑎))) ∈ ℂ ∧ (1 / ((coeff‘𝑎)‘(deg‘𝑎))) ≠ 0 ∧ 𝑎 ∈ (Poly‘ℚ)) → (deg‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)) = (deg‘𝑎))
3835, 36, 3, 37syl3anc 1371 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (deg‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)) = (deg‘𝑎))
39 simprl 770 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (deg‘𝑎) = (degAA𝐴))
4038, 39eqtrd 2780 . . . 4 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (deg‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)) = (degAA𝐴))
41 aacn 26377 . . . . . . 7 (𝐴 ∈ 𝔸 → 𝐴 ∈ ℂ)
4241ad2antrr 725 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → 𝐴 ∈ ℂ)
43 ovex 7481 . . . . . . . 8 (1 / ((coeff‘𝑎)‘(deg‘𝑎))) ∈ V
44 fnconstg 6809 . . . . . . . 8 ((1 / ((coeff‘𝑎)‘(deg‘𝑎))) ∈ V → (ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) Fn ℂ)
4543, 44mp1i 13 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) Fn ℂ)
46 plyf 26257 . . . . . . . 8 (𝑎 ∈ (Poly‘ℚ) → 𝑎:ℂ⟶ℂ)
47 ffn 6747 . . . . . . . 8 (𝑎:ℂ⟶ℂ → 𝑎 Fn ℂ)
483, 46, 473syl 18 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → 𝑎 Fn ℂ)
49 cnex 11265 . . . . . . . 8 ℂ ∈ V
5049a1i 11 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → ℂ ∈ V)
51 inidm 4248 . . . . . . 7 (ℂ ∩ ℂ) = ℂ
5243fvconst2 7241 . . . . . . . 8 (𝐴 ∈ ℂ → ((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))})‘𝐴) = (1 / ((coeff‘𝑎)‘(deg‘𝑎))))
5352adantl 481 . . . . . . 7 ((((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) ∧ 𝐴 ∈ ℂ) → ((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))})‘𝐴) = (1 / ((coeff‘𝑎)‘(deg‘𝑎))))
54 simplrr 777 . . . . . . 7 ((((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) ∧ 𝐴 ∈ ℂ) → (𝑎𝐴) = 0)
5545, 48, 50, 50, 51, 53, 54ofval 7725 . . . . . 6 ((((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) ∧ 𝐴 ∈ ℂ) → (((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)‘𝐴) = ((1 / ((coeff‘𝑎)‘(deg‘𝑎))) · 0))
5642, 55mpdan 686 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)‘𝐴) = ((1 / ((coeff‘𝑎)‘(deg‘𝑎))) · 0))
5735mul01d 11489 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → ((1 / ((coeff‘𝑎)‘(deg‘𝑎))) · 0) = 0)
5856, 57eqtrd 2780 . . . 4 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)‘𝐴) = 0)
59 coemulc 26314 . . . . . . 7 (((1 / ((coeff‘𝑎)‘(deg‘𝑎))) ∈ ℂ ∧ 𝑎 ∈ (Poly‘ℚ)) → (coeff‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)) = ((ℕ0 × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · (coeff‘𝑎)))
6035, 3, 59syl2anc 583 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (coeff‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)) = ((ℕ0 × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · (coeff‘𝑎)))
6160fveq1d 6922 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → ((coeff‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎))‘(degAA𝐴)) = (((ℕ0 × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · (coeff‘𝑎))‘(degAA𝐴)))
62 dgraacl 43103 . . . . . . . 8 (𝐴 ∈ 𝔸 → (degAA𝐴) ∈ ℕ)
6362ad2antrr 725 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (degAA𝐴) ∈ ℕ)
6463nnnn0d 12613 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (degAA𝐴) ∈ ℕ0)
65 fnconstg 6809 . . . . . . . 8 ((1 / ((coeff‘𝑎)‘(deg‘𝑎))) ∈ V → (ℕ0 × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) Fn ℕ0)
6643, 65mp1i 13 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (ℕ0 × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) Fn ℕ0)
6733ffnd 6748 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (coeff‘𝑎) Fn ℕ0)
68 nn0ex 12559 . . . . . . . 8 0 ∈ V
6968a1i 11 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → ℕ0 ∈ V)
70 inidm 4248 . . . . . . 7 (ℕ0 ∩ ℕ0) = ℕ0
7143fvconst2 7241 . . . . . . . 8 ((degAA𝐴) ∈ ℕ0 → ((ℕ0 × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))})‘(degAA𝐴)) = (1 / ((coeff‘𝑎)‘(deg‘𝑎))))
7271adantl 481 . . . . . . 7 ((((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) ∧ (degAA𝐴) ∈ ℕ0) → ((ℕ0 × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))})‘(degAA𝐴)) = (1 / ((coeff‘𝑎)‘(deg‘𝑎))))
73 simplrl 776 . . . . . . . . 9 ((((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) ∧ (degAA𝐴) ∈ ℕ0) → (deg‘𝑎) = (degAA𝐴))
7473eqcomd 2746 . . . . . . . 8 ((((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) ∧ (degAA𝐴) ∈ ℕ0) → (degAA𝐴) = (deg‘𝑎))
7574fveq2d 6924 . . . . . . 7 ((((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) ∧ (degAA𝐴) ∈ ℕ0) → ((coeff‘𝑎)‘(degAA𝐴)) = ((coeff‘𝑎)‘(deg‘𝑎)))
7666, 67, 69, 69, 70, 72, 75ofval 7725 . . . . . 6 ((((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) ∧ (degAA𝐴) ∈ ℕ0) → (((ℕ0 × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · (coeff‘𝑎))‘(degAA𝐴)) = ((1 / ((coeff‘𝑎)‘(deg‘𝑎))) · ((coeff‘𝑎)‘(deg‘𝑎))))
7764, 76mpdan 686 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → (((ℕ0 × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · (coeff‘𝑎))‘(degAA𝐴)) = ((1 / ((coeff‘𝑎)‘(deg‘𝑎))) · ((coeff‘𝑎)‘(deg‘𝑎))))
7834, 19recid2d 12066 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → ((1 / ((coeff‘𝑎)‘(deg‘𝑎))) · ((coeff‘𝑎)‘(deg‘𝑎))) = 1)
7961, 77, 783eqtrd 2784 . . . 4 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → ((coeff‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎))‘(degAA𝐴)) = 1)
80 fveqeq2 6929 . . . . . 6 (𝑝 = ((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) → ((deg‘𝑝) = (degAA𝐴) ↔ (deg‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)) = (degAA𝐴)))
81 fveq1 6919 . . . . . . 7 (𝑝 = ((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) → (𝑝𝐴) = (((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)‘𝐴))
8281eqeq1d 2742 . . . . . 6 (𝑝 = ((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) → ((𝑝𝐴) = 0 ↔ (((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)‘𝐴) = 0))
83 fveq2 6920 . . . . . . . 8 (𝑝 = ((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) → (coeff‘𝑝) = (coeff‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)))
8483fveq1d 6922 . . . . . . 7 (𝑝 = ((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) → ((coeff‘𝑝)‘(degAA𝐴)) = ((coeff‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎))‘(degAA𝐴)))
8584eqeq1d 2742 . . . . . 6 (𝑝 = ((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) → (((coeff‘𝑝)‘(degAA𝐴)) = 1 ↔ ((coeff‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎))‘(degAA𝐴)) = 1))
8680, 82, 853anbi123d 1436 . . . . 5 (𝑝 = ((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) → (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ↔ ((deg‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)) = (degAA𝐴) ∧ (((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)‘𝐴) = 0 ∧ ((coeff‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎))‘(degAA𝐴)) = 1)))
8786rspcev 3635 . . . 4 ((((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎) ∈ (Poly‘ℚ) ∧ ((deg‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)) = (degAA𝐴) ∧ (((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎)‘𝐴) = 0 ∧ ((coeff‘((ℂ × {(1 / ((coeff‘𝑎)‘(deg‘𝑎)))}) ∘f · 𝑎))‘(degAA𝐴)) = 1)) → ∃𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1))
8831, 40, 58, 79, 87syl13anc 1372 . . 3 (((𝐴 ∈ 𝔸 ∧ 𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)) → ∃𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1))
89 dgraalem 43102 . . . 4 (𝐴 ∈ 𝔸 → ((degAA𝐴) ∈ ℕ ∧ ∃𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0)))
9089simprd 495 . . 3 (𝐴 ∈ 𝔸 → ∃𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0))
9188, 90r19.29a 3168 . 2 (𝐴 ∈ 𝔸 → ∃𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1))
92 simp2 1137 . . . . . . . . . . 11 (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) → (𝑝𝐴) = 0)
93 simp2 1137 . . . . . . . . . . 11 (((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1) → (𝑎𝐴) = 0)
9492, 93anim12i 612 . . . . . . . . . 10 ((((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1)) → ((𝑝𝐴) = 0 ∧ (𝑎𝐴) = 0))
95 plyf 26257 . . . . . . . . . . . . . . . 16 (𝑝 ∈ (Poly‘ℚ) → 𝑝:ℂ⟶ℂ)
9695ffnd 6748 . . . . . . . . . . . . . . 15 (𝑝 ∈ (Poly‘ℚ) → 𝑝 Fn ℂ)
9796ad2antrr 725 . . . . . . . . . . . . . 14 (((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ ((𝑝𝐴) = 0 ∧ (𝑎𝐴) = 0)) → 𝑝 Fn ℂ)
9846ffnd 6748 . . . . . . . . . . . . . . 15 (𝑎 ∈ (Poly‘ℚ) → 𝑎 Fn ℂ)
9998ad2antlr 726 . . . . . . . . . . . . . 14 (((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ ((𝑝𝐴) = 0 ∧ (𝑎𝐴) = 0)) → 𝑎 Fn ℂ)
10049a1i 11 . . . . . . . . . . . . . 14 (((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ ((𝑝𝐴) = 0 ∧ (𝑎𝐴) = 0)) → ℂ ∈ V)
101 simplrl 776 . . . . . . . . . . . . . 14 ((((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ ((𝑝𝐴) = 0 ∧ (𝑎𝐴) = 0)) ∧ 𝐴 ∈ ℂ) → (𝑝𝐴) = 0)
102 simplrr 777 . . . . . . . . . . . . . 14 ((((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ ((𝑝𝐴) = 0 ∧ (𝑎𝐴) = 0)) ∧ 𝐴 ∈ ℂ) → (𝑎𝐴) = 0)
10397, 99, 100, 100, 51, 101, 102ofval 7725 . . . . . . . . . . . . 13 ((((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ ((𝑝𝐴) = 0 ∧ (𝑎𝐴) = 0)) ∧ 𝐴 ∈ ℂ) → ((𝑝f𝑎)‘𝐴) = (0 − 0))
10441, 103sylan2 592 . . . . . . . . . . . 12 ((((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ ((𝑝𝐴) = 0 ∧ (𝑎𝐴) = 0)) ∧ 𝐴 ∈ 𝔸) → ((𝑝f𝑎)‘𝐴) = (0 − 0))
105 0m0e0 12413 . . . . . . . . . . . 12 (0 − 0) = 0
106104, 105eqtrdi 2796 . . . . . . . . . . 11 ((((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ ((𝑝𝐴) = 0 ∧ (𝑎𝐴) = 0)) ∧ 𝐴 ∈ 𝔸) → ((𝑝f𝑎)‘𝐴) = 0)
107106ex 412 . . . . . . . . . 10 (((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ ((𝑝𝐴) = 0 ∧ (𝑎𝐴) = 0)) → (𝐴 ∈ 𝔸 → ((𝑝f𝑎)‘𝐴) = 0))
10894, 107sylan2 592 . . . . . . . . 9 (((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (𝐴 ∈ 𝔸 → ((𝑝f𝑎)‘𝐴) = 0))
109108com12 32 . . . . . . . 8 (𝐴 ∈ 𝔸 → (((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → ((𝑝f𝑎)‘𝐴) = 0))
110109impl 455 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → ((𝑝f𝑎)‘𝐴) = 0)
111 simpll 766 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → 𝐴 ∈ 𝔸)
112 simpl 482 . . . . . . . . . 10 ((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) → 𝑝 ∈ (Poly‘ℚ))
113 simpr 484 . . . . . . . . . 10 ((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) → 𝑎 ∈ (Poly‘ℚ))
11426adantl 481 . . . . . . . . . 10 (((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ (𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ)) → (𝑏 + 𝑐) ∈ ℚ)
11528adantl 481 . . . . . . . . . 10 (((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ (𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ)) → (𝑏 · 𝑐) ∈ ℚ)
116 1z 12673 . . . . . . . . . . . 12 1 ∈ ℤ
117 zq 13019 . . . . . . . . . . . 12 (1 ∈ ℤ → 1 ∈ ℚ)
118 qnegcl 13031 . . . . . . . . . . . 12 (1 ∈ ℚ → -1 ∈ ℚ)
119116, 117, 118mp2b 10 . . . . . . . . . . 11 -1 ∈ ℚ
120119a1i 11 . . . . . . . . . 10 ((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) → -1 ∈ ℚ)
121112, 113, 114, 115, 120plysub 26278 . . . . . . . . 9 ((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) → (𝑝f𝑎) ∈ (Poly‘ℚ))
122121ad2antlr 726 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (𝑝f𝑎) ∈ (Poly‘ℚ))
123 simplrl 776 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → 𝑝 ∈ (Poly‘ℚ))
124 simplrr 777 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → 𝑎 ∈ (Poly‘ℚ))
125 simprr1 1221 . . . . . . . . . . 11 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (deg‘𝑎) = (degAA𝐴))
126 simprl1 1218 . . . . . . . . . . 11 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (deg‘𝑝) = (degAA𝐴))
127125, 126eqtr4d 2783 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (deg‘𝑎) = (deg‘𝑝))
12862ad2antrr 725 . . . . . . . . . . 11 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (degAA𝐴) ∈ ℕ)
129126, 128eqeltrd 2844 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (deg‘𝑝) ∈ ℕ)
130 simprl3 1220 . . . . . . . . . . 11 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → ((coeff‘𝑝)‘(degAA𝐴)) = 1)
131126fveq2d 6924 . . . . . . . . . . 11 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → ((coeff‘𝑝)‘(deg‘𝑝)) = ((coeff‘𝑝)‘(degAA𝐴)))
132126fveq2d 6924 . . . . . . . . . . . 12 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → ((coeff‘𝑎)‘(deg‘𝑝)) = ((coeff‘𝑎)‘(degAA𝐴)))
133 simprr3 1223 . . . . . . . . . . . 12 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → ((coeff‘𝑎)‘(degAA𝐴)) = 1)
134132, 133eqtrd 2780 . . . . . . . . . . 11 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → ((coeff‘𝑎)‘(deg‘𝑝)) = 1)
135130, 131, 1343eqtr4d 2790 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → ((coeff‘𝑝)‘(deg‘𝑝)) = ((coeff‘𝑎)‘(deg‘𝑝)))
136 eqid 2740 . . . . . . . . . . 11 (deg‘𝑝) = (deg‘𝑝)
137136dgrsub2 43092 . . . . . . . . . 10 (((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) ∧ ((deg‘𝑎) = (deg‘𝑝) ∧ (deg‘𝑝) ∈ ℕ ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = ((coeff‘𝑎)‘(deg‘𝑝)))) → (deg‘(𝑝f𝑎)) < (deg‘𝑝))
138123, 124, 127, 129, 135, 137syl23anc 1377 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (deg‘(𝑝f𝑎)) < (deg‘𝑝))
139138, 126breqtrd 5192 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (deg‘(𝑝f𝑎)) < (degAA𝐴))
140 dgraa0p 43106 . . . . . . . 8 ((𝐴 ∈ 𝔸 ∧ (𝑝f𝑎) ∈ (Poly‘ℚ) ∧ (deg‘(𝑝f𝑎)) < (degAA𝐴)) → (((𝑝f𝑎)‘𝐴) = 0 ↔ (𝑝f𝑎) = 0𝑝))
141111, 122, 139, 140syl3anc 1371 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (((𝑝f𝑎)‘𝐴) = 0 ↔ (𝑝f𝑎) = 0𝑝))
142110, 141mpbid 232 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (𝑝f𝑎) = 0𝑝)
143 df-0p 25724 . . . . . 6 0𝑝 = (ℂ × {0})
144142, 143eqtrdi 2796 . . . . 5 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → (𝑝f𝑎) = (ℂ × {0}))
145 ofsubeq0 12290 . . . . . . . 8 ((ℂ ∈ V ∧ 𝑝:ℂ⟶ℂ ∧ 𝑎:ℂ⟶ℂ) → ((𝑝f𝑎) = (ℂ × {0}) ↔ 𝑝 = 𝑎))
14649, 145mp3an1 1448 . . . . . . 7 ((𝑝:ℂ⟶ℂ ∧ 𝑎:ℂ⟶ℂ) → ((𝑝f𝑎) = (ℂ × {0}) ↔ 𝑝 = 𝑎))
14795, 46, 146syl2an 595 . . . . . 6 ((𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ)) → ((𝑝f𝑎) = (ℂ × {0}) ↔ 𝑝 = 𝑎))
148147ad2antlr 726 . . . . 5 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → ((𝑝f𝑎) = (ℂ × {0}) ↔ 𝑝 = 𝑎))
149144, 148mpbid 232 . . . 4 (((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) ∧ (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1))) → 𝑝 = 𝑎)
150149ex 412 . . 3 ((𝐴 ∈ 𝔸 ∧ (𝑝 ∈ (Poly‘ℚ) ∧ 𝑎 ∈ (Poly‘ℚ))) → ((((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1)) → 𝑝 = 𝑎))
151150ralrimivva 3208 . 2 (𝐴 ∈ 𝔸 → ∀𝑝 ∈ (Poly‘ℚ)∀𝑎 ∈ (Poly‘ℚ)((((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1)) → 𝑝 = 𝑎))
152 fveqeq2 6929 . . . 4 (𝑝 = 𝑎 → ((deg‘𝑝) = (degAA𝐴) ↔ (deg‘𝑎) = (degAA𝐴)))
153 fveq1 6919 . . . . 5 (𝑝 = 𝑎 → (𝑝𝐴) = (𝑎𝐴))
154153eqeq1d 2742 . . . 4 (𝑝 = 𝑎 → ((𝑝𝐴) = 0 ↔ (𝑎𝐴) = 0))
155 fveq2 6920 . . . . . 6 (𝑝 = 𝑎 → (coeff‘𝑝) = (coeff‘𝑎))
156155fveq1d 6922 . . . . 5 (𝑝 = 𝑎 → ((coeff‘𝑝)‘(degAA𝐴)) = ((coeff‘𝑎)‘(degAA𝐴)))
157156eqeq1d 2742 . . . 4 (𝑝 = 𝑎 → (((coeff‘𝑝)‘(degAA𝐴)) = 1 ↔ ((coeff‘𝑎)‘(degAA𝐴)) = 1))
158152, 154, 1573anbi123d 1436 . . 3 (𝑝 = 𝑎 → (((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ↔ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1)))
159158reu4 3753 . 2 (∃!𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ↔ (∃𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ∀𝑝 ∈ (Poly‘ℚ)∀𝑎 ∈ (Poly‘ℚ)((((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1) ∧ ((deg‘𝑎) = (degAA𝐴) ∧ (𝑎𝐴) = 0 ∧ ((coeff‘𝑎)‘(degAA𝐴)) = 1)) → 𝑝 = 𝑎)))
16091, 151, 159sylanbrc 582 1 (𝐴 ∈ 𝔸 → ∃!𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝐴) ∧ (𝑝𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA𝐴)) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  ∃!wreu 3386  Vcvv 3488  cdif 3973  wss 3976  {csn 4648   class class class wbr 5166   × cxp 5698   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  f cof 7712  cc 11182  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cmin 11520  -cneg 11521   / cdiv 11947  cn 12293  0cn0 12553  cz 12639  cq 13013  0𝑝c0p 25723  Polycply 26243  coeffccoe 26245  degcdgr 26246  𝔸caa 26374  degAAcdgraa 43097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-0p 25724  df-ply 26247  df-coe 26249  df-dgr 26250  df-aa 26375  df-dgraa 43099
This theorem is referenced by:  mpaalem  43109
  Copyright terms: Public domain W3C validator