Step | Hyp | Ref
| Expression |
1 | | i1frn 25185 |
. . . . 5
β’ (πΉ β dom β«1
β ran πΉ β
Fin) |
2 | | difss 4130 |
. . . . 5
β’ (ran
πΉ β {0}) β ran
πΉ |
3 | | ssfi 9169 |
. . . . 5
β’ ((ran
πΉ β Fin β§ (ran
πΉ β {0}) β ran
πΉ) β (ran πΉ β {0}) β
Fin) |
4 | 1, 2, 3 | sylancl 586 |
. . . 4
β’ (πΉ β dom β«1
β (ran πΉ β {0})
β Fin) |
5 | 4 | adantr 481 |
. . 3
β’ ((πΉ β dom β«1
β§ 0π βr β€ πΉ) β (ran πΉ β {0}) β Fin) |
6 | | i1ff 25184 |
. . . . . . . 8
β’ (πΉ β dom β«1
β πΉ:ββΆβ) |
7 | 6 | adantr 481 |
. . . . . . 7
β’ ((πΉ β dom β«1
β§ 0π βr β€ πΉ) β πΉ:ββΆβ) |
8 | 7 | frnd 6722 |
. . . . . 6
β’ ((πΉ β dom β«1
β§ 0π βr β€ πΉ) β ran πΉ β β) |
9 | 8 | ssdifssd 4141 |
. . . . 5
β’ ((πΉ β dom β«1
β§ 0π βr β€ πΉ) β (ran πΉ β {0}) β
β) |
10 | 9 | sselda 3981 |
. . . 4
β’ (((πΉ β dom β«1
β§ 0π βr β€ πΉ) β§ π₯ β (ran πΉ β {0})) β π₯ β β) |
11 | | i1fima2sn 25188 |
. . . . 5
β’ ((πΉ β dom β«1
β§ π₯ β (ran πΉ β {0})) β
(volβ(β‘πΉ β {π₯})) β β) |
12 | 11 | adantlr 713 |
. . . 4
β’ (((πΉ β dom β«1
β§ 0π βr β€ πΉ) β§ π₯ β (ran πΉ β {0})) β (volβ(β‘πΉ β {π₯})) β β) |
13 | 10, 12 | remulcld 11240 |
. . 3
β’ (((πΉ β dom β«1
β§ 0π βr β€ πΉ) β§ π₯ β (ran πΉ β {0})) β (π₯ Β· (volβ(β‘πΉ β {π₯}))) β β) |
14 | | eldifi 4125 |
. . . . 5
β’ (π₯ β (ran πΉ β {0}) β π₯ β ran πΉ) |
15 | | 0cn 11202 |
. . . . . . . . . . . 12
β’ 0 β
β |
16 | | fnconstg 6776 |
. . . . . . . . . . . 12
β’ (0 β
β β (β Γ {0}) Fn β) |
17 | 15, 16 | ax-mp 5 |
. . . . . . . . . . 11
β’ (β
Γ {0}) Fn β |
18 | | df-0p 25178 |
. . . . . . . . . . . 12
β’
0π = (β Γ {0}) |
19 | 18 | fneq1i 6643 |
. . . . . . . . . . 11
β’
(0π Fn β β (β Γ {0}) Fn
β) |
20 | 17, 19 | mpbir 230 |
. . . . . . . . . 10
β’
0π Fn β |
21 | 20 | a1i 11 |
. . . . . . . . 9
β’ (πΉ β dom β«1
β 0π Fn β) |
22 | 6 | ffnd 6715 |
. . . . . . . . 9
β’ (πΉ β dom β«1
β πΉ Fn
β) |
23 | | cnex 11187 |
. . . . . . . . . 10
β’ β
β V |
24 | 23 | a1i 11 |
. . . . . . . . 9
β’ (πΉ β dom β«1
β β β V) |
25 | | reex 11197 |
. . . . . . . . . 10
β’ β
β V |
26 | 25 | a1i 11 |
. . . . . . . . 9
β’ (πΉ β dom β«1
β β β V) |
27 | | ax-resscn 11163 |
. . . . . . . . . 10
β’ β
β β |
28 | | sseqin2 4214 |
. . . . . . . . . 10
β’ (β
β β β (β β© β) = β) |
29 | 27, 28 | mpbi 229 |
. . . . . . . . 9
β’ (β
β© β) = β |
30 | | 0pval 25179 |
. . . . . . . . . 10
β’ (π¦ β β β
(0πβπ¦) = 0) |
31 | 30 | adantl 482 |
. . . . . . . . 9
β’ ((πΉ β dom β«1
β§ π¦ β β)
β (0πβπ¦) = 0) |
32 | | eqidd 2733 |
. . . . . . . . 9
β’ ((πΉ β dom β«1
β§ π¦ β β)
β (πΉβπ¦) = (πΉβπ¦)) |
33 | 21, 22, 24, 26, 29, 31, 32 | ofrfval 7676 |
. . . . . . . 8
β’ (πΉ β dom β«1
β (0π βr β€ πΉ β βπ¦ β β 0 β€ (πΉβπ¦))) |
34 | 33 | biimpa 477 |
. . . . . . 7
β’ ((πΉ β dom β«1
β§ 0π βr β€ πΉ) β βπ¦ β β 0 β€ (πΉβπ¦)) |
35 | 22 | adantr 481 |
. . . . . . . 8
β’ ((πΉ β dom β«1
β§ 0π βr β€ πΉ) β πΉ Fn β) |
36 | | breq2 5151 |
. . . . . . . . 9
β’ (π₯ = (πΉβπ¦) β (0 β€ π₯ β 0 β€ (πΉβπ¦))) |
37 | 36 | ralrn 7086 |
. . . . . . . 8
β’ (πΉ Fn β β
(βπ₯ β ran πΉ0 β€ π₯ β βπ¦ β β 0 β€ (πΉβπ¦))) |
38 | 35, 37 | syl 17 |
. . . . . . 7
β’ ((πΉ β dom β«1
β§ 0π βr β€ πΉ) β (βπ₯ β ran πΉ0 β€ π₯ β βπ¦ β β 0 β€ (πΉβπ¦))) |
39 | 34, 38 | mpbird 256 |
. . . . . 6
β’ ((πΉ β dom β«1
β§ 0π βr β€ πΉ) β βπ₯ β ran πΉ0 β€ π₯) |
40 | 39 | r19.21bi 3248 |
. . . . 5
β’ (((πΉ β dom β«1
β§ 0π βr β€ πΉ) β§ π₯ β ran πΉ) β 0 β€ π₯) |
41 | 14, 40 | sylan2 593 |
. . . 4
β’ (((πΉ β dom β«1
β§ 0π βr β€ πΉ) β§ π₯ β (ran πΉ β {0})) β 0 β€ π₯) |
42 | | i1fima 25186 |
. . . . . 6
β’ (πΉ β dom β«1
β (β‘πΉ β {π₯}) β dom vol) |
43 | 42 | ad2antrr 724 |
. . . . 5
β’ (((πΉ β dom β«1
β§ 0π βr β€ πΉ) β§ π₯ β (ran πΉ β {0})) β (β‘πΉ β {π₯}) β dom vol) |
44 | | mblss 25039 |
. . . . . . 7
β’ ((β‘πΉ β {π₯}) β dom vol β (β‘πΉ β {π₯}) β β) |
45 | | ovolge0 24989 |
. . . . . . 7
β’ ((β‘πΉ β {π₯}) β β β 0 β€
(vol*β(β‘πΉ β {π₯}))) |
46 | 44, 45 | syl 17 |
. . . . . 6
β’ ((β‘πΉ β {π₯}) β dom vol β 0 β€
(vol*β(β‘πΉ β {π₯}))) |
47 | | mblvol 25038 |
. . . . . 6
β’ ((β‘πΉ β {π₯}) β dom vol β (volβ(β‘πΉ β {π₯})) = (vol*β(β‘πΉ β {π₯}))) |
48 | 46, 47 | breqtrrd 5175 |
. . . . 5
β’ ((β‘πΉ β {π₯}) β dom vol β 0 β€
(volβ(β‘πΉ β {π₯}))) |
49 | 43, 48 | syl 17 |
. . . 4
β’ (((πΉ β dom β«1
β§ 0π βr β€ πΉ) β§ π₯ β (ran πΉ β {0})) β 0 β€
(volβ(β‘πΉ β {π₯}))) |
50 | 10, 12, 41, 49 | mulge0d 11787 |
. . 3
β’ (((πΉ β dom β«1
β§ 0π βr β€ πΉ) β§ π₯ β (ran πΉ β {0})) β 0 β€ (π₯ Β· (volβ(β‘πΉ β {π₯})))) |
51 | 5, 13, 50 | fsumge0 15737 |
. 2
β’ ((πΉ β dom β«1
β§ 0π βr β€ πΉ) β 0 β€ Ξ£π₯ β (ran πΉ β {0})(π₯ Β· (volβ(β‘πΉ β {π₯})))) |
52 | | itg1val 25191 |
. . 3
β’ (πΉ β dom β«1
β (β«1βπΉ) = Ξ£π₯ β (ran πΉ β {0})(π₯ Β· (volβ(β‘πΉ β {π₯})))) |
53 | 52 | adantr 481 |
. 2
β’ ((πΉ β dom β«1
β§ 0π βr β€ πΉ) β (β«1βπΉ) = Ξ£π₯ β (ran πΉ β {0})(π₯ Β· (volβ(β‘πΉ β {π₯})))) |
54 | 51, 53 | breqtrrd 5175 |
1
β’ ((πΉ β dom β«1
β§ 0π βr β€ πΉ) β 0 β€
(β«1βπΉ)) |