MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg1ge0 Structured version   Visualization version   GIF version

Theorem itg1ge0 25615
Description: Closure of the integral on positive simple functions. (Contributed by Mario Carneiro, 19-Jun-2014.)
Assertion
Ref Expression
itg1ge0 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → 0 ≤ (∫1𝐹))

Proof of Theorem itg1ge0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 i1frn 25606 . . . . 5 (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin)
2 difss 4085 . . . . 5 (ran 𝐹 ∖ {0}) ⊆ ran 𝐹
3 ssfi 9089 . . . . 5 ((ran 𝐹 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ ran 𝐹) → (ran 𝐹 ∖ {0}) ∈ Fin)
41, 2, 3sylancl 586 . . . 4 (𝐹 ∈ dom ∫1 → (ran 𝐹 ∖ {0}) ∈ Fin)
54adantr 480 . . 3 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → (ran 𝐹 ∖ {0}) ∈ Fin)
6 i1ff 25605 . . . . . . . 8 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
76adantr 480 . . . . . . 7 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → 𝐹:ℝ⟶ℝ)
87frnd 6664 . . . . . 6 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → ran 𝐹 ⊆ ℝ)
98ssdifssd 4096 . . . . 5 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → (ran 𝐹 ∖ {0}) ⊆ ℝ)
109sselda 3930 . . . 4 (((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → 𝑥 ∈ ℝ)
11 i1fima2sn 25609 . . . . 5 ((𝐹 ∈ dom ∫1𝑥 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑥})) ∈ ℝ)
1211adantlr 715 . . . 4 (((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑥})) ∈ ℝ)
1310, 12remulcld 11149 . . 3 (((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → (𝑥 · (vol‘(𝐹 “ {𝑥}))) ∈ ℝ)
14 eldifi 4080 . . . . 5 (𝑥 ∈ (ran 𝐹 ∖ {0}) → 𝑥 ∈ ran 𝐹)
15 0cn 11111 . . . . . . . . . . . 12 0 ∈ ℂ
16 fnconstg 6716 . . . . . . . . . . . 12 (0 ∈ ℂ → (ℂ × {0}) Fn ℂ)
1715, 16ax-mp 5 . . . . . . . . . . 11 (ℂ × {0}) Fn ℂ
18 df-0p 25599 . . . . . . . . . . . 12 0𝑝 = (ℂ × {0})
1918fneq1i 6583 . . . . . . . . . . 11 (0𝑝 Fn ℂ ↔ (ℂ × {0}) Fn ℂ)
2017, 19mpbir 231 . . . . . . . . . 10 0𝑝 Fn ℂ
2120a1i 11 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → 0𝑝 Fn ℂ)
226ffnd 6657 . . . . . . . . 9 (𝐹 ∈ dom ∫1𝐹 Fn ℝ)
23 cnex 11094 . . . . . . . . . 10 ℂ ∈ V
2423a1i 11 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → ℂ ∈ V)
25 reex 11104 . . . . . . . . . 10 ℝ ∈ V
2625a1i 11 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → ℝ ∈ V)
27 ax-resscn 11070 . . . . . . . . . 10 ℝ ⊆ ℂ
28 sseqin2 4172 . . . . . . . . . 10 (ℝ ⊆ ℂ ↔ (ℂ ∩ ℝ) = ℝ)
2927, 28mpbi 230 . . . . . . . . 9 (ℂ ∩ ℝ) = ℝ
30 0pval 25600 . . . . . . . . . 10 (𝑦 ∈ ℂ → (0𝑝𝑦) = 0)
3130adantl 481 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑦 ∈ ℂ) → (0𝑝𝑦) = 0)
32 eqidd 2734 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑦 ∈ ℝ) → (𝐹𝑦) = (𝐹𝑦))
3321, 22, 24, 26, 29, 31, 32ofrfval 7626 . . . . . . . 8 (𝐹 ∈ dom ∫1 → (0𝑝r𝐹 ↔ ∀𝑦 ∈ ℝ 0 ≤ (𝐹𝑦)))
3433biimpa 476 . . . . . . 7 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → ∀𝑦 ∈ ℝ 0 ≤ (𝐹𝑦))
3522adantr 480 . . . . . . . 8 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → 𝐹 Fn ℝ)
36 breq2 5097 . . . . . . . . 9 (𝑥 = (𝐹𝑦) → (0 ≤ 𝑥 ↔ 0 ≤ (𝐹𝑦)))
3736ralrn 7027 . . . . . . . 8 (𝐹 Fn ℝ → (∀𝑥 ∈ ran 𝐹0 ≤ 𝑥 ↔ ∀𝑦 ∈ ℝ 0 ≤ (𝐹𝑦)))
3835, 37syl 17 . . . . . . 7 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → (∀𝑥 ∈ ran 𝐹0 ≤ 𝑥 ↔ ∀𝑦 ∈ ℝ 0 ≤ (𝐹𝑦)))
3934, 38mpbird 257 . . . . . 6 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → ∀𝑥 ∈ ran 𝐹0 ≤ 𝑥)
4039r19.21bi 3225 . . . . 5 (((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) ∧ 𝑥 ∈ ran 𝐹) → 0 ≤ 𝑥)
4114, 40sylan2 593 . . . 4 (((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → 0 ≤ 𝑥)
42 i1fima 25607 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝐹 “ {𝑥}) ∈ dom vol)
4342ad2antrr 726 . . . . 5 (((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → (𝐹 “ {𝑥}) ∈ dom vol)
44 mblss 25460 . . . . . . 7 ((𝐹 “ {𝑥}) ∈ dom vol → (𝐹 “ {𝑥}) ⊆ ℝ)
45 ovolge0 25410 . . . . . . 7 ((𝐹 “ {𝑥}) ⊆ ℝ → 0 ≤ (vol*‘(𝐹 “ {𝑥})))
4644, 45syl 17 . . . . . 6 ((𝐹 “ {𝑥}) ∈ dom vol → 0 ≤ (vol*‘(𝐹 “ {𝑥})))
47 mblvol 25459 . . . . . 6 ((𝐹 “ {𝑥}) ∈ dom vol → (vol‘(𝐹 “ {𝑥})) = (vol*‘(𝐹 “ {𝑥})))
4846, 47breqtrrd 5121 . . . . 5 ((𝐹 “ {𝑥}) ∈ dom vol → 0 ≤ (vol‘(𝐹 “ {𝑥})))
4943, 48syl 17 . . . 4 (((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → 0 ≤ (vol‘(𝐹 “ {𝑥})))
5010, 12, 41, 49mulge0d 11701 . . 3 (((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → 0 ≤ (𝑥 · (vol‘(𝐹 “ {𝑥}))))
515, 13, 50fsumge0 15704 . 2 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → 0 ≤ Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(𝐹 “ {𝑥}))))
52 itg1val 25612 . . 3 (𝐹 ∈ dom ∫1 → (∫1𝐹) = Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(𝐹 “ {𝑥}))))
5352adantr 480 . 2 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → (∫1𝐹) = Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(𝐹 “ {𝑥}))))
5451, 53breqtrrd 5121 1 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → 0 ≤ (∫1𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  Vcvv 3437  cdif 3895  cin 3897  wss 3898  {csn 4575   class class class wbr 5093   × cxp 5617  ccnv 5618  dom cdm 5619  ran crn 5620  cima 5622   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7352  r cofr 7615  Fincfn 8875  cc 11011  cr 11012  0cc0 11013   · cmul 11018  cle 11154  Σcsu 15595  vol*covol 25391  volcvol 25392  1citg1 25544  0𝑝c0p 25598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-ofr 7617  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-oi 9403  df-dju 9801  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-q 12849  df-rp 12893  df-xadd 13014  df-ioo 13251  df-ico 13253  df-icc 13254  df-fz 13410  df-fzo 13557  df-fl 13698  df-seq 13911  df-exp 13971  df-hash 14240  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-clim 15397  df-sum 15596  df-xmet 21286  df-met 21287  df-ovol 25393  df-vol 25394  df-mbf 25548  df-itg1 25549  df-0p 25599
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator