MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg1ge0 Structured version   Visualization version   GIF version

Theorem itg1ge0 25740
Description: Closure of the integral on positive simple functions. (Contributed by Mario Carneiro, 19-Jun-2014.)
Assertion
Ref Expression
itg1ge0 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → 0 ≤ (∫1𝐹))

Proof of Theorem itg1ge0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 i1frn 25731 . . . . 5 (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin)
2 difss 4159 . . . . 5 (ran 𝐹 ∖ {0}) ⊆ ran 𝐹
3 ssfi 9240 . . . . 5 ((ran 𝐹 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ ran 𝐹) → (ran 𝐹 ∖ {0}) ∈ Fin)
41, 2, 3sylancl 585 . . . 4 (𝐹 ∈ dom ∫1 → (ran 𝐹 ∖ {0}) ∈ Fin)
54adantr 480 . . 3 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → (ran 𝐹 ∖ {0}) ∈ Fin)
6 i1ff 25730 . . . . . . . 8 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
76adantr 480 . . . . . . 7 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → 𝐹:ℝ⟶ℝ)
87frnd 6755 . . . . . 6 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → ran 𝐹 ⊆ ℝ)
98ssdifssd 4170 . . . . 5 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → (ran 𝐹 ∖ {0}) ⊆ ℝ)
109sselda 4008 . . . 4 (((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → 𝑥 ∈ ℝ)
11 i1fima2sn 25734 . . . . 5 ((𝐹 ∈ dom ∫1𝑥 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑥})) ∈ ℝ)
1211adantlr 714 . . . 4 (((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑥})) ∈ ℝ)
1310, 12remulcld 11320 . . 3 (((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → (𝑥 · (vol‘(𝐹 “ {𝑥}))) ∈ ℝ)
14 eldifi 4154 . . . . 5 (𝑥 ∈ (ran 𝐹 ∖ {0}) → 𝑥 ∈ ran 𝐹)
15 0cn 11282 . . . . . . . . . . . 12 0 ∈ ℂ
16 fnconstg 6809 . . . . . . . . . . . 12 (0 ∈ ℂ → (ℂ × {0}) Fn ℂ)
1715, 16ax-mp 5 . . . . . . . . . . 11 (ℂ × {0}) Fn ℂ
18 df-0p 25724 . . . . . . . . . . . 12 0𝑝 = (ℂ × {0})
1918fneq1i 6676 . . . . . . . . . . 11 (0𝑝 Fn ℂ ↔ (ℂ × {0}) Fn ℂ)
2017, 19mpbir 231 . . . . . . . . . 10 0𝑝 Fn ℂ
2120a1i 11 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → 0𝑝 Fn ℂ)
226ffnd 6748 . . . . . . . . 9 (𝐹 ∈ dom ∫1𝐹 Fn ℝ)
23 cnex 11265 . . . . . . . . . 10 ℂ ∈ V
2423a1i 11 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → ℂ ∈ V)
25 reex 11275 . . . . . . . . . 10 ℝ ∈ V
2625a1i 11 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → ℝ ∈ V)
27 ax-resscn 11241 . . . . . . . . . 10 ℝ ⊆ ℂ
28 sseqin2 4244 . . . . . . . . . 10 (ℝ ⊆ ℂ ↔ (ℂ ∩ ℝ) = ℝ)
2927, 28mpbi 230 . . . . . . . . 9 (ℂ ∩ ℝ) = ℝ
30 0pval 25725 . . . . . . . . . 10 (𝑦 ∈ ℂ → (0𝑝𝑦) = 0)
3130adantl 481 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑦 ∈ ℂ) → (0𝑝𝑦) = 0)
32 eqidd 2741 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑦 ∈ ℝ) → (𝐹𝑦) = (𝐹𝑦))
3321, 22, 24, 26, 29, 31, 32ofrfval 7724 . . . . . . . 8 (𝐹 ∈ dom ∫1 → (0𝑝r𝐹 ↔ ∀𝑦 ∈ ℝ 0 ≤ (𝐹𝑦)))
3433biimpa 476 . . . . . . 7 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → ∀𝑦 ∈ ℝ 0 ≤ (𝐹𝑦))
3522adantr 480 . . . . . . . 8 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → 𝐹 Fn ℝ)
36 breq2 5170 . . . . . . . . 9 (𝑥 = (𝐹𝑦) → (0 ≤ 𝑥 ↔ 0 ≤ (𝐹𝑦)))
3736ralrn 7122 . . . . . . . 8 (𝐹 Fn ℝ → (∀𝑥 ∈ ran 𝐹0 ≤ 𝑥 ↔ ∀𝑦 ∈ ℝ 0 ≤ (𝐹𝑦)))
3835, 37syl 17 . . . . . . 7 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → (∀𝑥 ∈ ran 𝐹0 ≤ 𝑥 ↔ ∀𝑦 ∈ ℝ 0 ≤ (𝐹𝑦)))
3934, 38mpbird 257 . . . . . 6 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → ∀𝑥 ∈ ran 𝐹0 ≤ 𝑥)
4039r19.21bi 3257 . . . . 5 (((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) ∧ 𝑥 ∈ ran 𝐹) → 0 ≤ 𝑥)
4114, 40sylan2 592 . . . 4 (((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → 0 ≤ 𝑥)
42 i1fima 25732 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝐹 “ {𝑥}) ∈ dom vol)
4342ad2antrr 725 . . . . 5 (((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → (𝐹 “ {𝑥}) ∈ dom vol)
44 mblss 25585 . . . . . . 7 ((𝐹 “ {𝑥}) ∈ dom vol → (𝐹 “ {𝑥}) ⊆ ℝ)
45 ovolge0 25535 . . . . . . 7 ((𝐹 “ {𝑥}) ⊆ ℝ → 0 ≤ (vol*‘(𝐹 “ {𝑥})))
4644, 45syl 17 . . . . . 6 ((𝐹 “ {𝑥}) ∈ dom vol → 0 ≤ (vol*‘(𝐹 “ {𝑥})))
47 mblvol 25584 . . . . . 6 ((𝐹 “ {𝑥}) ∈ dom vol → (vol‘(𝐹 “ {𝑥})) = (vol*‘(𝐹 “ {𝑥})))
4846, 47breqtrrd 5194 . . . . 5 ((𝐹 “ {𝑥}) ∈ dom vol → 0 ≤ (vol‘(𝐹 “ {𝑥})))
4943, 48syl 17 . . . 4 (((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → 0 ≤ (vol‘(𝐹 “ {𝑥})))
5010, 12, 41, 49mulge0d 11867 . . 3 (((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → 0 ≤ (𝑥 · (vol‘(𝐹 “ {𝑥}))))
515, 13, 50fsumge0 15843 . 2 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → 0 ≤ Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(𝐹 “ {𝑥}))))
52 itg1val 25737 . . 3 (𝐹 ∈ dom ∫1 → (∫1𝐹) = Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(𝐹 “ {𝑥}))))
5352adantr 480 . 2 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → (∫1𝐹) = Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(𝐹 “ {𝑥}))))
5451, 53breqtrrd 5194 1 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → 0 ≤ (∫1𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  cdif 3973  cin 3975  wss 3976  {csn 4648   class class class wbr 5166   × cxp 5698  ccnv 5699  dom cdm 5700  ran crn 5701  cima 5703   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  r cofr 7713  Fincfn 9003  cc 11182  cr 11183  0cc0 11184   · cmul 11189  cle 11325  Σcsu 15734  vol*covol 25516  volcvol 25517  1citg1 25669  0𝑝c0p 25723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xadd 13176  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-xmet 21380  df-met 21381  df-ovol 25518  df-vol 25519  df-mbf 25673  df-itg1 25674  df-0p 25724
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator