MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg1ge0 Structured version   Visualization version   GIF version

Theorem itg1ge0 23990
Description: Closure of the integral on positive simple functions. (Contributed by Mario Carneiro, 19-Jun-2014.)
Assertion
Ref Expression
itg1ge0 ((𝐹 ∈ dom ∫1 ∧ 0𝑝𝑟𝐹) → 0 ≤ (∫1𝐹))

Proof of Theorem itg1ge0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 i1frn 23981 . . . . 5 (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin)
2 difss 3999 . . . . 5 (ran 𝐹 ∖ {0}) ⊆ ran 𝐹
3 ssfi 8533 . . . . 5 ((ran 𝐹 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ ran 𝐹) → (ran 𝐹 ∖ {0}) ∈ Fin)
41, 2, 3sylancl 577 . . . 4 (𝐹 ∈ dom ∫1 → (ran 𝐹 ∖ {0}) ∈ Fin)
54adantr 473 . . 3 ((𝐹 ∈ dom ∫1 ∧ 0𝑝𝑟𝐹) → (ran 𝐹 ∖ {0}) ∈ Fin)
6 i1ff 23980 . . . . . . . 8 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
76adantr 473 . . . . . . 7 ((𝐹 ∈ dom ∫1 ∧ 0𝑝𝑟𝐹) → 𝐹:ℝ⟶ℝ)
87frnd 6351 . . . . . 6 ((𝐹 ∈ dom ∫1 ∧ 0𝑝𝑟𝐹) → ran 𝐹 ⊆ ℝ)
98ssdifssd 4010 . . . . 5 ((𝐹 ∈ dom ∫1 ∧ 0𝑝𝑟𝐹) → (ran 𝐹 ∖ {0}) ⊆ ℝ)
109sselda 3859 . . . 4 (((𝐹 ∈ dom ∫1 ∧ 0𝑝𝑟𝐹) ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → 𝑥 ∈ ℝ)
11 i1fima2sn 23984 . . . . 5 ((𝐹 ∈ dom ∫1𝑥 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑥})) ∈ ℝ)
1211adantlr 702 . . . 4 (((𝐹 ∈ dom ∫1 ∧ 0𝑝𝑟𝐹) ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑥})) ∈ ℝ)
1310, 12remulcld 10470 . . 3 (((𝐹 ∈ dom ∫1 ∧ 0𝑝𝑟𝐹) ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → (𝑥 · (vol‘(𝐹 “ {𝑥}))) ∈ ℝ)
14 eldifi 3994 . . . . 5 (𝑥 ∈ (ran 𝐹 ∖ {0}) → 𝑥 ∈ ran 𝐹)
15 0cn 10431 . . . . . . . . . . . 12 0 ∈ ℂ
16 fnconstg 6396 . . . . . . . . . . . 12 (0 ∈ ℂ → (ℂ × {0}) Fn ℂ)
1715, 16ax-mp 5 . . . . . . . . . . 11 (ℂ × {0}) Fn ℂ
18 df-0p 23974 . . . . . . . . . . . 12 0𝑝 = (ℂ × {0})
1918fneq1i 6283 . . . . . . . . . . 11 (0𝑝 Fn ℂ ↔ (ℂ × {0}) Fn ℂ)
2017, 19mpbir 223 . . . . . . . . . 10 0𝑝 Fn ℂ
2120a1i 11 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → 0𝑝 Fn ℂ)
226ffnd 6345 . . . . . . . . 9 (𝐹 ∈ dom ∫1𝐹 Fn ℝ)
23 cnex 10416 . . . . . . . . . 10 ℂ ∈ V
2423a1i 11 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → ℂ ∈ V)
25 reex 10426 . . . . . . . . . 10 ℝ ∈ V
2625a1i 11 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → ℝ ∈ V)
27 ax-resscn 10392 . . . . . . . . . 10 ℝ ⊆ ℂ
28 sseqin2 4080 . . . . . . . . . 10 (ℝ ⊆ ℂ ↔ (ℂ ∩ ℝ) = ℝ)
2927, 28mpbi 222 . . . . . . . . 9 (ℂ ∩ ℝ) = ℝ
30 0pval 23975 . . . . . . . . . 10 (𝑦 ∈ ℂ → (0𝑝𝑦) = 0)
3130adantl 474 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑦 ∈ ℂ) → (0𝑝𝑦) = 0)
32 eqidd 2780 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑦 ∈ ℝ) → (𝐹𝑦) = (𝐹𝑦))
3321, 22, 24, 26, 29, 31, 32ofrfval 7235 . . . . . . . 8 (𝐹 ∈ dom ∫1 → (0𝑝𝑟𝐹 ↔ ∀𝑦 ∈ ℝ 0 ≤ (𝐹𝑦)))
3433biimpa 469 . . . . . . 7 ((𝐹 ∈ dom ∫1 ∧ 0𝑝𝑟𝐹) → ∀𝑦 ∈ ℝ 0 ≤ (𝐹𝑦))
3522adantr 473 . . . . . . . 8 ((𝐹 ∈ dom ∫1 ∧ 0𝑝𝑟𝐹) → 𝐹 Fn ℝ)
36 breq2 4933 . . . . . . . . 9 (𝑥 = (𝐹𝑦) → (0 ≤ 𝑥 ↔ 0 ≤ (𝐹𝑦)))
3736ralrn 6679 . . . . . . . 8 (𝐹 Fn ℝ → (∀𝑥 ∈ ran 𝐹0 ≤ 𝑥 ↔ ∀𝑦 ∈ ℝ 0 ≤ (𝐹𝑦)))
3835, 37syl 17 . . . . . . 7 ((𝐹 ∈ dom ∫1 ∧ 0𝑝𝑟𝐹) → (∀𝑥 ∈ ran 𝐹0 ≤ 𝑥 ↔ ∀𝑦 ∈ ℝ 0 ≤ (𝐹𝑦)))
3934, 38mpbird 249 . . . . . 6 ((𝐹 ∈ dom ∫1 ∧ 0𝑝𝑟𝐹) → ∀𝑥 ∈ ran 𝐹0 ≤ 𝑥)
4039r19.21bi 3159 . . . . 5 (((𝐹 ∈ dom ∫1 ∧ 0𝑝𝑟𝐹) ∧ 𝑥 ∈ ran 𝐹) → 0 ≤ 𝑥)
4114, 40sylan2 583 . . . 4 (((𝐹 ∈ dom ∫1 ∧ 0𝑝𝑟𝐹) ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → 0 ≤ 𝑥)
42 i1fima 23982 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝐹 “ {𝑥}) ∈ dom vol)
4342ad2antrr 713 . . . . 5 (((𝐹 ∈ dom ∫1 ∧ 0𝑝𝑟𝐹) ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → (𝐹 “ {𝑥}) ∈ dom vol)
44 mblss 23835 . . . . . . 7 ((𝐹 “ {𝑥}) ∈ dom vol → (𝐹 “ {𝑥}) ⊆ ℝ)
45 ovolge0 23785 . . . . . . 7 ((𝐹 “ {𝑥}) ⊆ ℝ → 0 ≤ (vol*‘(𝐹 “ {𝑥})))
4644, 45syl 17 . . . . . 6 ((𝐹 “ {𝑥}) ∈ dom vol → 0 ≤ (vol*‘(𝐹 “ {𝑥})))
47 mblvol 23834 . . . . . 6 ((𝐹 “ {𝑥}) ∈ dom vol → (vol‘(𝐹 “ {𝑥})) = (vol*‘(𝐹 “ {𝑥})))
4846, 47breqtrrd 4957 . . . . 5 ((𝐹 “ {𝑥}) ∈ dom vol → 0 ≤ (vol‘(𝐹 “ {𝑥})))
4943, 48syl 17 . . . 4 (((𝐹 ∈ dom ∫1 ∧ 0𝑝𝑟𝐹) ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → 0 ≤ (vol‘(𝐹 “ {𝑥})))
5010, 12, 41, 49mulge0d 11018 . . 3 (((𝐹 ∈ dom ∫1 ∧ 0𝑝𝑟𝐹) ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → 0 ≤ (𝑥 · (vol‘(𝐹 “ {𝑥}))))
515, 13, 50fsumge0 15010 . 2 ((𝐹 ∈ dom ∫1 ∧ 0𝑝𝑟𝐹) → 0 ≤ Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(𝐹 “ {𝑥}))))
52 itg1val 23987 . . 3 (𝐹 ∈ dom ∫1 → (∫1𝐹) = Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(𝐹 “ {𝑥}))))
5352adantr 473 . 2 ((𝐹 ∈ dom ∫1 ∧ 0𝑝𝑟𝐹) → (∫1𝐹) = Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(𝐹 “ {𝑥}))))
5451, 53breqtrrd 4957 1 ((𝐹 ∈ dom ∫1 ∧ 0𝑝𝑟𝐹) → 0 ≤ (∫1𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1507  wcel 2050  wral 3089  Vcvv 3416  cdif 3827  cin 3829  wss 3830  {csn 4441   class class class wbr 4929   × cxp 5405  ccnv 5406  dom cdm 5407  ran crn 5408  cima 5410   Fn wfn 6183  wf 6184  cfv 6188  (class class class)co 6976  𝑟 cofr 7226  Fincfn 8306  cc 10333  cr 10334  0cc0 10335   · cmul 10340  cle 10475  Σcsu 14903  vol*covol 23766  volcvol 23767  1citg1 23919  0𝑝c0p 23973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-inf2 8898  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412  ax-pre-sup 10413
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-pss 3846  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-se 5367  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-isom 6197  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-of 7227  df-ofr 7228  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-2o 7906  df-oadd 7909  df-er 8089  df-map 8208  df-pm 8209  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-sup 8701  df-inf 8702  df-oi 8769  df-dju 9124  df-card 9162  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-nn 11440  df-2 11503  df-3 11504  df-n0 11708  df-z 11794  df-uz 12059  df-q 12163  df-rp 12205  df-xadd 12325  df-ioo 12558  df-ico 12560  df-icc 12561  df-fz 12709  df-fzo 12850  df-fl 12977  df-seq 13185  df-exp 13245  df-hash 13506  df-cj 14319  df-re 14320  df-im 14321  df-sqrt 14455  df-abs 14456  df-clim 14706  df-sum 14904  df-xmet 20240  df-met 20241  df-ovol 23768  df-vol 23769  df-mbf 23923  df-itg1 23924  df-0p 23974
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator