MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg1ge0 Structured version   Visualization version   GIF version

Theorem itg1ge0 25633
Description: Closure of the integral on positive simple functions. (Contributed by Mario Carneiro, 19-Jun-2014.)
Assertion
Ref Expression
itg1ge0 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → 0 ≤ (∫1𝐹))

Proof of Theorem itg1ge0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 i1frn 25624 . . . . 5 (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin)
2 difss 4130 . . . . 5 (ran 𝐹 ∖ {0}) ⊆ ran 𝐹
3 ssfi 9202 . . . . 5 ((ran 𝐹 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ ran 𝐹) → (ran 𝐹 ∖ {0}) ∈ Fin)
41, 2, 3sylancl 584 . . . 4 (𝐹 ∈ dom ∫1 → (ran 𝐹 ∖ {0}) ∈ Fin)
54adantr 479 . . 3 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → (ran 𝐹 ∖ {0}) ∈ Fin)
6 i1ff 25623 . . . . . . . 8 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
76adantr 479 . . . . . . 7 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → 𝐹:ℝ⟶ℝ)
87frnd 6733 . . . . . 6 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → ran 𝐹 ⊆ ℝ)
98ssdifssd 4141 . . . . 5 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → (ran 𝐹 ∖ {0}) ⊆ ℝ)
109sselda 3980 . . . 4 (((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → 𝑥 ∈ ℝ)
11 i1fima2sn 25627 . . . . 5 ((𝐹 ∈ dom ∫1𝑥 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑥})) ∈ ℝ)
1211adantlr 713 . . . 4 (((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑥})) ∈ ℝ)
1310, 12remulcld 11280 . . 3 (((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → (𝑥 · (vol‘(𝐹 “ {𝑥}))) ∈ ℝ)
14 eldifi 4125 . . . . 5 (𝑥 ∈ (ran 𝐹 ∖ {0}) → 𝑥 ∈ ran 𝐹)
15 0cn 11242 . . . . . . . . . . . 12 0 ∈ ℂ
16 fnconstg 6788 . . . . . . . . . . . 12 (0 ∈ ℂ → (ℂ × {0}) Fn ℂ)
1715, 16ax-mp 5 . . . . . . . . . . 11 (ℂ × {0}) Fn ℂ
18 df-0p 25617 . . . . . . . . . . . 12 0𝑝 = (ℂ × {0})
1918fneq1i 6654 . . . . . . . . . . 11 (0𝑝 Fn ℂ ↔ (ℂ × {0}) Fn ℂ)
2017, 19mpbir 230 . . . . . . . . . 10 0𝑝 Fn ℂ
2120a1i 11 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → 0𝑝 Fn ℂ)
226ffnd 6726 . . . . . . . . 9 (𝐹 ∈ dom ∫1𝐹 Fn ℝ)
23 cnex 11225 . . . . . . . . . 10 ℂ ∈ V
2423a1i 11 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → ℂ ∈ V)
25 reex 11235 . . . . . . . . . 10 ℝ ∈ V
2625a1i 11 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → ℝ ∈ V)
27 ax-resscn 11201 . . . . . . . . . 10 ℝ ⊆ ℂ
28 sseqin2 4215 . . . . . . . . . 10 (ℝ ⊆ ℂ ↔ (ℂ ∩ ℝ) = ℝ)
2927, 28mpbi 229 . . . . . . . . 9 (ℂ ∩ ℝ) = ℝ
30 0pval 25618 . . . . . . . . . 10 (𝑦 ∈ ℂ → (0𝑝𝑦) = 0)
3130adantl 480 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑦 ∈ ℂ) → (0𝑝𝑦) = 0)
32 eqidd 2728 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑦 ∈ ℝ) → (𝐹𝑦) = (𝐹𝑦))
3321, 22, 24, 26, 29, 31, 32ofrfval 7699 . . . . . . . 8 (𝐹 ∈ dom ∫1 → (0𝑝r𝐹 ↔ ∀𝑦 ∈ ℝ 0 ≤ (𝐹𝑦)))
3433biimpa 475 . . . . . . 7 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → ∀𝑦 ∈ ℝ 0 ≤ (𝐹𝑦))
3522adantr 479 . . . . . . . 8 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → 𝐹 Fn ℝ)
36 breq2 5154 . . . . . . . . 9 (𝑥 = (𝐹𝑦) → (0 ≤ 𝑥 ↔ 0 ≤ (𝐹𝑦)))
3736ralrn 7101 . . . . . . . 8 (𝐹 Fn ℝ → (∀𝑥 ∈ ran 𝐹0 ≤ 𝑥 ↔ ∀𝑦 ∈ ℝ 0 ≤ (𝐹𝑦)))
3835, 37syl 17 . . . . . . 7 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → (∀𝑥 ∈ ran 𝐹0 ≤ 𝑥 ↔ ∀𝑦 ∈ ℝ 0 ≤ (𝐹𝑦)))
3934, 38mpbird 256 . . . . . 6 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → ∀𝑥 ∈ ran 𝐹0 ≤ 𝑥)
4039r19.21bi 3244 . . . . 5 (((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) ∧ 𝑥 ∈ ran 𝐹) → 0 ≤ 𝑥)
4114, 40sylan2 591 . . . 4 (((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → 0 ≤ 𝑥)
42 i1fima 25625 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝐹 “ {𝑥}) ∈ dom vol)
4342ad2antrr 724 . . . . 5 (((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → (𝐹 “ {𝑥}) ∈ dom vol)
44 mblss 25478 . . . . . . 7 ((𝐹 “ {𝑥}) ∈ dom vol → (𝐹 “ {𝑥}) ⊆ ℝ)
45 ovolge0 25428 . . . . . . 7 ((𝐹 “ {𝑥}) ⊆ ℝ → 0 ≤ (vol*‘(𝐹 “ {𝑥})))
4644, 45syl 17 . . . . . 6 ((𝐹 “ {𝑥}) ∈ dom vol → 0 ≤ (vol*‘(𝐹 “ {𝑥})))
47 mblvol 25477 . . . . . 6 ((𝐹 “ {𝑥}) ∈ dom vol → (vol‘(𝐹 “ {𝑥})) = (vol*‘(𝐹 “ {𝑥})))
4846, 47breqtrrd 5178 . . . . 5 ((𝐹 “ {𝑥}) ∈ dom vol → 0 ≤ (vol‘(𝐹 “ {𝑥})))
4943, 48syl 17 . . . 4 (((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → 0 ≤ (vol‘(𝐹 “ {𝑥})))
5010, 12, 41, 49mulge0d 11827 . . 3 (((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → 0 ≤ (𝑥 · (vol‘(𝐹 “ {𝑥}))))
515, 13, 50fsumge0 15779 . 2 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → 0 ≤ Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(𝐹 “ {𝑥}))))
52 itg1val 25630 . . 3 (𝐹 ∈ dom ∫1 → (∫1𝐹) = Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(𝐹 “ {𝑥}))))
5352adantr 479 . 2 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → (∫1𝐹) = Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(𝐹 “ {𝑥}))))
5451, 53breqtrrd 5178 1 ((𝐹 ∈ dom ∫1 ∧ 0𝑝r𝐹) → 0 ≤ (∫1𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wral 3057  Vcvv 3471  cdif 3944  cin 3946  wss 3947  {csn 4630   class class class wbr 5150   × cxp 5678  ccnv 5679  dom cdm 5680  ran crn 5681  cima 5683   Fn wfn 6546  wf 6547  cfv 6551  (class class class)co 7424  r cofr 7688  Fincfn 8968  cc 11142  cr 11143  0cc0 11144   · cmul 11149  cle 11285  Σcsu 15670  vol*covol 25409  volcvol 25410  1citg1 25562  0𝑝c0p 25616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-inf2 9670  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221  ax-pre-sup 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-int 4952  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-se 5636  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-isom 6560  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7689  df-ofr 7690  df-om 7875  df-1st 7997  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-1o 8491  df-2o 8492  df-er 8729  df-map 8851  df-pm 8852  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-sup 9471  df-inf 9472  df-oi 9539  df-dju 9930  df-card 9968  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-div 11908  df-nn 12249  df-2 12311  df-3 12312  df-n0 12509  df-z 12595  df-uz 12859  df-q 12969  df-rp 13013  df-xadd 13131  df-ioo 13366  df-ico 13368  df-icc 13369  df-fz 13523  df-fzo 13666  df-fl 13795  df-seq 14005  df-exp 14065  df-hash 14328  df-cj 15084  df-re 15085  df-im 15086  df-sqrt 15220  df-abs 15221  df-clim 15470  df-sum 15671  df-xmet 21277  df-met 21278  df-ovol 25411  df-vol 25412  df-mbf 25566  df-itg1 25567  df-0p 25617
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator