MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fta1lem Structured version   Visualization version   GIF version

Theorem fta1lem 26364
Description: Lemma for fta1 26365. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
fta1.1 𝑅 = (𝐹 “ {0})
fta1.2 (𝜑𝐷 ∈ ℕ0)
fta1.3 (𝜑𝐹 ∈ ((Poly‘ℂ) ∖ {0𝑝}))
fta1.4 (𝜑 → (deg‘𝐹) = (𝐷 + 1))
fta1.5 (𝜑𝐴 ∈ (𝐹 “ {0}))
fta1.6 (𝜑 → ∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝐷 → ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔))))
Assertion
Ref Expression
fta1lem (𝜑 → (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹)))
Distinct variable groups:   𝐴,𝑔   𝐷,𝑔   𝑔,𝐹
Allowed substitution hints:   𝜑(𝑔)   𝑅(𝑔)

Proof of Theorem fta1lem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fta1.3 . . . . . . . . . 10 (𝜑𝐹 ∈ ((Poly‘ℂ) ∖ {0𝑝}))
2 eldifsn 4791 . . . . . . . . . 10 (𝐹 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ↔ (𝐹 ∈ (Poly‘ℂ) ∧ 𝐹 ≠ 0𝑝))
31, 2sylib 218 . . . . . . . . 9 (𝜑 → (𝐹 ∈ (Poly‘ℂ) ∧ 𝐹 ≠ 0𝑝))
43simpld 494 . . . . . . . 8 (𝜑𝐹 ∈ (Poly‘ℂ))
5 fta1.5 . . . . . . . . . 10 (𝜑𝐴 ∈ (𝐹 “ {0}))
6 plyf 26252 . . . . . . . . . . 11 (𝐹 ∈ (Poly‘ℂ) → 𝐹:ℂ⟶ℂ)
7 ffn 6737 . . . . . . . . . . 11 (𝐹:ℂ⟶ℂ → 𝐹 Fn ℂ)
8 fniniseg 7080 . . . . . . . . . . 11 (𝐹 Fn ℂ → (𝐴 ∈ (𝐹 “ {0}) ↔ (𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0)))
94, 6, 7, 84syl 19 . . . . . . . . . 10 (𝜑 → (𝐴 ∈ (𝐹 “ {0}) ↔ (𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0)))
105, 9mpbid 232 . . . . . . . . 9 (𝜑 → (𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0))
1110simpld 494 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
1210simprd 495 . . . . . . . 8 (𝜑 → (𝐹𝐴) = 0)
13 eqid 2735 . . . . . . . . 9 (Xpf − (ℂ × {𝐴})) = (Xpf − (ℂ × {𝐴}))
1413facth 26363 . . . . . . . 8 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → 𝐹 = ((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴})))))
154, 11, 12, 14syl3anc 1370 . . . . . . 7 (𝜑𝐹 = ((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴})))))
1615cnveqd 5889 . . . . . 6 (𝜑𝐹 = ((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴})))))
1716imaeq1d 6079 . . . . 5 (𝜑 → (𝐹 “ {0}) = (((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴})))) “ {0}))
18 cnex 11234 . . . . . . 7 ℂ ∈ V
1918a1i 11 . . . . . 6 (𝜑 → ℂ ∈ V)
20 ssid 4018 . . . . . . . . 9 ℂ ⊆ ℂ
21 ax-1cn 11211 . . . . . . . . 9 1 ∈ ℂ
22 plyid 26263 . . . . . . . . 9 ((ℂ ⊆ ℂ ∧ 1 ∈ ℂ) → Xp ∈ (Poly‘ℂ))
2320, 21, 22mp2an 692 . . . . . . . 8 Xp ∈ (Poly‘ℂ)
24 plyconst 26260 . . . . . . . . 9 ((ℂ ⊆ ℂ ∧ 𝐴 ∈ ℂ) → (ℂ × {𝐴}) ∈ (Poly‘ℂ))
2520, 11, 24sylancr 587 . . . . . . . 8 (𝜑 → (ℂ × {𝐴}) ∈ (Poly‘ℂ))
26 plysubcl 26276 . . . . . . . 8 ((Xp ∈ (Poly‘ℂ) ∧ (ℂ × {𝐴}) ∈ (Poly‘ℂ)) → (Xpf − (ℂ × {𝐴})) ∈ (Poly‘ℂ))
2723, 25, 26sylancr 587 . . . . . . 7 (𝜑 → (Xpf − (ℂ × {𝐴})) ∈ (Poly‘ℂ))
28 plyf 26252 . . . . . . 7 ((Xpf − (ℂ × {𝐴})) ∈ (Poly‘ℂ) → (Xpf − (ℂ × {𝐴})):ℂ⟶ℂ)
2927, 28syl 17 . . . . . 6 (𝜑 → (Xpf − (ℂ × {𝐴})):ℂ⟶ℂ)
3013plyremlem 26361 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((Xpf − (ℂ × {𝐴})) ∈ (Poly‘ℂ) ∧ (deg‘(Xpf − (ℂ × {𝐴}))) = 1 ∧ ((Xpf − (ℂ × {𝐴})) “ {0}) = {𝐴}))
3111, 30syl 17 . . . . . . . . . . 11 (𝜑 → ((Xpf − (ℂ × {𝐴})) ∈ (Poly‘ℂ) ∧ (deg‘(Xpf − (ℂ × {𝐴}))) = 1 ∧ ((Xpf − (ℂ × {𝐴})) “ {0}) = {𝐴}))
3231simp2d 1142 . . . . . . . . . 10 (𝜑 → (deg‘(Xpf − (ℂ × {𝐴}))) = 1)
33 ax-1ne0 11222 . . . . . . . . . . 11 1 ≠ 0
3433a1i 11 . . . . . . . . . 10 (𝜑 → 1 ≠ 0)
3532, 34eqnetrd 3006 . . . . . . . . 9 (𝜑 → (deg‘(Xpf − (ℂ × {𝐴}))) ≠ 0)
36 fveq2 6907 . . . . . . . . . . 11 ((Xpf − (ℂ × {𝐴})) = 0𝑝 → (deg‘(Xpf − (ℂ × {𝐴}))) = (deg‘0𝑝))
37 dgr0 26317 . . . . . . . . . . 11 (deg‘0𝑝) = 0
3836, 37eqtrdi 2791 . . . . . . . . . 10 ((Xpf − (ℂ × {𝐴})) = 0𝑝 → (deg‘(Xpf − (ℂ × {𝐴}))) = 0)
3938necon3i 2971 . . . . . . . . 9 ((deg‘(Xpf − (ℂ × {𝐴}))) ≠ 0 → (Xpf − (ℂ × {𝐴})) ≠ 0𝑝)
4035, 39syl 17 . . . . . . . 8 (𝜑 → (Xpf − (ℂ × {𝐴})) ≠ 0𝑝)
41 quotcl2 26359 . . . . . . . 8 ((𝐹 ∈ (Poly‘ℂ) ∧ (Xpf − (ℂ × {𝐴})) ∈ (Poly‘ℂ) ∧ (Xpf − (ℂ × {𝐴})) ≠ 0𝑝) → (𝐹 quot (Xpf − (ℂ × {𝐴}))) ∈ (Poly‘ℂ))
424, 27, 40, 41syl3anc 1370 . . . . . . 7 (𝜑 → (𝐹 quot (Xpf − (ℂ × {𝐴}))) ∈ (Poly‘ℂ))
43 plyf 26252 . . . . . . 7 ((𝐹 quot (Xpf − (ℂ × {𝐴}))) ∈ (Poly‘ℂ) → (𝐹 quot (Xpf − (ℂ × {𝐴}))):ℂ⟶ℂ)
4442, 43syl 17 . . . . . 6 (𝜑 → (𝐹 quot (Xpf − (ℂ × {𝐴}))):ℂ⟶ℂ)
45 ofmulrt 26338 . . . . . 6 ((ℂ ∈ V ∧ (Xpf − (ℂ × {𝐴})):ℂ⟶ℂ ∧ (𝐹 quot (Xpf − (ℂ × {𝐴}))):ℂ⟶ℂ) → (((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴})))) “ {0}) = (((Xpf − (ℂ × {𝐴})) “ {0}) ∪ ((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})))
4619, 29, 44, 45syl3anc 1370 . . . . 5 (𝜑 → (((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴})))) “ {0}) = (((Xpf − (ℂ × {𝐴})) “ {0}) ∪ ((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})))
4731simp3d 1143 . . . . . 6 (𝜑 → ((Xpf − (ℂ × {𝐴})) “ {0}) = {𝐴})
4847uneq1d 4177 . . . . 5 (𝜑 → (((Xpf − (ℂ × {𝐴})) “ {0}) ∪ ((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) = ({𝐴} ∪ ((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})))
4917, 46, 483eqtrd 2779 . . . 4 (𝜑 → (𝐹 “ {0}) = ({𝐴} ∪ ((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})))
50 fta1.1 . . . 4 𝑅 = (𝐹 “ {0})
51 uncom 4168 . . . 4 (((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴}) = ({𝐴} ∪ ((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}))
5249, 50, 513eqtr4g 2800 . . 3 (𝜑𝑅 = (((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴}))
5321a1i 11 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
54 dgrcl 26287 . . . . . . . . 9 ((𝐹 quot (Xpf − (ℂ × {𝐴}))) ∈ (Poly‘ℂ) → (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))) ∈ ℕ0)
5542, 54syl 17 . . . . . . . 8 (𝜑 → (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))) ∈ ℕ0)
5655nn0cnd 12587 . . . . . . 7 (𝜑 → (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))) ∈ ℂ)
57 fta1.2 . . . . . . . 8 (𝜑𝐷 ∈ ℕ0)
5857nn0cnd 12587 . . . . . . 7 (𝜑𝐷 ∈ ℂ)
59 addcom 11445 . . . . . . . . 9 ((1 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (1 + 𝐷) = (𝐷 + 1))
6021, 58, 59sylancr 587 . . . . . . . 8 (𝜑 → (1 + 𝐷) = (𝐷 + 1))
6115fveq2d 6911 . . . . . . . . 9 (𝜑 → (deg‘𝐹) = (deg‘((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴}))))))
62 fta1.4 . . . . . . . . 9 (𝜑 → (deg‘𝐹) = (𝐷 + 1))
633simprd 495 . . . . . . . . . . . 12 (𝜑𝐹 ≠ 0𝑝)
6415eqcomd 2741 . . . . . . . . . . . 12 (𝜑 → ((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴})))) = 𝐹)
65 0cnd 11252 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℂ)
66 mul01 11438 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (𝑥 · 0) = 0)
6766adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → (𝑥 · 0) = 0)
6819, 29, 65, 65, 67caofid1 7732 . . . . . . . . . . . . 13 (𝜑 → ((Xpf − (ℂ × {𝐴})) ∘f · (ℂ × {0})) = (ℂ × {0}))
69 df-0p 25719 . . . . . . . . . . . . . 14 0𝑝 = (ℂ × {0})
7069oveq2i 7442 . . . . . . . . . . . . 13 ((Xpf − (ℂ × {𝐴})) ∘f · 0𝑝) = ((Xpf − (ℂ × {𝐴})) ∘f · (ℂ × {0}))
7168, 70, 693eqtr4g 2800 . . . . . . . . . . . 12 (𝜑 → ((Xpf − (ℂ × {𝐴})) ∘f · 0𝑝) = 0𝑝)
7263, 64, 713netr4d 3016 . . . . . . . . . . 11 (𝜑 → ((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴})))) ≠ ((Xpf − (ℂ × {𝐴})) ∘f · 0𝑝))
73 oveq2 7439 . . . . . . . . . . . 12 ((𝐹 quot (Xpf − (ℂ × {𝐴}))) = 0𝑝 → ((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴})))) = ((Xpf − (ℂ × {𝐴})) ∘f · 0𝑝))
7473necon3i 2971 . . . . . . . . . . 11 (((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴})))) ≠ ((Xpf − (ℂ × {𝐴})) ∘f · 0𝑝) → (𝐹 quot (Xpf − (ℂ × {𝐴}))) ≠ 0𝑝)
7572, 74syl 17 . . . . . . . . . 10 (𝜑 → (𝐹 quot (Xpf − (ℂ × {𝐴}))) ≠ 0𝑝)
76 eqid 2735 . . . . . . . . . . 11 (deg‘(Xpf − (ℂ × {𝐴}))) = (deg‘(Xpf − (ℂ × {𝐴})))
77 eqid 2735 . . . . . . . . . . 11 (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))) = (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴}))))
7876, 77dgrmul 26325 . . . . . . . . . 10 ((((Xpf − (ℂ × {𝐴})) ∈ (Poly‘ℂ) ∧ (Xpf − (ℂ × {𝐴})) ≠ 0𝑝) ∧ ((𝐹 quot (Xpf − (ℂ × {𝐴}))) ∈ (Poly‘ℂ) ∧ (𝐹 quot (Xpf − (ℂ × {𝐴}))) ≠ 0𝑝)) → (deg‘((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴}))))) = ((deg‘(Xpf − (ℂ × {𝐴}))) + (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴}))))))
7927, 40, 42, 75, 78syl22anc 839 . . . . . . . . 9 (𝜑 → (deg‘((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴}))))) = ((deg‘(Xpf − (ℂ × {𝐴}))) + (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴}))))))
8061, 62, 793eqtr3d 2783 . . . . . . . 8 (𝜑 → (𝐷 + 1) = ((deg‘(Xpf − (ℂ × {𝐴}))) + (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴}))))))
8132oveq1d 7446 . . . . . . . 8 (𝜑 → ((deg‘(Xpf − (ℂ × {𝐴}))) + (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴}))))) = (1 + (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴}))))))
8260, 80, 813eqtrrd 2780 . . . . . . 7 (𝜑 → (1 + (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴}))))) = (1 + 𝐷))
8353, 56, 58, 82addcanad 11464 . . . . . 6 (𝜑 → (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))) = 𝐷)
84 fveqeq2 6916 . . . . . . . 8 (𝑔 = (𝐹 quot (Xpf − (ℂ × {𝐴}))) → ((deg‘𝑔) = 𝐷 ↔ (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))) = 𝐷))
85 cnveq 5887 . . . . . . . . . . 11 (𝑔 = (𝐹 quot (Xpf − (ℂ × {𝐴}))) → 𝑔 = (𝐹 quot (Xpf − (ℂ × {𝐴}))))
8685imaeq1d 6079 . . . . . . . . . 10 (𝑔 = (𝐹 quot (Xpf − (ℂ × {𝐴}))) → (𝑔 “ {0}) = ((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}))
8786eleq1d 2824 . . . . . . . . 9 (𝑔 = (𝐹 quot (Xpf − (ℂ × {𝐴}))) → ((𝑔 “ {0}) ∈ Fin ↔ ((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∈ Fin))
8886fveq2d 6911 . . . . . . . . . 10 (𝑔 = (𝐹 quot (Xpf − (ℂ × {𝐴}))) → (♯‘(𝑔 “ {0})) = (♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})))
89 fveq2 6907 . . . . . . . . . 10 (𝑔 = (𝐹 quot (Xpf − (ℂ × {𝐴}))) → (deg‘𝑔) = (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))))
9088, 89breq12d 5161 . . . . . . . . 9 (𝑔 = (𝐹 quot (Xpf − (ℂ × {𝐴}))) → ((♯‘(𝑔 “ {0})) ≤ (deg‘𝑔) ↔ (♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) ≤ (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴}))))))
9187, 90anbi12d 632 . . . . . . . 8 (𝑔 = (𝐹 quot (Xpf − (ℂ × {𝐴}))) → (((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔)) ↔ (((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∈ Fin ∧ (♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) ≤ (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))))))
9284, 91imbi12d 344 . . . . . . 7 (𝑔 = (𝐹 quot (Xpf − (ℂ × {𝐴}))) → (((deg‘𝑔) = 𝐷 → ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔))) ↔ ((deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))) = 𝐷 → (((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∈ Fin ∧ (♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) ≤ (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴}))))))))
93 fta1.6 . . . . . . 7 (𝜑 → ∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝐷 → ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔))))
94 eldifsn 4791 . . . . . . . 8 ((𝐹 quot (Xpf − (ℂ × {𝐴}))) ∈ ((Poly‘ℂ) ∖ {0𝑝}) ↔ ((𝐹 quot (Xpf − (ℂ × {𝐴}))) ∈ (Poly‘ℂ) ∧ (𝐹 quot (Xpf − (ℂ × {𝐴}))) ≠ 0𝑝))
9542, 75, 94sylanbrc 583 . . . . . . 7 (𝜑 → (𝐹 quot (Xpf − (ℂ × {𝐴}))) ∈ ((Poly‘ℂ) ∖ {0𝑝}))
9692, 93, 95rspcdva 3623 . . . . . 6 (𝜑 → ((deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))) = 𝐷 → (((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∈ Fin ∧ (♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) ≤ (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))))))
9783, 96mpd 15 . . . . 5 (𝜑 → (((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∈ Fin ∧ (♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) ≤ (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴}))))))
9897simpld 494 . . . 4 (𝜑 → ((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∈ Fin)
99 snfi 9082 . . . 4 {𝐴} ∈ Fin
100 unfi 9210 . . . 4 ((((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∈ Fin ∧ {𝐴} ∈ Fin) → (((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴}) ∈ Fin)
10198, 99, 100sylancl 586 . . 3 (𝜑 → (((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴}) ∈ Fin)
10252, 101eqeltrd 2839 . 2 (𝜑𝑅 ∈ Fin)
10352fveq2d 6911 . . 3 (𝜑 → (♯‘𝑅) = (♯‘(((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴})))
104 hashcl 14392 . . . . . 6 ((((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴}) ∈ Fin → (♯‘(((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴})) ∈ ℕ0)
105101, 104syl 17 . . . . 5 (𝜑 → (♯‘(((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴})) ∈ ℕ0)
106105nn0red 12586 . . . 4 (𝜑 → (♯‘(((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴})) ∈ ℝ)
107 hashcl 14392 . . . . . . 7 (((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∈ Fin → (♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) ∈ ℕ0)
10898, 107syl 17 . . . . . 6 (𝜑 → (♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) ∈ ℕ0)
109108nn0red 12586 . . . . 5 (𝜑 → (♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) ∈ ℝ)
110 peano2re 11432 . . . . 5 ((♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) ∈ ℝ → ((♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) + 1) ∈ ℝ)
111109, 110syl 17 . . . 4 (𝜑 → ((♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) + 1) ∈ ℝ)
112 dgrcl 26287 . . . . . 6 (𝐹 ∈ (Poly‘ℂ) → (deg‘𝐹) ∈ ℕ0)
1134, 112syl 17 . . . . 5 (𝜑 → (deg‘𝐹) ∈ ℕ0)
114113nn0red 12586 . . . 4 (𝜑 → (deg‘𝐹) ∈ ℝ)
115 hashun2 14419 . . . . . 6 ((((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∈ Fin ∧ {𝐴} ∈ Fin) → (♯‘(((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴})) ≤ ((♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) + (♯‘{𝐴})))
11698, 99, 115sylancl 586 . . . . 5 (𝜑 → (♯‘(((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴})) ≤ ((♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) + (♯‘{𝐴})))
117 hashsng 14405 . . . . . . 7 (𝐴 ∈ ℂ → (♯‘{𝐴}) = 1)
11811, 117syl 17 . . . . . 6 (𝜑 → (♯‘{𝐴}) = 1)
119118oveq2d 7447 . . . . 5 (𝜑 → ((♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) + (♯‘{𝐴})) = ((♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) + 1))
120116, 119breqtrd 5174 . . . 4 (𝜑 → (♯‘(((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴})) ≤ ((♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) + 1))
12157nn0red 12586 . . . . . 6 (𝜑𝐷 ∈ ℝ)
122 1red 11260 . . . . . 6 (𝜑 → 1 ∈ ℝ)
12397simprd 495 . . . . . . 7 (𝜑 → (♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) ≤ (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))))
124123, 83breqtrd 5174 . . . . . 6 (𝜑 → (♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) ≤ 𝐷)
125109, 121, 122, 124leadd1dd 11875 . . . . 5 (𝜑 → ((♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) + 1) ≤ (𝐷 + 1))
126125, 62breqtrrd 5176 . . . 4 (𝜑 → ((♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) + 1) ≤ (deg‘𝐹))
127106, 111, 114, 120, 126letrd 11416 . . 3 (𝜑 → (♯‘(((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴})) ≤ (deg‘𝐹))
128103, 127eqbrtrd 5170 . 2 (𝜑 → (♯‘𝑅) ≤ (deg‘𝐹))
129102, 128jca 511 1 (𝜑 → (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  Vcvv 3478  cdif 3960  cun 3961  wss 3963  {csn 4631   class class class wbr 5148   × cxp 5687  ccnv 5688  cima 5692   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  f cof 7695  Fincfn 8984  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  cle 11294  cmin 11490  0cn0 12524  chash 14366  0𝑝c0p 25718  Polycply 26238  Xpcidp 26239  degcdgr 26241   quot cquot 26347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-fl 13829  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-rlim 15522  df-sum 15720  df-0p 25719  df-ply 26242  df-idp 26243  df-coe 26244  df-dgr 26245  df-quot 26348
This theorem is referenced by:  fta1  26365
  Copyright terms: Public domain W3C validator