MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fta1lem Structured version   Visualization version   GIF version

Theorem fta1lem 25704
Description: Lemma for fta1 25705. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
fta1.1 𝑅 = (𝐹 “ {0})
fta1.2 (𝜑𝐷 ∈ ℕ0)
fta1.3 (𝜑𝐹 ∈ ((Poly‘ℂ) ∖ {0𝑝}))
fta1.4 (𝜑 → (deg‘𝐹) = (𝐷 + 1))
fta1.5 (𝜑𝐴 ∈ (𝐹 “ {0}))
fta1.6 (𝜑 → ∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝐷 → ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔))))
Assertion
Ref Expression
fta1lem (𝜑 → (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹)))
Distinct variable groups:   𝐴,𝑔   𝐷,𝑔   𝑔,𝐹
Allowed substitution hints:   𝜑(𝑔)   𝑅(𝑔)

Proof of Theorem fta1lem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fta1.3 . . . . . . . . . 10 (𝜑𝐹 ∈ ((Poly‘ℂ) ∖ {0𝑝}))
2 eldifsn 4752 . . . . . . . . . 10 (𝐹 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ↔ (𝐹 ∈ (Poly‘ℂ) ∧ 𝐹 ≠ 0𝑝))
31, 2sylib 217 . . . . . . . . 9 (𝜑 → (𝐹 ∈ (Poly‘ℂ) ∧ 𝐹 ≠ 0𝑝))
43simpld 495 . . . . . . . 8 (𝜑𝐹 ∈ (Poly‘ℂ))
5 fta1.5 . . . . . . . . . 10 (𝜑𝐴 ∈ (𝐹 “ {0}))
6 plyf 25596 . . . . . . . . . . 11 (𝐹 ∈ (Poly‘ℂ) → 𝐹:ℂ⟶ℂ)
7 ffn 6673 . . . . . . . . . . 11 (𝐹:ℂ⟶ℂ → 𝐹 Fn ℂ)
8 fniniseg 7015 . . . . . . . . . . 11 (𝐹 Fn ℂ → (𝐴 ∈ (𝐹 “ {0}) ↔ (𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0)))
94, 6, 7, 84syl 19 . . . . . . . . . 10 (𝜑 → (𝐴 ∈ (𝐹 “ {0}) ↔ (𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0)))
105, 9mpbid 231 . . . . . . . . 9 (𝜑 → (𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0))
1110simpld 495 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
1210simprd 496 . . . . . . . 8 (𝜑 → (𝐹𝐴) = 0)
13 eqid 2731 . . . . . . . . 9 (Xpf − (ℂ × {𝐴})) = (Xpf − (ℂ × {𝐴}))
1413facth 25703 . . . . . . . 8 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → 𝐹 = ((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴})))))
154, 11, 12, 14syl3anc 1371 . . . . . . 7 (𝜑𝐹 = ((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴})))))
1615cnveqd 5836 . . . . . 6 (𝜑𝐹 = ((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴})))))
1716imaeq1d 6017 . . . . 5 (𝜑 → (𝐹 “ {0}) = (((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴})))) “ {0}))
18 cnex 11141 . . . . . . 7 ℂ ∈ V
1918a1i 11 . . . . . 6 (𝜑 → ℂ ∈ V)
20 ssid 3969 . . . . . . . . 9 ℂ ⊆ ℂ
21 ax-1cn 11118 . . . . . . . . 9 1 ∈ ℂ
22 plyid 25607 . . . . . . . . 9 ((ℂ ⊆ ℂ ∧ 1 ∈ ℂ) → Xp ∈ (Poly‘ℂ))
2320, 21, 22mp2an 690 . . . . . . . 8 Xp ∈ (Poly‘ℂ)
24 plyconst 25604 . . . . . . . . 9 ((ℂ ⊆ ℂ ∧ 𝐴 ∈ ℂ) → (ℂ × {𝐴}) ∈ (Poly‘ℂ))
2520, 11, 24sylancr 587 . . . . . . . 8 (𝜑 → (ℂ × {𝐴}) ∈ (Poly‘ℂ))
26 plysubcl 25620 . . . . . . . 8 ((Xp ∈ (Poly‘ℂ) ∧ (ℂ × {𝐴}) ∈ (Poly‘ℂ)) → (Xpf − (ℂ × {𝐴})) ∈ (Poly‘ℂ))
2723, 25, 26sylancr 587 . . . . . . 7 (𝜑 → (Xpf − (ℂ × {𝐴})) ∈ (Poly‘ℂ))
28 plyf 25596 . . . . . . 7 ((Xpf − (ℂ × {𝐴})) ∈ (Poly‘ℂ) → (Xpf − (ℂ × {𝐴})):ℂ⟶ℂ)
2927, 28syl 17 . . . . . 6 (𝜑 → (Xpf − (ℂ × {𝐴})):ℂ⟶ℂ)
3013plyremlem 25701 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((Xpf − (ℂ × {𝐴})) ∈ (Poly‘ℂ) ∧ (deg‘(Xpf − (ℂ × {𝐴}))) = 1 ∧ ((Xpf − (ℂ × {𝐴})) “ {0}) = {𝐴}))
3111, 30syl 17 . . . . . . . . . . 11 (𝜑 → ((Xpf − (ℂ × {𝐴})) ∈ (Poly‘ℂ) ∧ (deg‘(Xpf − (ℂ × {𝐴}))) = 1 ∧ ((Xpf − (ℂ × {𝐴})) “ {0}) = {𝐴}))
3231simp2d 1143 . . . . . . . . . 10 (𝜑 → (deg‘(Xpf − (ℂ × {𝐴}))) = 1)
33 ax-1ne0 11129 . . . . . . . . . . 11 1 ≠ 0
3433a1i 11 . . . . . . . . . 10 (𝜑 → 1 ≠ 0)
3532, 34eqnetrd 3007 . . . . . . . . 9 (𝜑 → (deg‘(Xpf − (ℂ × {𝐴}))) ≠ 0)
36 fveq2 6847 . . . . . . . . . . 11 ((Xpf − (ℂ × {𝐴})) = 0𝑝 → (deg‘(Xpf − (ℂ × {𝐴}))) = (deg‘0𝑝))
37 dgr0 25660 . . . . . . . . . . 11 (deg‘0𝑝) = 0
3836, 37eqtrdi 2787 . . . . . . . . . 10 ((Xpf − (ℂ × {𝐴})) = 0𝑝 → (deg‘(Xpf − (ℂ × {𝐴}))) = 0)
3938necon3i 2972 . . . . . . . . 9 ((deg‘(Xpf − (ℂ × {𝐴}))) ≠ 0 → (Xpf − (ℂ × {𝐴})) ≠ 0𝑝)
4035, 39syl 17 . . . . . . . 8 (𝜑 → (Xpf − (ℂ × {𝐴})) ≠ 0𝑝)
41 quotcl2 25699 . . . . . . . 8 ((𝐹 ∈ (Poly‘ℂ) ∧ (Xpf − (ℂ × {𝐴})) ∈ (Poly‘ℂ) ∧ (Xpf − (ℂ × {𝐴})) ≠ 0𝑝) → (𝐹 quot (Xpf − (ℂ × {𝐴}))) ∈ (Poly‘ℂ))
424, 27, 40, 41syl3anc 1371 . . . . . . 7 (𝜑 → (𝐹 quot (Xpf − (ℂ × {𝐴}))) ∈ (Poly‘ℂ))
43 plyf 25596 . . . . . . 7 ((𝐹 quot (Xpf − (ℂ × {𝐴}))) ∈ (Poly‘ℂ) → (𝐹 quot (Xpf − (ℂ × {𝐴}))):ℂ⟶ℂ)
4442, 43syl 17 . . . . . 6 (𝜑 → (𝐹 quot (Xpf − (ℂ × {𝐴}))):ℂ⟶ℂ)
45 ofmulrt 25679 . . . . . 6 ((ℂ ∈ V ∧ (Xpf − (ℂ × {𝐴})):ℂ⟶ℂ ∧ (𝐹 quot (Xpf − (ℂ × {𝐴}))):ℂ⟶ℂ) → (((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴})))) “ {0}) = (((Xpf − (ℂ × {𝐴})) “ {0}) ∪ ((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})))
4619, 29, 44, 45syl3anc 1371 . . . . 5 (𝜑 → (((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴})))) “ {0}) = (((Xpf − (ℂ × {𝐴})) “ {0}) ∪ ((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})))
4731simp3d 1144 . . . . . 6 (𝜑 → ((Xpf − (ℂ × {𝐴})) “ {0}) = {𝐴})
4847uneq1d 4127 . . . . 5 (𝜑 → (((Xpf − (ℂ × {𝐴})) “ {0}) ∪ ((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) = ({𝐴} ∪ ((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})))
4917, 46, 483eqtrd 2775 . . . 4 (𝜑 → (𝐹 “ {0}) = ({𝐴} ∪ ((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})))
50 fta1.1 . . . 4 𝑅 = (𝐹 “ {0})
51 uncom 4118 . . . 4 (((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴}) = ({𝐴} ∪ ((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}))
5249, 50, 513eqtr4g 2796 . . 3 (𝜑𝑅 = (((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴}))
5321a1i 11 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
54 dgrcl 25631 . . . . . . . . 9 ((𝐹 quot (Xpf − (ℂ × {𝐴}))) ∈ (Poly‘ℂ) → (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))) ∈ ℕ0)
5542, 54syl 17 . . . . . . . 8 (𝜑 → (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))) ∈ ℕ0)
5655nn0cnd 12484 . . . . . . 7 (𝜑 → (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))) ∈ ℂ)
57 fta1.2 . . . . . . . 8 (𝜑𝐷 ∈ ℕ0)
5857nn0cnd 12484 . . . . . . 7 (𝜑𝐷 ∈ ℂ)
59 addcom 11350 . . . . . . . . 9 ((1 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (1 + 𝐷) = (𝐷 + 1))
6021, 58, 59sylancr 587 . . . . . . . 8 (𝜑 → (1 + 𝐷) = (𝐷 + 1))
6115fveq2d 6851 . . . . . . . . 9 (𝜑 → (deg‘𝐹) = (deg‘((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴}))))))
62 fta1.4 . . . . . . . . 9 (𝜑 → (deg‘𝐹) = (𝐷 + 1))
633simprd 496 . . . . . . . . . . . 12 (𝜑𝐹 ≠ 0𝑝)
6415eqcomd 2737 . . . . . . . . . . . 12 (𝜑 → ((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴})))) = 𝐹)
65 0cnd 11157 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℂ)
66 mul01 11343 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (𝑥 · 0) = 0)
6766adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → (𝑥 · 0) = 0)
6819, 29, 65, 65, 67caofid1 7655 . . . . . . . . . . . . 13 (𝜑 → ((Xpf − (ℂ × {𝐴})) ∘f · (ℂ × {0})) = (ℂ × {0}))
69 df-0p 25071 . . . . . . . . . . . . . 14 0𝑝 = (ℂ × {0})
7069oveq2i 7373 . . . . . . . . . . . . 13 ((Xpf − (ℂ × {𝐴})) ∘f · 0𝑝) = ((Xpf − (ℂ × {𝐴})) ∘f · (ℂ × {0}))
7168, 70, 693eqtr4g 2796 . . . . . . . . . . . 12 (𝜑 → ((Xpf − (ℂ × {𝐴})) ∘f · 0𝑝) = 0𝑝)
7263, 64, 713netr4d 3017 . . . . . . . . . . 11 (𝜑 → ((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴})))) ≠ ((Xpf − (ℂ × {𝐴})) ∘f · 0𝑝))
73 oveq2 7370 . . . . . . . . . . . 12 ((𝐹 quot (Xpf − (ℂ × {𝐴}))) = 0𝑝 → ((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴})))) = ((Xpf − (ℂ × {𝐴})) ∘f · 0𝑝))
7473necon3i 2972 . . . . . . . . . . 11 (((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴})))) ≠ ((Xpf − (ℂ × {𝐴})) ∘f · 0𝑝) → (𝐹 quot (Xpf − (ℂ × {𝐴}))) ≠ 0𝑝)
7572, 74syl 17 . . . . . . . . . 10 (𝜑 → (𝐹 quot (Xpf − (ℂ × {𝐴}))) ≠ 0𝑝)
76 eqid 2731 . . . . . . . . . . 11 (deg‘(Xpf − (ℂ × {𝐴}))) = (deg‘(Xpf − (ℂ × {𝐴})))
77 eqid 2731 . . . . . . . . . . 11 (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))) = (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴}))))
7876, 77dgrmul 25668 . . . . . . . . . 10 ((((Xpf − (ℂ × {𝐴})) ∈ (Poly‘ℂ) ∧ (Xpf − (ℂ × {𝐴})) ≠ 0𝑝) ∧ ((𝐹 quot (Xpf − (ℂ × {𝐴}))) ∈ (Poly‘ℂ) ∧ (𝐹 quot (Xpf − (ℂ × {𝐴}))) ≠ 0𝑝)) → (deg‘((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴}))))) = ((deg‘(Xpf − (ℂ × {𝐴}))) + (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴}))))))
7927, 40, 42, 75, 78syl22anc 837 . . . . . . . . 9 (𝜑 → (deg‘((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴}))))) = ((deg‘(Xpf − (ℂ × {𝐴}))) + (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴}))))))
8061, 62, 793eqtr3d 2779 . . . . . . . 8 (𝜑 → (𝐷 + 1) = ((deg‘(Xpf − (ℂ × {𝐴}))) + (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴}))))))
8132oveq1d 7377 . . . . . . . 8 (𝜑 → ((deg‘(Xpf − (ℂ × {𝐴}))) + (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴}))))) = (1 + (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴}))))))
8260, 80, 813eqtrrd 2776 . . . . . . 7 (𝜑 → (1 + (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴}))))) = (1 + 𝐷))
8353, 56, 58, 82addcanad 11369 . . . . . 6 (𝜑 → (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))) = 𝐷)
84 fveqeq2 6856 . . . . . . . 8 (𝑔 = (𝐹 quot (Xpf − (ℂ × {𝐴}))) → ((deg‘𝑔) = 𝐷 ↔ (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))) = 𝐷))
85 cnveq 5834 . . . . . . . . . . 11 (𝑔 = (𝐹 quot (Xpf − (ℂ × {𝐴}))) → 𝑔 = (𝐹 quot (Xpf − (ℂ × {𝐴}))))
8685imaeq1d 6017 . . . . . . . . . 10 (𝑔 = (𝐹 quot (Xpf − (ℂ × {𝐴}))) → (𝑔 “ {0}) = ((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}))
8786eleq1d 2817 . . . . . . . . 9 (𝑔 = (𝐹 quot (Xpf − (ℂ × {𝐴}))) → ((𝑔 “ {0}) ∈ Fin ↔ ((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∈ Fin))
8886fveq2d 6851 . . . . . . . . . 10 (𝑔 = (𝐹 quot (Xpf − (ℂ × {𝐴}))) → (♯‘(𝑔 “ {0})) = (♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})))
89 fveq2 6847 . . . . . . . . . 10 (𝑔 = (𝐹 quot (Xpf − (ℂ × {𝐴}))) → (deg‘𝑔) = (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))))
9088, 89breq12d 5123 . . . . . . . . 9 (𝑔 = (𝐹 quot (Xpf − (ℂ × {𝐴}))) → ((♯‘(𝑔 “ {0})) ≤ (deg‘𝑔) ↔ (♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) ≤ (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴}))))))
9187, 90anbi12d 631 . . . . . . . 8 (𝑔 = (𝐹 quot (Xpf − (ℂ × {𝐴}))) → (((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔)) ↔ (((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∈ Fin ∧ (♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) ≤ (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))))))
9284, 91imbi12d 344 . . . . . . 7 (𝑔 = (𝐹 quot (Xpf − (ℂ × {𝐴}))) → (((deg‘𝑔) = 𝐷 → ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔))) ↔ ((deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))) = 𝐷 → (((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∈ Fin ∧ (♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) ≤ (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴}))))))))
93 fta1.6 . . . . . . 7 (𝜑 → ∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝐷 → ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔))))
94 eldifsn 4752 . . . . . . . 8 ((𝐹 quot (Xpf − (ℂ × {𝐴}))) ∈ ((Poly‘ℂ) ∖ {0𝑝}) ↔ ((𝐹 quot (Xpf − (ℂ × {𝐴}))) ∈ (Poly‘ℂ) ∧ (𝐹 quot (Xpf − (ℂ × {𝐴}))) ≠ 0𝑝))
9542, 75, 94sylanbrc 583 . . . . . . 7 (𝜑 → (𝐹 quot (Xpf − (ℂ × {𝐴}))) ∈ ((Poly‘ℂ) ∖ {0𝑝}))
9692, 93, 95rspcdva 3583 . . . . . 6 (𝜑 → ((deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))) = 𝐷 → (((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∈ Fin ∧ (♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) ≤ (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))))))
9783, 96mpd 15 . . . . 5 (𝜑 → (((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∈ Fin ∧ (♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) ≤ (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴}))))))
9897simpld 495 . . . 4 (𝜑 → ((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∈ Fin)
99 snfi 8995 . . . 4 {𝐴} ∈ Fin
100 unfi 9123 . . . 4 ((((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∈ Fin ∧ {𝐴} ∈ Fin) → (((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴}) ∈ Fin)
10198, 99, 100sylancl 586 . . 3 (𝜑 → (((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴}) ∈ Fin)
10252, 101eqeltrd 2832 . 2 (𝜑𝑅 ∈ Fin)
10352fveq2d 6851 . . 3 (𝜑 → (♯‘𝑅) = (♯‘(((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴})))
104 hashcl 14266 . . . . . 6 ((((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴}) ∈ Fin → (♯‘(((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴})) ∈ ℕ0)
105101, 104syl 17 . . . . 5 (𝜑 → (♯‘(((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴})) ∈ ℕ0)
106105nn0red 12483 . . . 4 (𝜑 → (♯‘(((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴})) ∈ ℝ)
107 hashcl 14266 . . . . . . 7 (((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∈ Fin → (♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) ∈ ℕ0)
10898, 107syl 17 . . . . . 6 (𝜑 → (♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) ∈ ℕ0)
109108nn0red 12483 . . . . 5 (𝜑 → (♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) ∈ ℝ)
110 peano2re 11337 . . . . 5 ((♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) ∈ ℝ → ((♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) + 1) ∈ ℝ)
111109, 110syl 17 . . . 4 (𝜑 → ((♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) + 1) ∈ ℝ)
112 dgrcl 25631 . . . . . 6 (𝐹 ∈ (Poly‘ℂ) → (deg‘𝐹) ∈ ℕ0)
1134, 112syl 17 . . . . 5 (𝜑 → (deg‘𝐹) ∈ ℕ0)
114113nn0red 12483 . . . 4 (𝜑 → (deg‘𝐹) ∈ ℝ)
115 hashun2 14293 . . . . . 6 ((((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∈ Fin ∧ {𝐴} ∈ Fin) → (♯‘(((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴})) ≤ ((♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) + (♯‘{𝐴})))
11698, 99, 115sylancl 586 . . . . 5 (𝜑 → (♯‘(((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴})) ≤ ((♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) + (♯‘{𝐴})))
117 hashsng 14279 . . . . . . 7 (𝐴 ∈ ℂ → (♯‘{𝐴}) = 1)
11811, 117syl 17 . . . . . 6 (𝜑 → (♯‘{𝐴}) = 1)
119118oveq2d 7378 . . . . 5 (𝜑 → ((♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) + (♯‘{𝐴})) = ((♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) + 1))
120116, 119breqtrd 5136 . . . 4 (𝜑 → (♯‘(((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴})) ≤ ((♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) + 1))
12157nn0red 12483 . . . . . 6 (𝜑𝐷 ∈ ℝ)
122 1red 11165 . . . . . 6 (𝜑 → 1 ∈ ℝ)
12397simprd 496 . . . . . . 7 (𝜑 → (♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) ≤ (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))))
124123, 83breqtrd 5136 . . . . . 6 (𝜑 → (♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) ≤ 𝐷)
125109, 121, 122, 124leadd1dd 11778 . . . . 5 (𝜑 → ((♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) + 1) ≤ (𝐷 + 1))
126125, 62breqtrrd 5138 . . . 4 (𝜑 → ((♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) + 1) ≤ (deg‘𝐹))
127106, 111, 114, 120, 126letrd 11321 . . 3 (𝜑 → (♯‘(((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴})) ≤ (deg‘𝐹))
128103, 127eqbrtrd 5132 . 2 (𝜑 → (♯‘𝑅) ≤ (deg‘𝐹))
129102, 128jca 512 1 (𝜑 → (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2939  wral 3060  Vcvv 3446  cdif 3910  cun 3911  wss 3913  {csn 4591   class class class wbr 5110   × cxp 5636  ccnv 5637  cima 5641   Fn wfn 6496  wf 6497  cfv 6501  (class class class)co 7362  f cof 7620  Fincfn 8890  cc 11058  cr 11059  0cc0 11060  1c1 11061   + caddc 11063   · cmul 11065  cle 11199  cmin 11394  0cn0 12422  chash 14240  0𝑝c0p 25070  Polycply 25582  Xpcidp 25583  degcdgr 25585   quot cquot 25687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9586  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137  ax-pre-sup 11138
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-of 7622  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-oadd 8421  df-er 8655  df-map 8774  df-pm 8775  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-sup 9387  df-inf 9388  df-oi 9455  df-dju 9846  df-card 9884  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-div 11822  df-nn 12163  df-2 12225  df-3 12226  df-n0 12423  df-xnn0 12495  df-z 12509  df-uz 12773  df-rp 12925  df-fz 13435  df-fzo 13578  df-fl 13707  df-seq 13917  df-exp 13978  df-hash 14241  df-cj 14996  df-re 14997  df-im 14998  df-sqrt 15132  df-abs 15133  df-clim 15382  df-rlim 15383  df-sum 15583  df-0p 25071  df-ply 25586  df-idp 25587  df-coe 25588  df-dgr 25589  df-quot 25688
This theorem is referenced by:  fta1  25705
  Copyright terms: Public domain W3C validator