MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fta1lem Structured version   Visualization version   GIF version

Theorem fta1lem 24895
Description: Lemma for fta1 24896. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
fta1.1 𝑅 = (𝐹 “ {0})
fta1.2 (𝜑𝐷 ∈ ℕ0)
fta1.3 (𝜑𝐹 ∈ ((Poly‘ℂ) ∖ {0𝑝}))
fta1.4 (𝜑 → (deg‘𝐹) = (𝐷 + 1))
fta1.5 (𝜑𝐴 ∈ (𝐹 “ {0}))
fta1.6 (𝜑 → ∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝐷 → ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔))))
Assertion
Ref Expression
fta1lem (𝜑 → (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹)))
Distinct variable groups:   𝐴,𝑔   𝐷,𝑔   𝑔,𝐹
Allowed substitution hints:   𝜑(𝑔)   𝑅(𝑔)

Proof of Theorem fta1lem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fta1.3 . . . . . . . . . 10 (𝜑𝐹 ∈ ((Poly‘ℂ) ∖ {0𝑝}))
2 eldifsn 4718 . . . . . . . . . 10 (𝐹 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ↔ (𝐹 ∈ (Poly‘ℂ) ∧ 𝐹 ≠ 0𝑝))
31, 2sylib 220 . . . . . . . . 9 (𝜑 → (𝐹 ∈ (Poly‘ℂ) ∧ 𝐹 ≠ 0𝑝))
43simpld 497 . . . . . . . 8 (𝜑𝐹 ∈ (Poly‘ℂ))
5 fta1.5 . . . . . . . . . 10 (𝜑𝐴 ∈ (𝐹 “ {0}))
6 plyf 24787 . . . . . . . . . . 11 (𝐹 ∈ (Poly‘ℂ) → 𝐹:ℂ⟶ℂ)
7 ffn 6513 . . . . . . . . . . 11 (𝐹:ℂ⟶ℂ → 𝐹 Fn ℂ)
8 fniniseg 6829 . . . . . . . . . . 11 (𝐹 Fn ℂ → (𝐴 ∈ (𝐹 “ {0}) ↔ (𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0)))
94, 6, 7, 84syl 19 . . . . . . . . . 10 (𝜑 → (𝐴 ∈ (𝐹 “ {0}) ↔ (𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0)))
105, 9mpbid 234 . . . . . . . . 9 (𝜑 → (𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0))
1110simpld 497 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
1210simprd 498 . . . . . . . 8 (𝜑 → (𝐹𝐴) = 0)
13 eqid 2821 . . . . . . . . 9 (Xpf − (ℂ × {𝐴})) = (Xpf − (ℂ × {𝐴}))
1413facth 24894 . . . . . . . 8 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → 𝐹 = ((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴})))))
154, 11, 12, 14syl3anc 1367 . . . . . . 7 (𝜑𝐹 = ((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴})))))
1615cnveqd 5745 . . . . . 6 (𝜑𝐹 = ((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴})))))
1716imaeq1d 5927 . . . . 5 (𝜑 → (𝐹 “ {0}) = (((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴})))) “ {0}))
18 cnex 10617 . . . . . . 7 ℂ ∈ V
1918a1i 11 . . . . . 6 (𝜑 → ℂ ∈ V)
20 ssid 3988 . . . . . . . . 9 ℂ ⊆ ℂ
21 ax-1cn 10594 . . . . . . . . 9 1 ∈ ℂ
22 plyid 24798 . . . . . . . . 9 ((ℂ ⊆ ℂ ∧ 1 ∈ ℂ) → Xp ∈ (Poly‘ℂ))
2320, 21, 22mp2an 690 . . . . . . . 8 Xp ∈ (Poly‘ℂ)
24 plyconst 24795 . . . . . . . . 9 ((ℂ ⊆ ℂ ∧ 𝐴 ∈ ℂ) → (ℂ × {𝐴}) ∈ (Poly‘ℂ))
2520, 11, 24sylancr 589 . . . . . . . 8 (𝜑 → (ℂ × {𝐴}) ∈ (Poly‘ℂ))
26 plysubcl 24811 . . . . . . . 8 ((Xp ∈ (Poly‘ℂ) ∧ (ℂ × {𝐴}) ∈ (Poly‘ℂ)) → (Xpf − (ℂ × {𝐴})) ∈ (Poly‘ℂ))
2723, 25, 26sylancr 589 . . . . . . 7 (𝜑 → (Xpf − (ℂ × {𝐴})) ∈ (Poly‘ℂ))
28 plyf 24787 . . . . . . 7 ((Xpf − (ℂ × {𝐴})) ∈ (Poly‘ℂ) → (Xpf − (ℂ × {𝐴})):ℂ⟶ℂ)
2927, 28syl 17 . . . . . 6 (𝜑 → (Xpf − (ℂ × {𝐴})):ℂ⟶ℂ)
3013plyremlem 24892 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((Xpf − (ℂ × {𝐴})) ∈ (Poly‘ℂ) ∧ (deg‘(Xpf − (ℂ × {𝐴}))) = 1 ∧ ((Xpf − (ℂ × {𝐴})) “ {0}) = {𝐴}))
3111, 30syl 17 . . . . . . . . . . 11 (𝜑 → ((Xpf − (ℂ × {𝐴})) ∈ (Poly‘ℂ) ∧ (deg‘(Xpf − (ℂ × {𝐴}))) = 1 ∧ ((Xpf − (ℂ × {𝐴})) “ {0}) = {𝐴}))
3231simp2d 1139 . . . . . . . . . 10 (𝜑 → (deg‘(Xpf − (ℂ × {𝐴}))) = 1)
33 ax-1ne0 10605 . . . . . . . . . . 11 1 ≠ 0
3433a1i 11 . . . . . . . . . 10 (𝜑 → 1 ≠ 0)
3532, 34eqnetrd 3083 . . . . . . . . 9 (𝜑 → (deg‘(Xpf − (ℂ × {𝐴}))) ≠ 0)
36 fveq2 6669 . . . . . . . . . . 11 ((Xpf − (ℂ × {𝐴})) = 0𝑝 → (deg‘(Xpf − (ℂ × {𝐴}))) = (deg‘0𝑝))
37 dgr0 24851 . . . . . . . . . . 11 (deg‘0𝑝) = 0
3836, 37syl6eq 2872 . . . . . . . . . 10 ((Xpf − (ℂ × {𝐴})) = 0𝑝 → (deg‘(Xpf − (ℂ × {𝐴}))) = 0)
3938necon3i 3048 . . . . . . . . 9 ((deg‘(Xpf − (ℂ × {𝐴}))) ≠ 0 → (Xpf − (ℂ × {𝐴})) ≠ 0𝑝)
4035, 39syl 17 . . . . . . . 8 (𝜑 → (Xpf − (ℂ × {𝐴})) ≠ 0𝑝)
41 quotcl2 24890 . . . . . . . 8 ((𝐹 ∈ (Poly‘ℂ) ∧ (Xpf − (ℂ × {𝐴})) ∈ (Poly‘ℂ) ∧ (Xpf − (ℂ × {𝐴})) ≠ 0𝑝) → (𝐹 quot (Xpf − (ℂ × {𝐴}))) ∈ (Poly‘ℂ))
424, 27, 40, 41syl3anc 1367 . . . . . . 7 (𝜑 → (𝐹 quot (Xpf − (ℂ × {𝐴}))) ∈ (Poly‘ℂ))
43 plyf 24787 . . . . . . 7 ((𝐹 quot (Xpf − (ℂ × {𝐴}))) ∈ (Poly‘ℂ) → (𝐹 quot (Xpf − (ℂ × {𝐴}))):ℂ⟶ℂ)
4442, 43syl 17 . . . . . 6 (𝜑 → (𝐹 quot (Xpf − (ℂ × {𝐴}))):ℂ⟶ℂ)
45 ofmulrt 24870 . . . . . 6 ((ℂ ∈ V ∧ (Xpf − (ℂ × {𝐴})):ℂ⟶ℂ ∧ (𝐹 quot (Xpf − (ℂ × {𝐴}))):ℂ⟶ℂ) → (((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴})))) “ {0}) = (((Xpf − (ℂ × {𝐴})) “ {0}) ∪ ((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})))
4619, 29, 44, 45syl3anc 1367 . . . . 5 (𝜑 → (((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴})))) “ {0}) = (((Xpf − (ℂ × {𝐴})) “ {0}) ∪ ((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})))
4731simp3d 1140 . . . . . 6 (𝜑 → ((Xpf − (ℂ × {𝐴})) “ {0}) = {𝐴})
4847uneq1d 4137 . . . . 5 (𝜑 → (((Xpf − (ℂ × {𝐴})) “ {0}) ∪ ((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) = ({𝐴} ∪ ((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})))
4917, 46, 483eqtrd 2860 . . . 4 (𝜑 → (𝐹 “ {0}) = ({𝐴} ∪ ((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})))
50 fta1.1 . . . 4 𝑅 = (𝐹 “ {0})
51 uncom 4128 . . . 4 (((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴}) = ({𝐴} ∪ ((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}))
5249, 50, 513eqtr4g 2881 . . 3 (𝜑𝑅 = (((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴}))
5321a1i 11 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
54 dgrcl 24822 . . . . . . . . 9 ((𝐹 quot (Xpf − (ℂ × {𝐴}))) ∈ (Poly‘ℂ) → (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))) ∈ ℕ0)
5542, 54syl 17 . . . . . . . 8 (𝜑 → (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))) ∈ ℕ0)
5655nn0cnd 11956 . . . . . . 7 (𝜑 → (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))) ∈ ℂ)
57 fta1.2 . . . . . . . 8 (𝜑𝐷 ∈ ℕ0)
5857nn0cnd 11956 . . . . . . 7 (𝜑𝐷 ∈ ℂ)
59 addcom 10825 . . . . . . . . 9 ((1 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (1 + 𝐷) = (𝐷 + 1))
6021, 58, 59sylancr 589 . . . . . . . 8 (𝜑 → (1 + 𝐷) = (𝐷 + 1))
6115fveq2d 6673 . . . . . . . . 9 (𝜑 → (deg‘𝐹) = (deg‘((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴}))))))
62 fta1.4 . . . . . . . . 9 (𝜑 → (deg‘𝐹) = (𝐷 + 1))
633simprd 498 . . . . . . . . . . . 12 (𝜑𝐹 ≠ 0𝑝)
6415eqcomd 2827 . . . . . . . . . . . 12 (𝜑 → ((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴})))) = 𝐹)
65 0cnd 10633 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℂ)
66 mul01 10818 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (𝑥 · 0) = 0)
6766adantl 484 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → (𝑥 · 0) = 0)
6819, 29, 65, 65, 67caofid1 7438 . . . . . . . . . . . . 13 (𝜑 → ((Xpf − (ℂ × {𝐴})) ∘f · (ℂ × {0})) = (ℂ × {0}))
69 df-0p 24270 . . . . . . . . . . . . . 14 0𝑝 = (ℂ × {0})
7069oveq2i 7166 . . . . . . . . . . . . 13 ((Xpf − (ℂ × {𝐴})) ∘f · 0𝑝) = ((Xpf − (ℂ × {𝐴})) ∘f · (ℂ × {0}))
7168, 70, 693eqtr4g 2881 . . . . . . . . . . . 12 (𝜑 → ((Xpf − (ℂ × {𝐴})) ∘f · 0𝑝) = 0𝑝)
7263, 64, 713netr4d 3093 . . . . . . . . . . 11 (𝜑 → ((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴})))) ≠ ((Xpf − (ℂ × {𝐴})) ∘f · 0𝑝))
73 oveq2 7163 . . . . . . . . . . . 12 ((𝐹 quot (Xpf − (ℂ × {𝐴}))) = 0𝑝 → ((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴})))) = ((Xpf − (ℂ × {𝐴})) ∘f · 0𝑝))
7473necon3i 3048 . . . . . . . . . . 11 (((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴})))) ≠ ((Xpf − (ℂ × {𝐴})) ∘f · 0𝑝) → (𝐹 quot (Xpf − (ℂ × {𝐴}))) ≠ 0𝑝)
7572, 74syl 17 . . . . . . . . . 10 (𝜑 → (𝐹 quot (Xpf − (ℂ × {𝐴}))) ≠ 0𝑝)
76 eqid 2821 . . . . . . . . . . 11 (deg‘(Xpf − (ℂ × {𝐴}))) = (deg‘(Xpf − (ℂ × {𝐴})))
77 eqid 2821 . . . . . . . . . . 11 (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))) = (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴}))))
7876, 77dgrmul 24859 . . . . . . . . . 10 ((((Xpf − (ℂ × {𝐴})) ∈ (Poly‘ℂ) ∧ (Xpf − (ℂ × {𝐴})) ≠ 0𝑝) ∧ ((𝐹 quot (Xpf − (ℂ × {𝐴}))) ∈ (Poly‘ℂ) ∧ (𝐹 quot (Xpf − (ℂ × {𝐴}))) ≠ 0𝑝)) → (deg‘((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴}))))) = ((deg‘(Xpf − (ℂ × {𝐴}))) + (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴}))))))
7927, 40, 42, 75, 78syl22anc 836 . . . . . . . . 9 (𝜑 → (deg‘((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴}))))) = ((deg‘(Xpf − (ℂ × {𝐴}))) + (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴}))))))
8061, 62, 793eqtr3d 2864 . . . . . . . 8 (𝜑 → (𝐷 + 1) = ((deg‘(Xpf − (ℂ × {𝐴}))) + (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴}))))))
8132oveq1d 7170 . . . . . . . 8 (𝜑 → ((deg‘(Xpf − (ℂ × {𝐴}))) + (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴}))))) = (1 + (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴}))))))
8260, 80, 813eqtrrd 2861 . . . . . . 7 (𝜑 → (1 + (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴}))))) = (1 + 𝐷))
8353, 56, 58, 82addcanad 10844 . . . . . 6 (𝜑 → (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))) = 𝐷)
84 fveqeq2 6678 . . . . . . . 8 (𝑔 = (𝐹 quot (Xpf − (ℂ × {𝐴}))) → ((deg‘𝑔) = 𝐷 ↔ (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))) = 𝐷))
85 cnveq 5743 . . . . . . . . . . 11 (𝑔 = (𝐹 quot (Xpf − (ℂ × {𝐴}))) → 𝑔 = (𝐹 quot (Xpf − (ℂ × {𝐴}))))
8685imaeq1d 5927 . . . . . . . . . 10 (𝑔 = (𝐹 quot (Xpf − (ℂ × {𝐴}))) → (𝑔 “ {0}) = ((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}))
8786eleq1d 2897 . . . . . . . . 9 (𝑔 = (𝐹 quot (Xpf − (ℂ × {𝐴}))) → ((𝑔 “ {0}) ∈ Fin ↔ ((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∈ Fin))
8886fveq2d 6673 . . . . . . . . . 10 (𝑔 = (𝐹 quot (Xpf − (ℂ × {𝐴}))) → (♯‘(𝑔 “ {0})) = (♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})))
89 fveq2 6669 . . . . . . . . . 10 (𝑔 = (𝐹 quot (Xpf − (ℂ × {𝐴}))) → (deg‘𝑔) = (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))))
9088, 89breq12d 5078 . . . . . . . . 9 (𝑔 = (𝐹 quot (Xpf − (ℂ × {𝐴}))) → ((♯‘(𝑔 “ {0})) ≤ (deg‘𝑔) ↔ (♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) ≤ (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴}))))))
9187, 90anbi12d 632 . . . . . . . 8 (𝑔 = (𝐹 quot (Xpf − (ℂ × {𝐴}))) → (((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔)) ↔ (((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∈ Fin ∧ (♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) ≤ (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))))))
9284, 91imbi12d 347 . . . . . . 7 (𝑔 = (𝐹 quot (Xpf − (ℂ × {𝐴}))) → (((deg‘𝑔) = 𝐷 → ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔))) ↔ ((deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))) = 𝐷 → (((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∈ Fin ∧ (♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) ≤ (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴}))))))))
93 fta1.6 . . . . . . 7 (𝜑 → ∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝐷 → ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔))))
94 eldifsn 4718 . . . . . . . 8 ((𝐹 quot (Xpf − (ℂ × {𝐴}))) ∈ ((Poly‘ℂ) ∖ {0𝑝}) ↔ ((𝐹 quot (Xpf − (ℂ × {𝐴}))) ∈ (Poly‘ℂ) ∧ (𝐹 quot (Xpf − (ℂ × {𝐴}))) ≠ 0𝑝))
9542, 75, 94sylanbrc 585 . . . . . . 7 (𝜑 → (𝐹 quot (Xpf − (ℂ × {𝐴}))) ∈ ((Poly‘ℂ) ∖ {0𝑝}))
9692, 93, 95rspcdva 3624 . . . . . 6 (𝜑 → ((deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))) = 𝐷 → (((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∈ Fin ∧ (♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) ≤ (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))))))
9783, 96mpd 15 . . . . 5 (𝜑 → (((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∈ Fin ∧ (♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) ≤ (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴}))))))
9897simpld 497 . . . 4 (𝜑 → ((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∈ Fin)
99 snfi 8593 . . . 4 {𝐴} ∈ Fin
100 unfi 8784 . . . 4 ((((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∈ Fin ∧ {𝐴} ∈ Fin) → (((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴}) ∈ Fin)
10198, 99, 100sylancl 588 . . 3 (𝜑 → (((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴}) ∈ Fin)
10252, 101eqeltrd 2913 . 2 (𝜑𝑅 ∈ Fin)
10352fveq2d 6673 . . 3 (𝜑 → (♯‘𝑅) = (♯‘(((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴})))
104 hashcl 13716 . . . . . 6 ((((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴}) ∈ Fin → (♯‘(((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴})) ∈ ℕ0)
105101, 104syl 17 . . . . 5 (𝜑 → (♯‘(((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴})) ∈ ℕ0)
106105nn0red 11955 . . . 4 (𝜑 → (♯‘(((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴})) ∈ ℝ)
107 hashcl 13716 . . . . . . 7 (((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∈ Fin → (♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) ∈ ℕ0)
10898, 107syl 17 . . . . . 6 (𝜑 → (♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) ∈ ℕ0)
109108nn0red 11955 . . . . 5 (𝜑 → (♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) ∈ ℝ)
110 peano2re 10812 . . . . 5 ((♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) ∈ ℝ → ((♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) + 1) ∈ ℝ)
111109, 110syl 17 . . . 4 (𝜑 → ((♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) + 1) ∈ ℝ)
112 dgrcl 24822 . . . . . 6 (𝐹 ∈ (Poly‘ℂ) → (deg‘𝐹) ∈ ℕ0)
1134, 112syl 17 . . . . 5 (𝜑 → (deg‘𝐹) ∈ ℕ0)
114113nn0red 11955 . . . 4 (𝜑 → (deg‘𝐹) ∈ ℝ)
115 hashun2 13743 . . . . . 6 ((((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∈ Fin ∧ {𝐴} ∈ Fin) → (♯‘(((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴})) ≤ ((♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) + (♯‘{𝐴})))
11698, 99, 115sylancl 588 . . . . 5 (𝜑 → (♯‘(((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴})) ≤ ((♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) + (♯‘{𝐴})))
117 hashsng 13729 . . . . . . 7 (𝐴 ∈ ℂ → (♯‘{𝐴}) = 1)
11811, 117syl 17 . . . . . 6 (𝜑 → (♯‘{𝐴}) = 1)
119118oveq2d 7171 . . . . 5 (𝜑 → ((♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) + (♯‘{𝐴})) = ((♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) + 1))
120116, 119breqtrd 5091 . . . 4 (𝜑 → (♯‘(((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴})) ≤ ((♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) + 1))
12157nn0red 11955 . . . . . 6 (𝜑𝐷 ∈ ℝ)
122 1red 10641 . . . . . 6 (𝜑 → 1 ∈ ℝ)
12397simprd 498 . . . . . . 7 (𝜑 → (♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) ≤ (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))))
124123, 83breqtrd 5091 . . . . . 6 (𝜑 → (♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) ≤ 𝐷)
125109, 121, 122, 124leadd1dd 11253 . . . . 5 (𝜑 → ((♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) + 1) ≤ (𝐷 + 1))
126125, 62breqtrrd 5093 . . . 4 (𝜑 → ((♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) + 1) ≤ (deg‘𝐹))
127106, 111, 114, 120, 126letrd 10796 . . 3 (𝜑 → (♯‘(((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴})) ≤ (deg‘𝐹))
128103, 127eqbrtrd 5087 . 2 (𝜑 → (♯‘𝑅) ≤ (deg‘𝐹))
129102, 128jca 514 1 (𝜑 → (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  Vcvv 3494  cdif 3932  cun 3933  wss 3935  {csn 4566   class class class wbr 5065   × cxp 5552  ccnv 5553  cima 5557   Fn wfn 6349  wf 6350  cfv 6354  (class class class)co 7155  f cof 7406  Fincfn 8508  cc 10534  cr 10535  0cc0 10536  1c1 10537   + caddc 10539   · cmul 10541  cle 10675  cmin 10869  0cn0 11896  chash 13689  0𝑝c0p 24269  Polycply 24773  Xpcidp 24774  degcdgr 24776   quot cquot 24878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-addf 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-map 8407  df-pm 8408  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-inf 8906  df-oi 8973  df-dju 9329  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-xnn0 11967  df-z 11981  df-uz 12243  df-rp 12389  df-fz 12892  df-fzo 13033  df-fl 13161  df-seq 13369  df-exp 13429  df-hash 13690  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-clim 14844  df-rlim 14845  df-sum 15042  df-0p 24270  df-ply 24777  df-idp 24778  df-coe 24779  df-dgr 24780  df-quot 24879
This theorem is referenced by:  fta1  24896
  Copyright terms: Public domain W3C validator