MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fta1lem Structured version   Visualization version   GIF version

Theorem fta1lem 26222
Description: Lemma for fta1 26223. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
fta1.1 𝑅 = (𝐹 “ {0})
fta1.2 (𝜑𝐷 ∈ ℕ0)
fta1.3 (𝜑𝐹 ∈ ((Poly‘ℂ) ∖ {0𝑝}))
fta1.4 (𝜑 → (deg‘𝐹) = (𝐷 + 1))
fta1.5 (𝜑𝐴 ∈ (𝐹 “ {0}))
fta1.6 (𝜑 → ∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝐷 → ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔))))
Assertion
Ref Expression
fta1lem (𝜑 → (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹)))
Distinct variable groups:   𝐴,𝑔   𝐷,𝑔   𝑔,𝐹
Allowed substitution hints:   𝜑(𝑔)   𝑅(𝑔)

Proof of Theorem fta1lem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fta1.3 . . . . . . . . . 10 (𝜑𝐹 ∈ ((Poly‘ℂ) ∖ {0𝑝}))
2 eldifsn 4753 . . . . . . . . . 10 (𝐹 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ↔ (𝐹 ∈ (Poly‘ℂ) ∧ 𝐹 ≠ 0𝑝))
31, 2sylib 218 . . . . . . . . 9 (𝜑 → (𝐹 ∈ (Poly‘ℂ) ∧ 𝐹 ≠ 0𝑝))
43simpld 494 . . . . . . . 8 (𝜑𝐹 ∈ (Poly‘ℂ))
5 fta1.5 . . . . . . . . . 10 (𝜑𝐴 ∈ (𝐹 “ {0}))
6 plyf 26110 . . . . . . . . . . 11 (𝐹 ∈ (Poly‘ℂ) → 𝐹:ℂ⟶ℂ)
7 ffn 6691 . . . . . . . . . . 11 (𝐹:ℂ⟶ℂ → 𝐹 Fn ℂ)
8 fniniseg 7035 . . . . . . . . . . 11 (𝐹 Fn ℂ → (𝐴 ∈ (𝐹 “ {0}) ↔ (𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0)))
94, 6, 7, 84syl 19 . . . . . . . . . 10 (𝜑 → (𝐴 ∈ (𝐹 “ {0}) ↔ (𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0)))
105, 9mpbid 232 . . . . . . . . 9 (𝜑 → (𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0))
1110simpld 494 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
1210simprd 495 . . . . . . . 8 (𝜑 → (𝐹𝐴) = 0)
13 eqid 2730 . . . . . . . . 9 (Xpf − (ℂ × {𝐴})) = (Xpf − (ℂ × {𝐴}))
1413facth 26221 . . . . . . . 8 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐴 ∈ ℂ ∧ (𝐹𝐴) = 0) → 𝐹 = ((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴})))))
154, 11, 12, 14syl3anc 1373 . . . . . . 7 (𝜑𝐹 = ((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴})))))
1615cnveqd 5842 . . . . . 6 (𝜑𝐹 = ((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴})))))
1716imaeq1d 6033 . . . . 5 (𝜑 → (𝐹 “ {0}) = (((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴})))) “ {0}))
18 cnex 11156 . . . . . . 7 ℂ ∈ V
1918a1i 11 . . . . . 6 (𝜑 → ℂ ∈ V)
20 ssid 3972 . . . . . . . . 9 ℂ ⊆ ℂ
21 ax-1cn 11133 . . . . . . . . 9 1 ∈ ℂ
22 plyid 26121 . . . . . . . . 9 ((ℂ ⊆ ℂ ∧ 1 ∈ ℂ) → Xp ∈ (Poly‘ℂ))
2320, 21, 22mp2an 692 . . . . . . . 8 Xp ∈ (Poly‘ℂ)
24 plyconst 26118 . . . . . . . . 9 ((ℂ ⊆ ℂ ∧ 𝐴 ∈ ℂ) → (ℂ × {𝐴}) ∈ (Poly‘ℂ))
2520, 11, 24sylancr 587 . . . . . . . 8 (𝜑 → (ℂ × {𝐴}) ∈ (Poly‘ℂ))
26 plysubcl 26134 . . . . . . . 8 ((Xp ∈ (Poly‘ℂ) ∧ (ℂ × {𝐴}) ∈ (Poly‘ℂ)) → (Xpf − (ℂ × {𝐴})) ∈ (Poly‘ℂ))
2723, 25, 26sylancr 587 . . . . . . 7 (𝜑 → (Xpf − (ℂ × {𝐴})) ∈ (Poly‘ℂ))
28 plyf 26110 . . . . . . 7 ((Xpf − (ℂ × {𝐴})) ∈ (Poly‘ℂ) → (Xpf − (ℂ × {𝐴})):ℂ⟶ℂ)
2927, 28syl 17 . . . . . 6 (𝜑 → (Xpf − (ℂ × {𝐴})):ℂ⟶ℂ)
3013plyremlem 26219 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((Xpf − (ℂ × {𝐴})) ∈ (Poly‘ℂ) ∧ (deg‘(Xpf − (ℂ × {𝐴}))) = 1 ∧ ((Xpf − (ℂ × {𝐴})) “ {0}) = {𝐴}))
3111, 30syl 17 . . . . . . . . . . 11 (𝜑 → ((Xpf − (ℂ × {𝐴})) ∈ (Poly‘ℂ) ∧ (deg‘(Xpf − (ℂ × {𝐴}))) = 1 ∧ ((Xpf − (ℂ × {𝐴})) “ {0}) = {𝐴}))
3231simp2d 1143 . . . . . . . . . 10 (𝜑 → (deg‘(Xpf − (ℂ × {𝐴}))) = 1)
33 ax-1ne0 11144 . . . . . . . . . . 11 1 ≠ 0
3433a1i 11 . . . . . . . . . 10 (𝜑 → 1 ≠ 0)
3532, 34eqnetrd 2993 . . . . . . . . 9 (𝜑 → (deg‘(Xpf − (ℂ × {𝐴}))) ≠ 0)
36 fveq2 6861 . . . . . . . . . . 11 ((Xpf − (ℂ × {𝐴})) = 0𝑝 → (deg‘(Xpf − (ℂ × {𝐴}))) = (deg‘0𝑝))
37 dgr0 26175 . . . . . . . . . . 11 (deg‘0𝑝) = 0
3836, 37eqtrdi 2781 . . . . . . . . . 10 ((Xpf − (ℂ × {𝐴})) = 0𝑝 → (deg‘(Xpf − (ℂ × {𝐴}))) = 0)
3938necon3i 2958 . . . . . . . . 9 ((deg‘(Xpf − (ℂ × {𝐴}))) ≠ 0 → (Xpf − (ℂ × {𝐴})) ≠ 0𝑝)
4035, 39syl 17 . . . . . . . 8 (𝜑 → (Xpf − (ℂ × {𝐴})) ≠ 0𝑝)
41 quotcl2 26217 . . . . . . . 8 ((𝐹 ∈ (Poly‘ℂ) ∧ (Xpf − (ℂ × {𝐴})) ∈ (Poly‘ℂ) ∧ (Xpf − (ℂ × {𝐴})) ≠ 0𝑝) → (𝐹 quot (Xpf − (ℂ × {𝐴}))) ∈ (Poly‘ℂ))
424, 27, 40, 41syl3anc 1373 . . . . . . 7 (𝜑 → (𝐹 quot (Xpf − (ℂ × {𝐴}))) ∈ (Poly‘ℂ))
43 plyf 26110 . . . . . . 7 ((𝐹 quot (Xpf − (ℂ × {𝐴}))) ∈ (Poly‘ℂ) → (𝐹 quot (Xpf − (ℂ × {𝐴}))):ℂ⟶ℂ)
4442, 43syl 17 . . . . . 6 (𝜑 → (𝐹 quot (Xpf − (ℂ × {𝐴}))):ℂ⟶ℂ)
45 ofmulrt 26196 . . . . . 6 ((ℂ ∈ V ∧ (Xpf − (ℂ × {𝐴})):ℂ⟶ℂ ∧ (𝐹 quot (Xpf − (ℂ × {𝐴}))):ℂ⟶ℂ) → (((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴})))) “ {0}) = (((Xpf − (ℂ × {𝐴})) “ {0}) ∪ ((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})))
4619, 29, 44, 45syl3anc 1373 . . . . 5 (𝜑 → (((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴})))) “ {0}) = (((Xpf − (ℂ × {𝐴})) “ {0}) ∪ ((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})))
4731simp3d 1144 . . . . . 6 (𝜑 → ((Xpf − (ℂ × {𝐴})) “ {0}) = {𝐴})
4847uneq1d 4133 . . . . 5 (𝜑 → (((Xpf − (ℂ × {𝐴})) “ {0}) ∪ ((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) = ({𝐴} ∪ ((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})))
4917, 46, 483eqtrd 2769 . . . 4 (𝜑 → (𝐹 “ {0}) = ({𝐴} ∪ ((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})))
50 fta1.1 . . . 4 𝑅 = (𝐹 “ {0})
51 uncom 4124 . . . 4 (((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴}) = ({𝐴} ∪ ((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}))
5249, 50, 513eqtr4g 2790 . . 3 (𝜑𝑅 = (((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴}))
5321a1i 11 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
54 dgrcl 26145 . . . . . . . . 9 ((𝐹 quot (Xpf − (ℂ × {𝐴}))) ∈ (Poly‘ℂ) → (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))) ∈ ℕ0)
5542, 54syl 17 . . . . . . . 8 (𝜑 → (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))) ∈ ℕ0)
5655nn0cnd 12512 . . . . . . 7 (𝜑 → (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))) ∈ ℂ)
57 fta1.2 . . . . . . . 8 (𝜑𝐷 ∈ ℕ0)
5857nn0cnd 12512 . . . . . . 7 (𝜑𝐷 ∈ ℂ)
59 addcom 11367 . . . . . . . . 9 ((1 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (1 + 𝐷) = (𝐷 + 1))
6021, 58, 59sylancr 587 . . . . . . . 8 (𝜑 → (1 + 𝐷) = (𝐷 + 1))
6115fveq2d 6865 . . . . . . . . 9 (𝜑 → (deg‘𝐹) = (deg‘((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴}))))))
62 fta1.4 . . . . . . . . 9 (𝜑 → (deg‘𝐹) = (𝐷 + 1))
633simprd 495 . . . . . . . . . . . 12 (𝜑𝐹 ≠ 0𝑝)
6415eqcomd 2736 . . . . . . . . . . . 12 (𝜑 → ((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴})))) = 𝐹)
65 0cnd 11174 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℂ)
66 mul01 11360 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (𝑥 · 0) = 0)
6766adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → (𝑥 · 0) = 0)
6819, 29, 65, 65, 67caofid1 7691 . . . . . . . . . . . . 13 (𝜑 → ((Xpf − (ℂ × {𝐴})) ∘f · (ℂ × {0})) = (ℂ × {0}))
69 df-0p 25578 . . . . . . . . . . . . . 14 0𝑝 = (ℂ × {0})
7069oveq2i 7401 . . . . . . . . . . . . 13 ((Xpf − (ℂ × {𝐴})) ∘f · 0𝑝) = ((Xpf − (ℂ × {𝐴})) ∘f · (ℂ × {0}))
7168, 70, 693eqtr4g 2790 . . . . . . . . . . . 12 (𝜑 → ((Xpf − (ℂ × {𝐴})) ∘f · 0𝑝) = 0𝑝)
7263, 64, 713netr4d 3003 . . . . . . . . . . 11 (𝜑 → ((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴})))) ≠ ((Xpf − (ℂ × {𝐴})) ∘f · 0𝑝))
73 oveq2 7398 . . . . . . . . . . . 12 ((𝐹 quot (Xpf − (ℂ × {𝐴}))) = 0𝑝 → ((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴})))) = ((Xpf − (ℂ × {𝐴})) ∘f · 0𝑝))
7473necon3i 2958 . . . . . . . . . . 11 (((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴})))) ≠ ((Xpf − (ℂ × {𝐴})) ∘f · 0𝑝) → (𝐹 quot (Xpf − (ℂ × {𝐴}))) ≠ 0𝑝)
7572, 74syl 17 . . . . . . . . . 10 (𝜑 → (𝐹 quot (Xpf − (ℂ × {𝐴}))) ≠ 0𝑝)
76 eqid 2730 . . . . . . . . . . 11 (deg‘(Xpf − (ℂ × {𝐴}))) = (deg‘(Xpf − (ℂ × {𝐴})))
77 eqid 2730 . . . . . . . . . . 11 (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))) = (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴}))))
7876, 77dgrmul 26183 . . . . . . . . . 10 ((((Xpf − (ℂ × {𝐴})) ∈ (Poly‘ℂ) ∧ (Xpf − (ℂ × {𝐴})) ≠ 0𝑝) ∧ ((𝐹 quot (Xpf − (ℂ × {𝐴}))) ∈ (Poly‘ℂ) ∧ (𝐹 quot (Xpf − (ℂ × {𝐴}))) ≠ 0𝑝)) → (deg‘((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴}))))) = ((deg‘(Xpf − (ℂ × {𝐴}))) + (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴}))))))
7927, 40, 42, 75, 78syl22anc 838 . . . . . . . . 9 (𝜑 → (deg‘((Xpf − (ℂ × {𝐴})) ∘f · (𝐹 quot (Xpf − (ℂ × {𝐴}))))) = ((deg‘(Xpf − (ℂ × {𝐴}))) + (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴}))))))
8061, 62, 793eqtr3d 2773 . . . . . . . 8 (𝜑 → (𝐷 + 1) = ((deg‘(Xpf − (ℂ × {𝐴}))) + (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴}))))))
8132oveq1d 7405 . . . . . . . 8 (𝜑 → ((deg‘(Xpf − (ℂ × {𝐴}))) + (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴}))))) = (1 + (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴}))))))
8260, 80, 813eqtrrd 2770 . . . . . . 7 (𝜑 → (1 + (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴}))))) = (1 + 𝐷))
8353, 56, 58, 82addcanad 11386 . . . . . 6 (𝜑 → (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))) = 𝐷)
84 fveqeq2 6870 . . . . . . . 8 (𝑔 = (𝐹 quot (Xpf − (ℂ × {𝐴}))) → ((deg‘𝑔) = 𝐷 ↔ (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))) = 𝐷))
85 cnveq 5840 . . . . . . . . . . 11 (𝑔 = (𝐹 quot (Xpf − (ℂ × {𝐴}))) → 𝑔 = (𝐹 quot (Xpf − (ℂ × {𝐴}))))
8685imaeq1d 6033 . . . . . . . . . 10 (𝑔 = (𝐹 quot (Xpf − (ℂ × {𝐴}))) → (𝑔 “ {0}) = ((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}))
8786eleq1d 2814 . . . . . . . . 9 (𝑔 = (𝐹 quot (Xpf − (ℂ × {𝐴}))) → ((𝑔 “ {0}) ∈ Fin ↔ ((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∈ Fin))
8886fveq2d 6865 . . . . . . . . . 10 (𝑔 = (𝐹 quot (Xpf − (ℂ × {𝐴}))) → (♯‘(𝑔 “ {0})) = (♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})))
89 fveq2 6861 . . . . . . . . . 10 (𝑔 = (𝐹 quot (Xpf − (ℂ × {𝐴}))) → (deg‘𝑔) = (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))))
9088, 89breq12d 5123 . . . . . . . . 9 (𝑔 = (𝐹 quot (Xpf − (ℂ × {𝐴}))) → ((♯‘(𝑔 “ {0})) ≤ (deg‘𝑔) ↔ (♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) ≤ (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴}))))))
9187, 90anbi12d 632 . . . . . . . 8 (𝑔 = (𝐹 quot (Xpf − (ℂ × {𝐴}))) → (((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔)) ↔ (((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∈ Fin ∧ (♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) ≤ (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))))))
9284, 91imbi12d 344 . . . . . . 7 (𝑔 = (𝐹 quot (Xpf − (ℂ × {𝐴}))) → (((deg‘𝑔) = 𝐷 → ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔))) ↔ ((deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))) = 𝐷 → (((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∈ Fin ∧ (♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) ≤ (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴}))))))))
93 fta1.6 . . . . . . 7 (𝜑 → ∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝐷 → ((𝑔 “ {0}) ∈ Fin ∧ (♯‘(𝑔 “ {0})) ≤ (deg‘𝑔))))
94 eldifsn 4753 . . . . . . . 8 ((𝐹 quot (Xpf − (ℂ × {𝐴}))) ∈ ((Poly‘ℂ) ∖ {0𝑝}) ↔ ((𝐹 quot (Xpf − (ℂ × {𝐴}))) ∈ (Poly‘ℂ) ∧ (𝐹 quot (Xpf − (ℂ × {𝐴}))) ≠ 0𝑝))
9542, 75, 94sylanbrc 583 . . . . . . 7 (𝜑 → (𝐹 quot (Xpf − (ℂ × {𝐴}))) ∈ ((Poly‘ℂ) ∖ {0𝑝}))
9692, 93, 95rspcdva 3592 . . . . . 6 (𝜑 → ((deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))) = 𝐷 → (((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∈ Fin ∧ (♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) ≤ (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))))))
9783, 96mpd 15 . . . . 5 (𝜑 → (((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∈ Fin ∧ (♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) ≤ (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴}))))))
9897simpld 494 . . . 4 (𝜑 → ((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∈ Fin)
99 snfi 9017 . . . 4 {𝐴} ∈ Fin
100 unfi 9141 . . . 4 ((((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∈ Fin ∧ {𝐴} ∈ Fin) → (((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴}) ∈ Fin)
10198, 99, 100sylancl 586 . . 3 (𝜑 → (((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴}) ∈ Fin)
10252, 101eqeltrd 2829 . 2 (𝜑𝑅 ∈ Fin)
10352fveq2d 6865 . . 3 (𝜑 → (♯‘𝑅) = (♯‘(((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴})))
104 hashcl 14328 . . . . . 6 ((((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴}) ∈ Fin → (♯‘(((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴})) ∈ ℕ0)
105101, 104syl 17 . . . . 5 (𝜑 → (♯‘(((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴})) ∈ ℕ0)
106105nn0red 12511 . . . 4 (𝜑 → (♯‘(((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴})) ∈ ℝ)
107 hashcl 14328 . . . . . . 7 (((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∈ Fin → (♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) ∈ ℕ0)
10898, 107syl 17 . . . . . 6 (𝜑 → (♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) ∈ ℕ0)
109108nn0red 12511 . . . . 5 (𝜑 → (♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) ∈ ℝ)
110 peano2re 11354 . . . . 5 ((♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) ∈ ℝ → ((♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) + 1) ∈ ℝ)
111109, 110syl 17 . . . 4 (𝜑 → ((♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) + 1) ∈ ℝ)
112 dgrcl 26145 . . . . . 6 (𝐹 ∈ (Poly‘ℂ) → (deg‘𝐹) ∈ ℕ0)
1134, 112syl 17 . . . . 5 (𝜑 → (deg‘𝐹) ∈ ℕ0)
114113nn0red 12511 . . . 4 (𝜑 → (deg‘𝐹) ∈ ℝ)
115 hashun2 14355 . . . . . 6 ((((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∈ Fin ∧ {𝐴} ∈ Fin) → (♯‘(((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴})) ≤ ((♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) + (♯‘{𝐴})))
11698, 99, 115sylancl 586 . . . . 5 (𝜑 → (♯‘(((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴})) ≤ ((♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) + (♯‘{𝐴})))
117 hashsng 14341 . . . . . . 7 (𝐴 ∈ ℂ → (♯‘{𝐴}) = 1)
11811, 117syl 17 . . . . . 6 (𝜑 → (♯‘{𝐴}) = 1)
119118oveq2d 7406 . . . . 5 (𝜑 → ((♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) + (♯‘{𝐴})) = ((♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) + 1))
120116, 119breqtrd 5136 . . . 4 (𝜑 → (♯‘(((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴})) ≤ ((♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) + 1))
12157nn0red 12511 . . . . . 6 (𝜑𝐷 ∈ ℝ)
122 1red 11182 . . . . . 6 (𝜑 → 1 ∈ ℝ)
12397simprd 495 . . . . . . 7 (𝜑 → (♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) ≤ (deg‘(𝐹 quot (Xpf − (ℂ × {𝐴})))))
124123, 83breqtrd 5136 . . . . . 6 (𝜑 → (♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) ≤ 𝐷)
125109, 121, 122, 124leadd1dd 11799 . . . . 5 (𝜑 → ((♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) + 1) ≤ (𝐷 + 1))
126125, 62breqtrrd 5138 . . . 4 (𝜑 → ((♯‘((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0})) + 1) ≤ (deg‘𝐹))
127106, 111, 114, 120, 126letrd 11338 . . 3 (𝜑 → (♯‘(((𝐹 quot (Xpf − (ℂ × {𝐴}))) “ {0}) ∪ {𝐴})) ≤ (deg‘𝐹))
128103, 127eqbrtrd 5132 . 2 (𝜑 → (♯‘𝑅) ≤ (deg‘𝐹))
129102, 128jca 511 1 (𝜑 → (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  Vcvv 3450  cdif 3914  cun 3915  wss 3917  {csn 4592   class class class wbr 5110   × cxp 5639  ccnv 5640  cima 5644   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  f cof 7654  Fincfn 8921  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  cle 11216  cmin 11412  0cn0 12449  chash 14302  0𝑝c0p 25577  Polycply 26096  Xpcidp 26097  degcdgr 26099   quot cquot 26205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660  df-0p 25578  df-ply 26100  df-idp 26101  df-coe 26102  df-dgr 26103  df-quot 26206
This theorem is referenced by:  fta1  26223
  Copyright terms: Public domain W3C validator