MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elqaalem3 Structured version   Visualization version   GIF version

Theorem elqaalem3 26236
Description: Lemma for elqaa 26237. (Contributed by Mario Carneiro, 23-Jul-2014.) (Revised by AV, 3-Oct-2020.)
Hypotheses
Ref Expression
elqaa.1 (𝜑𝐴 ∈ ℂ)
elqaa.2 (𝜑𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝}))
elqaa.3 (𝜑 → (𝐹𝐴) = 0)
elqaa.4 𝐵 = (coeff‘𝐹)
elqaa.5 𝑁 = (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵𝑘) · 𝑛) ∈ ℤ}, ℝ, < ))
elqaa.6 𝑅 = (seq0( · , 𝑁)‘(deg‘𝐹))
Assertion
Ref Expression
elqaalem3 (𝜑𝐴 ∈ 𝔸)
Distinct variable groups:   𝑘,𝑛,𝐴   𝐵,𝑘,𝑛   𝜑,𝑘   𝑘,𝑁,𝑛   𝑅,𝑘
Allowed substitution hints:   𝜑(𝑛)   𝑅(𝑛)   𝐹(𝑘,𝑛)

Proof of Theorem elqaalem3
Dummy variables 𝑓 𝑚 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elqaa.1 . 2 (𝜑𝐴 ∈ ℂ)
2 cnex 11156 . . . . . . . 8 ℂ ∈ V
32a1i 11 . . . . . . 7 (𝜑 → ℂ ∈ V)
4 elqaa.6 . . . . . . . . 9 𝑅 = (seq0( · , 𝑁)‘(deg‘𝐹))
54fvexi 6875 . . . . . . . 8 𝑅 ∈ V
65a1i 11 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 𝑅 ∈ V)
7 fvexd 6876 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → (𝐹𝑧) ∈ V)
8 fconstmpt 5703 . . . . . . . 8 (ℂ × {𝑅}) = (𝑧 ∈ ℂ ↦ 𝑅)
98a1i 11 . . . . . . 7 (𝜑 → (ℂ × {𝑅}) = (𝑧 ∈ ℂ ↦ 𝑅))
10 elqaa.2 . . . . . . . . . 10 (𝜑𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝}))
1110eldifad 3929 . . . . . . . . 9 (𝜑𝐹 ∈ (Poly‘ℚ))
12 plyf 26110 . . . . . . . . 9 (𝐹 ∈ (Poly‘ℚ) → 𝐹:ℂ⟶ℂ)
1311, 12syl 17 . . . . . . . 8 (𝜑𝐹:ℂ⟶ℂ)
1413feqmptd 6932 . . . . . . 7 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ (𝐹𝑧)))
153, 6, 7, 9, 14offval2 7676 . . . . . 6 (𝜑 → ((ℂ × {𝑅}) ∘f · 𝐹) = (𝑧 ∈ ℂ ↦ (𝑅 · (𝐹𝑧))))
16 fzfid 13945 . . . . . . . . 9 ((𝜑𝑧 ∈ ℂ) → (0...(deg‘𝐹)) ∈ Fin)
17 nn0uz 12842 . . . . . . . . . . . . . 14 0 = (ℤ‘0)
18 0zd 12548 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℤ)
19 ssrab2 4046 . . . . . . . . . . . . . . 15 {𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ} ⊆ ℕ
20 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑚 → (𝐵𝑘) = (𝐵𝑚))
2120oveq1d 7405 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑚 → ((𝐵𝑘) · 𝑛) = ((𝐵𝑚) · 𝑛))
2221eleq1d 2814 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑚 → (((𝐵𝑘) · 𝑛) ∈ ℤ ↔ ((𝐵𝑚) · 𝑛) ∈ ℤ))
2322rabbidv 3416 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑚 → {𝑛 ∈ ℕ ∣ ((𝐵𝑘) · 𝑛) ∈ ℤ} = {𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ})
2423infeq1d 9436 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑚 → inf({𝑛 ∈ ℕ ∣ ((𝐵𝑘) · 𝑛) ∈ ℤ}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ}, ℝ, < ))
25 elqaa.5 . . . . . . . . . . . . . . . . . 18 𝑁 = (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵𝑘) · 𝑛) ∈ ℤ}, ℝ, < ))
26 ltso 11261 . . . . . . . . . . . . . . . . . . 19 < Or ℝ
2726infex 9453 . . . . . . . . . . . . . . . . . 18 inf({𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ}, ℝ, < ) ∈ V
2824, 25, 27fvmpt 6971 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ0 → (𝑁𝑚) = inf({𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ}, ℝ, < ))
2928adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ0) → (𝑁𝑚) = inf({𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ}, ℝ, < ))
30 nnuz 12843 . . . . . . . . . . . . . . . . . 18 ℕ = (ℤ‘1)
3119, 30sseqtri 3998 . . . . . . . . . . . . . . . . 17 {𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ} ⊆ (ℤ‘1)
32 0z 12547 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℤ
33 zq 12920 . . . . . . . . . . . . . . . . . . . . . 22 (0 ∈ ℤ → 0 ∈ ℚ)
3432, 33ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ ℚ
35 elqaa.4 . . . . . . . . . . . . . . . . . . . . . 22 𝐵 = (coeff‘𝐹)
3635coef2 26143 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 ∈ (Poly‘ℚ) ∧ 0 ∈ ℚ) → 𝐵:ℕ0⟶ℚ)
3711, 34, 36sylancl 586 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐵:ℕ0⟶ℚ)
3837ffvelcdmda 7059 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ ℕ0) → (𝐵𝑚) ∈ ℚ)
39 qmulz 12917 . . . . . . . . . . . . . . . . . . 19 ((𝐵𝑚) ∈ ℚ → ∃𝑛 ∈ ℕ ((𝐵𝑚) · 𝑛) ∈ ℤ)
4038, 39syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ ℕ0) → ∃𝑛 ∈ ℕ ((𝐵𝑚) · 𝑛) ∈ ℤ)
41 rabn0 4355 . . . . . . . . . . . . . . . . . 18 ({𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ} ≠ ∅ ↔ ∃𝑛 ∈ ℕ ((𝐵𝑚) · 𝑛) ∈ ℤ)
4240, 41sylibr 234 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ ℕ0) → {𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ} ≠ ∅)
43 infssuzcl 12898 . . . . . . . . . . . . . . . . 17 (({𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ} ⊆ (ℤ‘1) ∧ {𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ} ≠ ∅) → inf({𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ})
4431, 42, 43sylancr 587 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ0) → inf({𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ})
4529, 44eqeltrd 2829 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ0) → (𝑁𝑚) ∈ {𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ})
4619, 45sselid 3947 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ0) → (𝑁𝑚) ∈ ℕ)
47 nnmulcl 12217 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (𝑚 · 𝑘) ∈ ℕ)
4847adantl 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (𝑚 · 𝑘) ∈ ℕ)
4917, 18, 46, 48seqf 13995 . . . . . . . . . . . . 13 (𝜑 → seq0( · , 𝑁):ℕ0⟶ℕ)
50 dgrcl 26145 . . . . . . . . . . . . . 14 (𝐹 ∈ (Poly‘ℚ) → (deg‘𝐹) ∈ ℕ0)
5111, 50syl 17 . . . . . . . . . . . . 13 (𝜑 → (deg‘𝐹) ∈ ℕ0)
5249, 51ffvelcdmd 7060 . . . . . . . . . . . 12 (𝜑 → (seq0( · , 𝑁)‘(deg‘𝐹)) ∈ ℕ)
534, 52eqeltrid 2833 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℕ)
5453nncnd 12209 . . . . . . . . . 10 (𝜑𝑅 ∈ ℂ)
5554adantr 480 . . . . . . . . 9 ((𝜑𝑧 ∈ ℂ) → 𝑅 ∈ ℂ)
56 elfznn0 13588 . . . . . . . . . 10 (𝑚 ∈ (0...(deg‘𝐹)) → 𝑚 ∈ ℕ0)
5735coef3 26144 . . . . . . . . . . . . . 14 (𝐹 ∈ (Poly‘ℚ) → 𝐵:ℕ0⟶ℂ)
5811, 57syl 17 . . . . . . . . . . . . 13 (𝜑𝐵:ℕ0⟶ℂ)
5958adantr 480 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ℂ) → 𝐵:ℕ0⟶ℂ)
6059ffvelcdmda 7059 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑚 ∈ ℕ0) → (𝐵𝑚) ∈ ℂ)
61 expcl 14051 . . . . . . . . . . . 12 ((𝑧 ∈ ℂ ∧ 𝑚 ∈ ℕ0) → (𝑧𝑚) ∈ ℂ)
6261adantll 714 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑚 ∈ ℕ0) → (𝑧𝑚) ∈ ℂ)
6360, 62mulcld 11201 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑚 ∈ ℕ0) → ((𝐵𝑚) · (𝑧𝑚)) ∈ ℂ)
6456, 63sylan2 593 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑚 ∈ (0...(deg‘𝐹))) → ((𝐵𝑚) · (𝑧𝑚)) ∈ ℂ)
6516, 55, 64fsummulc2 15757 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → (𝑅 · Σ𝑚 ∈ (0...(deg‘𝐹))((𝐵𝑚) · (𝑧𝑚))) = Σ𝑚 ∈ (0...(deg‘𝐹))(𝑅 · ((𝐵𝑚) · (𝑧𝑚))))
66 eqid 2730 . . . . . . . . . . 11 (deg‘𝐹) = (deg‘𝐹)
6735, 66coeid2 26151 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘ℚ) ∧ 𝑧 ∈ ℂ) → (𝐹𝑧) = Σ𝑚 ∈ (0...(deg‘𝐹))((𝐵𝑚) · (𝑧𝑚)))
6811, 67sylan 580 . . . . . . . . 9 ((𝜑𝑧 ∈ ℂ) → (𝐹𝑧) = Σ𝑚 ∈ (0...(deg‘𝐹))((𝐵𝑚) · (𝑧𝑚)))
6968oveq2d 7406 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → (𝑅 · (𝐹𝑧)) = (𝑅 · Σ𝑚 ∈ (0...(deg‘𝐹))((𝐵𝑚) · (𝑧𝑚))))
7055adantr 480 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑚 ∈ ℕ0) → 𝑅 ∈ ℂ)
7170, 60, 62mulassd 11204 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑚 ∈ ℕ0) → ((𝑅 · (𝐵𝑚)) · (𝑧𝑚)) = (𝑅 · ((𝐵𝑚) · (𝑧𝑚))))
7256, 71sylan2 593 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑚 ∈ (0...(deg‘𝐹))) → ((𝑅 · (𝐵𝑚)) · (𝑧𝑚)) = (𝑅 · ((𝐵𝑚) · (𝑧𝑚))))
7372sumeq2dv 15675 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → Σ𝑚 ∈ (0...(deg‘𝐹))((𝑅 · (𝐵𝑚)) · (𝑧𝑚)) = Σ𝑚 ∈ (0...(deg‘𝐹))(𝑅 · ((𝐵𝑚) · (𝑧𝑚))))
7465, 69, 733eqtr4d 2775 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → (𝑅 · (𝐹𝑧)) = Σ𝑚 ∈ (0...(deg‘𝐹))((𝑅 · (𝐵𝑚)) · (𝑧𝑚)))
7574mpteq2dva 5203 . . . . . 6 (𝜑 → (𝑧 ∈ ℂ ↦ (𝑅 · (𝐹𝑧))) = (𝑧 ∈ ℂ ↦ Σ𝑚 ∈ (0...(deg‘𝐹))((𝑅 · (𝐵𝑚)) · (𝑧𝑚))))
7615, 75eqtrd 2765 . . . . 5 (𝜑 → ((ℂ × {𝑅}) ∘f · 𝐹) = (𝑧 ∈ ℂ ↦ Σ𝑚 ∈ (0...(deg‘𝐹))((𝑅 · (𝐵𝑚)) · (𝑧𝑚))))
77 zsscn 12544 . . . . . . 7 ℤ ⊆ ℂ
7877a1i 11 . . . . . 6 (𝜑 → ℤ ⊆ ℂ)
7954adantr 480 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → 𝑅 ∈ ℂ)
8046nncnd 12209 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → (𝑁𝑚) ∈ ℂ)
8146nnne0d 12243 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → (𝑁𝑚) ≠ 0)
8279, 80, 81divcan2d 11967 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → ((𝑁𝑚) · (𝑅 / (𝑁𝑚))) = 𝑅)
8382oveq2d 7406 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → ((𝐵𝑚) · ((𝑁𝑚) · (𝑅 / (𝑁𝑚)))) = ((𝐵𝑚) · 𝑅))
8458ffvelcdmda 7059 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → (𝐵𝑚) ∈ ℂ)
8579, 80, 81divcld 11965 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → (𝑅 / (𝑁𝑚)) ∈ ℂ)
8684, 80, 85mulassd 11204 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → (((𝐵𝑚) · (𝑁𝑚)) · (𝑅 / (𝑁𝑚))) = ((𝐵𝑚) · ((𝑁𝑚) · (𝑅 / (𝑁𝑚)))))
8779, 84mulcomd 11202 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → (𝑅 · (𝐵𝑚)) = ((𝐵𝑚) · 𝑅))
8883, 86, 873eqtr4rd 2776 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → (𝑅 · (𝐵𝑚)) = (((𝐵𝑚) · (𝑁𝑚)) · (𝑅 / (𝑁𝑚))))
8956, 88sylan2 593 . . . . . . 7 ((𝜑𝑚 ∈ (0...(deg‘𝐹))) → (𝑅 · (𝐵𝑚)) = (((𝐵𝑚) · (𝑁𝑚)) · (𝑅 / (𝑁𝑚))))
90 oveq2 7398 . . . . . . . . . . . . 13 (𝑛 = (𝑁𝑚) → ((𝐵𝑚) · 𝑛) = ((𝐵𝑚) · (𝑁𝑚)))
9190eleq1d 2814 . . . . . . . . . . . 12 (𝑛 = (𝑁𝑚) → (((𝐵𝑚) · 𝑛) ∈ ℤ ↔ ((𝐵𝑚) · (𝑁𝑚)) ∈ ℤ))
9291elrab 3662 . . . . . . . . . . 11 ((𝑁𝑚) ∈ {𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ} ↔ ((𝑁𝑚) ∈ ℕ ∧ ((𝐵𝑚) · (𝑁𝑚)) ∈ ℤ))
9392simprbi 496 . . . . . . . . . 10 ((𝑁𝑚) ∈ {𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ} → ((𝐵𝑚) · (𝑁𝑚)) ∈ ℤ)
9445, 93syl 17 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → ((𝐵𝑚) · (𝑁𝑚)) ∈ ℤ)
9556, 94sylan2 593 . . . . . . . 8 ((𝜑𝑚 ∈ (0...(deg‘𝐹))) → ((𝐵𝑚) · (𝑁𝑚)) ∈ ℤ)
96 elqaa.3 . . . . . . . . . 10 (𝜑 → (𝐹𝐴) = 0)
97 eqid 2730 . . . . . . . . . 10 (𝑥 ∈ V, 𝑦 ∈ V ↦ ((𝑥 · 𝑦) mod (𝑁𝑚))) = (𝑥 ∈ V, 𝑦 ∈ V ↦ ((𝑥 · 𝑦) mod (𝑁𝑚)))
981, 10, 96, 35, 25, 4, 97elqaalem2 26235 . . . . . . . . 9 ((𝜑𝑚 ∈ (0...(deg‘𝐹))) → (𝑅 mod (𝑁𝑚)) = 0)
9953adantr 480 . . . . . . . . . 10 ((𝜑𝑚 ∈ (0...(deg‘𝐹))) → 𝑅 ∈ ℕ)
10056, 46sylan2 593 . . . . . . . . . 10 ((𝜑𝑚 ∈ (0...(deg‘𝐹))) → (𝑁𝑚) ∈ ℕ)
101 nnre 12200 . . . . . . . . . . 11 (𝑅 ∈ ℕ → 𝑅 ∈ ℝ)
102 nnrp 12970 . . . . . . . . . . 11 ((𝑁𝑚) ∈ ℕ → (𝑁𝑚) ∈ ℝ+)
103 mod0 13845 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ (𝑁𝑚) ∈ ℝ+) → ((𝑅 mod (𝑁𝑚)) = 0 ↔ (𝑅 / (𝑁𝑚)) ∈ ℤ))
104101, 102, 103syl2an 596 . . . . . . . . . 10 ((𝑅 ∈ ℕ ∧ (𝑁𝑚) ∈ ℕ) → ((𝑅 mod (𝑁𝑚)) = 0 ↔ (𝑅 / (𝑁𝑚)) ∈ ℤ))
10599, 100, 104syl2anc 584 . . . . . . . . 9 ((𝜑𝑚 ∈ (0...(deg‘𝐹))) → ((𝑅 mod (𝑁𝑚)) = 0 ↔ (𝑅 / (𝑁𝑚)) ∈ ℤ))
10698, 105mpbid 232 . . . . . . . 8 ((𝜑𝑚 ∈ (0...(deg‘𝐹))) → (𝑅 / (𝑁𝑚)) ∈ ℤ)
10795, 106zmulcld 12651 . . . . . . 7 ((𝜑𝑚 ∈ (0...(deg‘𝐹))) → (((𝐵𝑚) · (𝑁𝑚)) · (𝑅 / (𝑁𝑚))) ∈ ℤ)
10889, 107eqeltrd 2829 . . . . . 6 ((𝜑𝑚 ∈ (0...(deg‘𝐹))) → (𝑅 · (𝐵𝑚)) ∈ ℤ)
10978, 51, 108elplyd 26114 . . . . 5 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑚 ∈ (0...(deg‘𝐹))((𝑅 · (𝐵𝑚)) · (𝑧𝑚))) ∈ (Poly‘ℤ))
11076, 109eqeltrd 2829 . . . 4 (𝜑 → ((ℂ × {𝑅}) ∘f · 𝐹) ∈ (Poly‘ℤ))
111 eldifsn 4753 . . . . . . 7 (𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ↔ (𝐹 ∈ (Poly‘ℚ) ∧ 𝐹 ≠ 0𝑝))
11210, 111sylib 218 . . . . . 6 (𝜑 → (𝐹 ∈ (Poly‘ℚ) ∧ 𝐹 ≠ 0𝑝))
113112simprd 495 . . . . 5 (𝜑𝐹 ≠ 0𝑝)
114 oveq1 7397 . . . . . . 7 (((ℂ × {𝑅}) ∘f · 𝐹) = 0𝑝 → (((ℂ × {𝑅}) ∘f · 𝐹) ∘f / (ℂ × {𝑅})) = (0𝑝f / (ℂ × {𝑅})))
11513ffvelcdmda 7059 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ℂ) → (𝐹𝑧) ∈ ℂ)
11653nnne0d 12243 . . . . . . . . . . . 12 (𝜑𝑅 ≠ 0)
117116adantr 480 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ℂ) → 𝑅 ≠ 0)
118115, 55, 117divcan3d 11970 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℂ) → ((𝑅 · (𝐹𝑧)) / 𝑅) = (𝐹𝑧))
119118mpteq2dva 5203 . . . . . . . . 9 (𝜑 → (𝑧 ∈ ℂ ↦ ((𝑅 · (𝐹𝑧)) / 𝑅)) = (𝑧 ∈ ℂ ↦ (𝐹𝑧)))
120 ovexd 7425 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℂ) → (𝑅 · (𝐹𝑧)) ∈ V)
1213, 120, 6, 15, 9offval2 7676 . . . . . . . . 9 (𝜑 → (((ℂ × {𝑅}) ∘f · 𝐹) ∘f / (ℂ × {𝑅})) = (𝑧 ∈ ℂ ↦ ((𝑅 · (𝐹𝑧)) / 𝑅)))
122119, 121, 143eqtr4d 2775 . . . . . . . 8 (𝜑 → (((ℂ × {𝑅}) ∘f · 𝐹) ∘f / (ℂ × {𝑅})) = 𝐹)
12354, 116div0d 11964 . . . . . . . . . 10 (𝜑 → (0 / 𝑅) = 0)
124123mpteq2dv 5204 . . . . . . . . 9 (𝜑 → (𝑧 ∈ ℂ ↦ (0 / 𝑅)) = (𝑧 ∈ ℂ ↦ 0))
125 0cnd 11174 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℂ) → 0 ∈ ℂ)
126 df-0p 25578 . . . . . . . . . . . 12 0𝑝 = (ℂ × {0})
127 fconstmpt 5703 . . . . . . . . . . . 12 (ℂ × {0}) = (𝑧 ∈ ℂ ↦ 0)
128126, 127eqtri 2753 . . . . . . . . . . 11 0𝑝 = (𝑧 ∈ ℂ ↦ 0)
129128a1i 11 . . . . . . . . . 10 (𝜑 → 0𝑝 = (𝑧 ∈ ℂ ↦ 0))
1303, 125, 6, 129, 9offval2 7676 . . . . . . . . 9 (𝜑 → (0𝑝f / (ℂ × {𝑅})) = (𝑧 ∈ ℂ ↦ (0 / 𝑅)))
131124, 130, 1293eqtr4d 2775 . . . . . . . 8 (𝜑 → (0𝑝f / (ℂ × {𝑅})) = 0𝑝)
132122, 131eqeq12d 2746 . . . . . . 7 (𝜑 → ((((ℂ × {𝑅}) ∘f · 𝐹) ∘f / (ℂ × {𝑅})) = (0𝑝f / (ℂ × {𝑅})) ↔ 𝐹 = 0𝑝))
133114, 132imbitrid 244 . . . . . 6 (𝜑 → (((ℂ × {𝑅}) ∘f · 𝐹) = 0𝑝𝐹 = 0𝑝))
134133necon3d 2947 . . . . 5 (𝜑 → (𝐹 ≠ 0𝑝 → ((ℂ × {𝑅}) ∘f · 𝐹) ≠ 0𝑝))
135113, 134mpd 15 . . . 4 (𝜑 → ((ℂ × {𝑅}) ∘f · 𝐹) ≠ 0𝑝)
136 eldifsn 4753 . . . 4 (((ℂ × {𝑅}) ∘f · 𝐹) ∈ ((Poly‘ℤ) ∖ {0𝑝}) ↔ (((ℂ × {𝑅}) ∘f · 𝐹) ∈ (Poly‘ℤ) ∧ ((ℂ × {𝑅}) ∘f · 𝐹) ≠ 0𝑝))
137110, 135, 136sylanbrc 583 . . 3 (𝜑 → ((ℂ × {𝑅}) ∘f · 𝐹) ∈ ((Poly‘ℤ) ∖ {0𝑝}))
1385fconst 6749 . . . . . . 7 (ℂ × {𝑅}):ℂ⟶{𝑅}
139 ffn 6691 . . . . . . 7 ((ℂ × {𝑅}):ℂ⟶{𝑅} → (ℂ × {𝑅}) Fn ℂ)
140138, 139mp1i 13 . . . . . 6 (𝜑 → (ℂ × {𝑅}) Fn ℂ)
14113ffnd 6692 . . . . . 6 (𝜑𝐹 Fn ℂ)
142 inidm 4193 . . . . . 6 (ℂ ∩ ℂ) = ℂ
1435fvconst2 7181 . . . . . . 7 (𝐴 ∈ ℂ → ((ℂ × {𝑅})‘𝐴) = 𝑅)
144143adantl 481 . . . . . 6 ((𝜑𝐴 ∈ ℂ) → ((ℂ × {𝑅})‘𝐴) = 𝑅)
14596adantr 480 . . . . . 6 ((𝜑𝐴 ∈ ℂ) → (𝐹𝐴) = 0)
146140, 141, 3, 3, 142, 144, 145ofval 7667 . . . . 5 ((𝜑𝐴 ∈ ℂ) → (((ℂ × {𝑅}) ∘f · 𝐹)‘𝐴) = (𝑅 · 0))
1471, 146mpdan 687 . . . 4 (𝜑 → (((ℂ × {𝑅}) ∘f · 𝐹)‘𝐴) = (𝑅 · 0))
14854mul01d 11380 . . . 4 (𝜑 → (𝑅 · 0) = 0)
149147, 148eqtrd 2765 . . 3 (𝜑 → (((ℂ × {𝑅}) ∘f · 𝐹)‘𝐴) = 0)
150 fveq1 6860 . . . . 5 (𝑓 = ((ℂ × {𝑅}) ∘f · 𝐹) → (𝑓𝐴) = (((ℂ × {𝑅}) ∘f · 𝐹)‘𝐴))
151150eqeq1d 2732 . . . 4 (𝑓 = ((ℂ × {𝑅}) ∘f · 𝐹) → ((𝑓𝐴) = 0 ↔ (((ℂ × {𝑅}) ∘f · 𝐹)‘𝐴) = 0))
152151rspcev 3591 . . 3 ((((ℂ × {𝑅}) ∘f · 𝐹) ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (((ℂ × {𝑅}) ∘f · 𝐹)‘𝐴) = 0) → ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0)
153137, 149, 152syl2anc 584 . 2 (𝜑 → ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0)
154 elaa 26231 . 2 (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0))
1551, 153, 154sylanbrc 583 1 (𝜑𝐴 ∈ 𝔸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wrex 3054  {crab 3408  Vcvv 3450  cdif 3914  wss 3917  c0 4299  {csn 4592  cmpt 5191   × cxp 5639   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  cmpo 7392  f cof 7654  infcinf 9399  cc 11073  cr 11074  0cc0 11075  1c1 11076   · cmul 11080   < clt 11215   / cdiv 11842  cn 12193  0cn0 12449  cz 12536  cuz 12800  cq 12914  +crp 12958  ...cfz 13475   mod cmo 13838  seqcseq 13973  cexp 14033  Σcsu 15659  0𝑝c0p 25577  Polycply 26096  coeffccoe 26098  degcdgr 26099  𝔸caa 26229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660  df-0p 25578  df-ply 26100  df-coe 26102  df-dgr 26103  df-aa 26230
This theorem is referenced by:  elqaa  26237
  Copyright terms: Public domain W3C validator