MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elqaalem3 Structured version   Visualization version   GIF version

Theorem elqaalem3 26227
Description: Lemma for elqaa 26228. (Contributed by Mario Carneiro, 23-Jul-2014.) (Revised by AV, 3-Oct-2020.)
Hypotheses
Ref Expression
elqaa.1 (𝜑𝐴 ∈ ℂ)
elqaa.2 (𝜑𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝}))
elqaa.3 (𝜑 → (𝐹𝐴) = 0)
elqaa.4 𝐵 = (coeff‘𝐹)
elqaa.5 𝑁 = (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵𝑘) · 𝑛) ∈ ℤ}, ℝ, < ))
elqaa.6 𝑅 = (seq0( · , 𝑁)‘(deg‘𝐹))
Assertion
Ref Expression
elqaalem3 (𝜑𝐴 ∈ 𝔸)
Distinct variable groups:   𝑘,𝑛,𝐴   𝐵,𝑘,𝑛   𝜑,𝑘   𝑘,𝑁,𝑛   𝑅,𝑘
Allowed substitution hints:   𝜑(𝑛)   𝑅(𝑛)   𝐹(𝑘,𝑛)

Proof of Theorem elqaalem3
Dummy variables 𝑓 𝑚 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elqaa.1 . 2 (𝜑𝐴 ∈ ℂ)
2 cnex 11090 . . . . . . . 8 ℂ ∈ V
32a1i 11 . . . . . . 7 (𝜑 → ℂ ∈ V)
4 elqaa.6 . . . . . . . . 9 𝑅 = (seq0( · , 𝑁)‘(deg‘𝐹))
54fvexi 6836 . . . . . . . 8 𝑅 ∈ V
65a1i 11 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 𝑅 ∈ V)
7 fvexd 6837 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → (𝐹𝑧) ∈ V)
8 fconstmpt 5681 . . . . . . . 8 (ℂ × {𝑅}) = (𝑧 ∈ ℂ ↦ 𝑅)
98a1i 11 . . . . . . 7 (𝜑 → (ℂ × {𝑅}) = (𝑧 ∈ ℂ ↦ 𝑅))
10 elqaa.2 . . . . . . . . . 10 (𝜑𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝}))
1110eldifad 3915 . . . . . . . . 9 (𝜑𝐹 ∈ (Poly‘ℚ))
12 plyf 26101 . . . . . . . . 9 (𝐹 ∈ (Poly‘ℚ) → 𝐹:ℂ⟶ℂ)
1311, 12syl 17 . . . . . . . 8 (𝜑𝐹:ℂ⟶ℂ)
1413feqmptd 6891 . . . . . . 7 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ (𝐹𝑧)))
153, 6, 7, 9, 14offval2 7633 . . . . . 6 (𝜑 → ((ℂ × {𝑅}) ∘f · 𝐹) = (𝑧 ∈ ℂ ↦ (𝑅 · (𝐹𝑧))))
16 fzfid 13880 . . . . . . . . 9 ((𝜑𝑧 ∈ ℂ) → (0...(deg‘𝐹)) ∈ Fin)
17 nn0uz 12777 . . . . . . . . . . . . . 14 0 = (ℤ‘0)
18 0zd 12483 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℤ)
19 ssrab2 4031 . . . . . . . . . . . . . . 15 {𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ} ⊆ ℕ
20 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑚 → (𝐵𝑘) = (𝐵𝑚))
2120oveq1d 7364 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑚 → ((𝐵𝑘) · 𝑛) = ((𝐵𝑚) · 𝑛))
2221eleq1d 2813 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑚 → (((𝐵𝑘) · 𝑛) ∈ ℤ ↔ ((𝐵𝑚) · 𝑛) ∈ ℤ))
2322rabbidv 3402 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑚 → {𝑛 ∈ ℕ ∣ ((𝐵𝑘) · 𝑛) ∈ ℤ} = {𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ})
2423infeq1d 9368 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑚 → inf({𝑛 ∈ ℕ ∣ ((𝐵𝑘) · 𝑛) ∈ ℤ}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ}, ℝ, < ))
25 elqaa.5 . . . . . . . . . . . . . . . . . 18 𝑁 = (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵𝑘) · 𝑛) ∈ ℤ}, ℝ, < ))
26 ltso 11196 . . . . . . . . . . . . . . . . . . 19 < Or ℝ
2726infex 9385 . . . . . . . . . . . . . . . . . 18 inf({𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ}, ℝ, < ) ∈ V
2824, 25, 27fvmpt 6930 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ0 → (𝑁𝑚) = inf({𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ}, ℝ, < ))
2928adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ0) → (𝑁𝑚) = inf({𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ}, ℝ, < ))
30 nnuz 12778 . . . . . . . . . . . . . . . . . 18 ℕ = (ℤ‘1)
3119, 30sseqtri 3984 . . . . . . . . . . . . . . . . 17 {𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ} ⊆ (ℤ‘1)
32 0z 12482 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℤ
33 zq 12855 . . . . . . . . . . . . . . . . . . . . . 22 (0 ∈ ℤ → 0 ∈ ℚ)
3432, 33ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ ℚ
35 elqaa.4 . . . . . . . . . . . . . . . . . . . . . 22 𝐵 = (coeff‘𝐹)
3635coef2 26134 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 ∈ (Poly‘ℚ) ∧ 0 ∈ ℚ) → 𝐵:ℕ0⟶ℚ)
3711, 34, 36sylancl 586 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐵:ℕ0⟶ℚ)
3837ffvelcdmda 7018 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ ℕ0) → (𝐵𝑚) ∈ ℚ)
39 qmulz 12852 . . . . . . . . . . . . . . . . . . 19 ((𝐵𝑚) ∈ ℚ → ∃𝑛 ∈ ℕ ((𝐵𝑚) · 𝑛) ∈ ℤ)
4038, 39syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ ℕ0) → ∃𝑛 ∈ ℕ ((𝐵𝑚) · 𝑛) ∈ ℤ)
41 rabn0 4340 . . . . . . . . . . . . . . . . . 18 ({𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ} ≠ ∅ ↔ ∃𝑛 ∈ ℕ ((𝐵𝑚) · 𝑛) ∈ ℤ)
4240, 41sylibr 234 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ ℕ0) → {𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ} ≠ ∅)
43 infssuzcl 12833 . . . . . . . . . . . . . . . . 17 (({𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ} ⊆ (ℤ‘1) ∧ {𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ} ≠ ∅) → inf({𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ})
4431, 42, 43sylancr 587 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ0) → inf({𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ})
4529, 44eqeltrd 2828 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ0) → (𝑁𝑚) ∈ {𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ})
4619, 45sselid 3933 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ0) → (𝑁𝑚) ∈ ℕ)
47 nnmulcl 12152 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (𝑚 · 𝑘) ∈ ℕ)
4847adantl 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (𝑚 · 𝑘) ∈ ℕ)
4917, 18, 46, 48seqf 13930 . . . . . . . . . . . . 13 (𝜑 → seq0( · , 𝑁):ℕ0⟶ℕ)
50 dgrcl 26136 . . . . . . . . . . . . . 14 (𝐹 ∈ (Poly‘ℚ) → (deg‘𝐹) ∈ ℕ0)
5111, 50syl 17 . . . . . . . . . . . . 13 (𝜑 → (deg‘𝐹) ∈ ℕ0)
5249, 51ffvelcdmd 7019 . . . . . . . . . . . 12 (𝜑 → (seq0( · , 𝑁)‘(deg‘𝐹)) ∈ ℕ)
534, 52eqeltrid 2832 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℕ)
5453nncnd 12144 . . . . . . . . . 10 (𝜑𝑅 ∈ ℂ)
5554adantr 480 . . . . . . . . 9 ((𝜑𝑧 ∈ ℂ) → 𝑅 ∈ ℂ)
56 elfznn0 13523 . . . . . . . . . 10 (𝑚 ∈ (0...(deg‘𝐹)) → 𝑚 ∈ ℕ0)
5735coef3 26135 . . . . . . . . . . . . . 14 (𝐹 ∈ (Poly‘ℚ) → 𝐵:ℕ0⟶ℂ)
5811, 57syl 17 . . . . . . . . . . . . 13 (𝜑𝐵:ℕ0⟶ℂ)
5958adantr 480 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ℂ) → 𝐵:ℕ0⟶ℂ)
6059ffvelcdmda 7018 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑚 ∈ ℕ0) → (𝐵𝑚) ∈ ℂ)
61 expcl 13986 . . . . . . . . . . . 12 ((𝑧 ∈ ℂ ∧ 𝑚 ∈ ℕ0) → (𝑧𝑚) ∈ ℂ)
6261adantll 714 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑚 ∈ ℕ0) → (𝑧𝑚) ∈ ℂ)
6360, 62mulcld 11135 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑚 ∈ ℕ0) → ((𝐵𝑚) · (𝑧𝑚)) ∈ ℂ)
6456, 63sylan2 593 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑚 ∈ (0...(deg‘𝐹))) → ((𝐵𝑚) · (𝑧𝑚)) ∈ ℂ)
6516, 55, 64fsummulc2 15691 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → (𝑅 · Σ𝑚 ∈ (0...(deg‘𝐹))((𝐵𝑚) · (𝑧𝑚))) = Σ𝑚 ∈ (0...(deg‘𝐹))(𝑅 · ((𝐵𝑚) · (𝑧𝑚))))
66 eqid 2729 . . . . . . . . . . 11 (deg‘𝐹) = (deg‘𝐹)
6735, 66coeid2 26142 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘ℚ) ∧ 𝑧 ∈ ℂ) → (𝐹𝑧) = Σ𝑚 ∈ (0...(deg‘𝐹))((𝐵𝑚) · (𝑧𝑚)))
6811, 67sylan 580 . . . . . . . . 9 ((𝜑𝑧 ∈ ℂ) → (𝐹𝑧) = Σ𝑚 ∈ (0...(deg‘𝐹))((𝐵𝑚) · (𝑧𝑚)))
6968oveq2d 7365 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → (𝑅 · (𝐹𝑧)) = (𝑅 · Σ𝑚 ∈ (0...(deg‘𝐹))((𝐵𝑚) · (𝑧𝑚))))
7055adantr 480 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑚 ∈ ℕ0) → 𝑅 ∈ ℂ)
7170, 60, 62mulassd 11138 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑚 ∈ ℕ0) → ((𝑅 · (𝐵𝑚)) · (𝑧𝑚)) = (𝑅 · ((𝐵𝑚) · (𝑧𝑚))))
7256, 71sylan2 593 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑚 ∈ (0...(deg‘𝐹))) → ((𝑅 · (𝐵𝑚)) · (𝑧𝑚)) = (𝑅 · ((𝐵𝑚) · (𝑧𝑚))))
7372sumeq2dv 15609 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → Σ𝑚 ∈ (0...(deg‘𝐹))((𝑅 · (𝐵𝑚)) · (𝑧𝑚)) = Σ𝑚 ∈ (0...(deg‘𝐹))(𝑅 · ((𝐵𝑚) · (𝑧𝑚))))
7465, 69, 733eqtr4d 2774 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → (𝑅 · (𝐹𝑧)) = Σ𝑚 ∈ (0...(deg‘𝐹))((𝑅 · (𝐵𝑚)) · (𝑧𝑚)))
7574mpteq2dva 5185 . . . . . 6 (𝜑 → (𝑧 ∈ ℂ ↦ (𝑅 · (𝐹𝑧))) = (𝑧 ∈ ℂ ↦ Σ𝑚 ∈ (0...(deg‘𝐹))((𝑅 · (𝐵𝑚)) · (𝑧𝑚))))
7615, 75eqtrd 2764 . . . . 5 (𝜑 → ((ℂ × {𝑅}) ∘f · 𝐹) = (𝑧 ∈ ℂ ↦ Σ𝑚 ∈ (0...(deg‘𝐹))((𝑅 · (𝐵𝑚)) · (𝑧𝑚))))
77 zsscn 12479 . . . . . . 7 ℤ ⊆ ℂ
7877a1i 11 . . . . . 6 (𝜑 → ℤ ⊆ ℂ)
7954adantr 480 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → 𝑅 ∈ ℂ)
8046nncnd 12144 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → (𝑁𝑚) ∈ ℂ)
8146nnne0d 12178 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → (𝑁𝑚) ≠ 0)
8279, 80, 81divcan2d 11902 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → ((𝑁𝑚) · (𝑅 / (𝑁𝑚))) = 𝑅)
8382oveq2d 7365 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → ((𝐵𝑚) · ((𝑁𝑚) · (𝑅 / (𝑁𝑚)))) = ((𝐵𝑚) · 𝑅))
8458ffvelcdmda 7018 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → (𝐵𝑚) ∈ ℂ)
8579, 80, 81divcld 11900 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → (𝑅 / (𝑁𝑚)) ∈ ℂ)
8684, 80, 85mulassd 11138 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → (((𝐵𝑚) · (𝑁𝑚)) · (𝑅 / (𝑁𝑚))) = ((𝐵𝑚) · ((𝑁𝑚) · (𝑅 / (𝑁𝑚)))))
8779, 84mulcomd 11136 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → (𝑅 · (𝐵𝑚)) = ((𝐵𝑚) · 𝑅))
8883, 86, 873eqtr4rd 2775 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → (𝑅 · (𝐵𝑚)) = (((𝐵𝑚) · (𝑁𝑚)) · (𝑅 / (𝑁𝑚))))
8956, 88sylan2 593 . . . . . . 7 ((𝜑𝑚 ∈ (0...(deg‘𝐹))) → (𝑅 · (𝐵𝑚)) = (((𝐵𝑚) · (𝑁𝑚)) · (𝑅 / (𝑁𝑚))))
90 oveq2 7357 . . . . . . . . . . . . 13 (𝑛 = (𝑁𝑚) → ((𝐵𝑚) · 𝑛) = ((𝐵𝑚) · (𝑁𝑚)))
9190eleq1d 2813 . . . . . . . . . . . 12 (𝑛 = (𝑁𝑚) → (((𝐵𝑚) · 𝑛) ∈ ℤ ↔ ((𝐵𝑚) · (𝑁𝑚)) ∈ ℤ))
9291elrab 3648 . . . . . . . . . . 11 ((𝑁𝑚) ∈ {𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ} ↔ ((𝑁𝑚) ∈ ℕ ∧ ((𝐵𝑚) · (𝑁𝑚)) ∈ ℤ))
9392simprbi 496 . . . . . . . . . 10 ((𝑁𝑚) ∈ {𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ} → ((𝐵𝑚) · (𝑁𝑚)) ∈ ℤ)
9445, 93syl 17 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → ((𝐵𝑚) · (𝑁𝑚)) ∈ ℤ)
9556, 94sylan2 593 . . . . . . . 8 ((𝜑𝑚 ∈ (0...(deg‘𝐹))) → ((𝐵𝑚) · (𝑁𝑚)) ∈ ℤ)
96 elqaa.3 . . . . . . . . . 10 (𝜑 → (𝐹𝐴) = 0)
97 eqid 2729 . . . . . . . . . 10 (𝑥 ∈ V, 𝑦 ∈ V ↦ ((𝑥 · 𝑦) mod (𝑁𝑚))) = (𝑥 ∈ V, 𝑦 ∈ V ↦ ((𝑥 · 𝑦) mod (𝑁𝑚)))
981, 10, 96, 35, 25, 4, 97elqaalem2 26226 . . . . . . . . 9 ((𝜑𝑚 ∈ (0...(deg‘𝐹))) → (𝑅 mod (𝑁𝑚)) = 0)
9953adantr 480 . . . . . . . . . 10 ((𝜑𝑚 ∈ (0...(deg‘𝐹))) → 𝑅 ∈ ℕ)
10056, 46sylan2 593 . . . . . . . . . 10 ((𝜑𝑚 ∈ (0...(deg‘𝐹))) → (𝑁𝑚) ∈ ℕ)
101 nnre 12135 . . . . . . . . . . 11 (𝑅 ∈ ℕ → 𝑅 ∈ ℝ)
102 nnrp 12905 . . . . . . . . . . 11 ((𝑁𝑚) ∈ ℕ → (𝑁𝑚) ∈ ℝ+)
103 mod0 13780 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ (𝑁𝑚) ∈ ℝ+) → ((𝑅 mod (𝑁𝑚)) = 0 ↔ (𝑅 / (𝑁𝑚)) ∈ ℤ))
104101, 102, 103syl2an 596 . . . . . . . . . 10 ((𝑅 ∈ ℕ ∧ (𝑁𝑚) ∈ ℕ) → ((𝑅 mod (𝑁𝑚)) = 0 ↔ (𝑅 / (𝑁𝑚)) ∈ ℤ))
10599, 100, 104syl2anc 584 . . . . . . . . 9 ((𝜑𝑚 ∈ (0...(deg‘𝐹))) → ((𝑅 mod (𝑁𝑚)) = 0 ↔ (𝑅 / (𝑁𝑚)) ∈ ℤ))
10698, 105mpbid 232 . . . . . . . 8 ((𝜑𝑚 ∈ (0...(deg‘𝐹))) → (𝑅 / (𝑁𝑚)) ∈ ℤ)
10795, 106zmulcld 12586 . . . . . . 7 ((𝜑𝑚 ∈ (0...(deg‘𝐹))) → (((𝐵𝑚) · (𝑁𝑚)) · (𝑅 / (𝑁𝑚))) ∈ ℤ)
10889, 107eqeltrd 2828 . . . . . 6 ((𝜑𝑚 ∈ (0...(deg‘𝐹))) → (𝑅 · (𝐵𝑚)) ∈ ℤ)
10978, 51, 108elplyd 26105 . . . . 5 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑚 ∈ (0...(deg‘𝐹))((𝑅 · (𝐵𝑚)) · (𝑧𝑚))) ∈ (Poly‘ℤ))
11076, 109eqeltrd 2828 . . . 4 (𝜑 → ((ℂ × {𝑅}) ∘f · 𝐹) ∈ (Poly‘ℤ))
111 eldifsn 4737 . . . . . . 7 (𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ↔ (𝐹 ∈ (Poly‘ℚ) ∧ 𝐹 ≠ 0𝑝))
11210, 111sylib 218 . . . . . 6 (𝜑 → (𝐹 ∈ (Poly‘ℚ) ∧ 𝐹 ≠ 0𝑝))
113112simprd 495 . . . . 5 (𝜑𝐹 ≠ 0𝑝)
114 oveq1 7356 . . . . . . 7 (((ℂ × {𝑅}) ∘f · 𝐹) = 0𝑝 → (((ℂ × {𝑅}) ∘f · 𝐹) ∘f / (ℂ × {𝑅})) = (0𝑝f / (ℂ × {𝑅})))
11513ffvelcdmda 7018 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ℂ) → (𝐹𝑧) ∈ ℂ)
11653nnne0d 12178 . . . . . . . . . . . 12 (𝜑𝑅 ≠ 0)
117116adantr 480 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ℂ) → 𝑅 ≠ 0)
118115, 55, 117divcan3d 11905 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℂ) → ((𝑅 · (𝐹𝑧)) / 𝑅) = (𝐹𝑧))
119118mpteq2dva 5185 . . . . . . . . 9 (𝜑 → (𝑧 ∈ ℂ ↦ ((𝑅 · (𝐹𝑧)) / 𝑅)) = (𝑧 ∈ ℂ ↦ (𝐹𝑧)))
120 ovexd 7384 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℂ) → (𝑅 · (𝐹𝑧)) ∈ V)
1213, 120, 6, 15, 9offval2 7633 . . . . . . . . 9 (𝜑 → (((ℂ × {𝑅}) ∘f · 𝐹) ∘f / (ℂ × {𝑅})) = (𝑧 ∈ ℂ ↦ ((𝑅 · (𝐹𝑧)) / 𝑅)))
122119, 121, 143eqtr4d 2774 . . . . . . . 8 (𝜑 → (((ℂ × {𝑅}) ∘f · 𝐹) ∘f / (ℂ × {𝑅})) = 𝐹)
12354, 116div0d 11899 . . . . . . . . . 10 (𝜑 → (0 / 𝑅) = 0)
124123mpteq2dv 5186 . . . . . . . . 9 (𝜑 → (𝑧 ∈ ℂ ↦ (0 / 𝑅)) = (𝑧 ∈ ℂ ↦ 0))
125 0cnd 11108 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℂ) → 0 ∈ ℂ)
126 df-0p 25569 . . . . . . . . . . . 12 0𝑝 = (ℂ × {0})
127 fconstmpt 5681 . . . . . . . . . . . 12 (ℂ × {0}) = (𝑧 ∈ ℂ ↦ 0)
128126, 127eqtri 2752 . . . . . . . . . . 11 0𝑝 = (𝑧 ∈ ℂ ↦ 0)
129128a1i 11 . . . . . . . . . 10 (𝜑 → 0𝑝 = (𝑧 ∈ ℂ ↦ 0))
1303, 125, 6, 129, 9offval2 7633 . . . . . . . . 9 (𝜑 → (0𝑝f / (ℂ × {𝑅})) = (𝑧 ∈ ℂ ↦ (0 / 𝑅)))
131124, 130, 1293eqtr4d 2774 . . . . . . . 8 (𝜑 → (0𝑝f / (ℂ × {𝑅})) = 0𝑝)
132122, 131eqeq12d 2745 . . . . . . 7 (𝜑 → ((((ℂ × {𝑅}) ∘f · 𝐹) ∘f / (ℂ × {𝑅})) = (0𝑝f / (ℂ × {𝑅})) ↔ 𝐹 = 0𝑝))
133114, 132imbitrid 244 . . . . . 6 (𝜑 → (((ℂ × {𝑅}) ∘f · 𝐹) = 0𝑝𝐹 = 0𝑝))
134133necon3d 2946 . . . . 5 (𝜑 → (𝐹 ≠ 0𝑝 → ((ℂ × {𝑅}) ∘f · 𝐹) ≠ 0𝑝))
135113, 134mpd 15 . . . 4 (𝜑 → ((ℂ × {𝑅}) ∘f · 𝐹) ≠ 0𝑝)
136 eldifsn 4737 . . . 4 (((ℂ × {𝑅}) ∘f · 𝐹) ∈ ((Poly‘ℤ) ∖ {0𝑝}) ↔ (((ℂ × {𝑅}) ∘f · 𝐹) ∈ (Poly‘ℤ) ∧ ((ℂ × {𝑅}) ∘f · 𝐹) ≠ 0𝑝))
137110, 135, 136sylanbrc 583 . . 3 (𝜑 → ((ℂ × {𝑅}) ∘f · 𝐹) ∈ ((Poly‘ℤ) ∖ {0𝑝}))
1385fconst 6710 . . . . . . 7 (ℂ × {𝑅}):ℂ⟶{𝑅}
139 ffn 6652 . . . . . . 7 ((ℂ × {𝑅}):ℂ⟶{𝑅} → (ℂ × {𝑅}) Fn ℂ)
140138, 139mp1i 13 . . . . . 6 (𝜑 → (ℂ × {𝑅}) Fn ℂ)
14113ffnd 6653 . . . . . 6 (𝜑𝐹 Fn ℂ)
142 inidm 4178 . . . . . 6 (ℂ ∩ ℂ) = ℂ
1435fvconst2 7140 . . . . . . 7 (𝐴 ∈ ℂ → ((ℂ × {𝑅})‘𝐴) = 𝑅)
144143adantl 481 . . . . . 6 ((𝜑𝐴 ∈ ℂ) → ((ℂ × {𝑅})‘𝐴) = 𝑅)
14596adantr 480 . . . . . 6 ((𝜑𝐴 ∈ ℂ) → (𝐹𝐴) = 0)
146140, 141, 3, 3, 142, 144, 145ofval 7624 . . . . 5 ((𝜑𝐴 ∈ ℂ) → (((ℂ × {𝑅}) ∘f · 𝐹)‘𝐴) = (𝑅 · 0))
1471, 146mpdan 687 . . . 4 (𝜑 → (((ℂ × {𝑅}) ∘f · 𝐹)‘𝐴) = (𝑅 · 0))
14854mul01d 11315 . . . 4 (𝜑 → (𝑅 · 0) = 0)
149147, 148eqtrd 2764 . . 3 (𝜑 → (((ℂ × {𝑅}) ∘f · 𝐹)‘𝐴) = 0)
150 fveq1 6821 . . . . 5 (𝑓 = ((ℂ × {𝑅}) ∘f · 𝐹) → (𝑓𝐴) = (((ℂ × {𝑅}) ∘f · 𝐹)‘𝐴))
151150eqeq1d 2731 . . . 4 (𝑓 = ((ℂ × {𝑅}) ∘f · 𝐹) → ((𝑓𝐴) = 0 ↔ (((ℂ × {𝑅}) ∘f · 𝐹)‘𝐴) = 0))
152151rspcev 3577 . . 3 ((((ℂ × {𝑅}) ∘f · 𝐹) ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (((ℂ × {𝑅}) ∘f · 𝐹)‘𝐴) = 0) → ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0)
153137, 149, 152syl2anc 584 . 2 (𝜑 → ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0)
154 elaa 26222 . 2 (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0))
1551, 153, 154sylanbrc 583 1 (𝜑𝐴 ∈ 𝔸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {crab 3394  Vcvv 3436  cdif 3900  wss 3903  c0 4284  {csn 4577  cmpt 5173   × cxp 5617   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  cmpo 7351  f cof 7611  infcinf 9331  cc 11007  cr 11008  0cc0 11009  1c1 11010   · cmul 11014   < clt 11149   / cdiv 11777  cn 12128  0cn0 12384  cz 12471  cuz 12735  cq 12849  +crp 12893  ...cfz 13410   mod cmo 13773  seqcseq 13908  cexp 13968  Σcsu 15593  0𝑝c0p 25568  Polycply 26087  coeffccoe 26089  degcdgr 26090  𝔸caa 26220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-0p 25569  df-ply 26091  df-coe 26093  df-dgr 26094  df-aa 26221
This theorem is referenced by:  elqaa  26228
  Copyright terms: Public domain W3C validator