MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elqaalem3 Structured version   Visualization version   GIF version

Theorem elqaalem3 25681
Description: Lemma for elqaa 25682. (Contributed by Mario Carneiro, 23-Jul-2014.) (Revised by AV, 3-Oct-2020.)
Hypotheses
Ref Expression
elqaa.1 (𝜑𝐴 ∈ ℂ)
elqaa.2 (𝜑𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝}))
elqaa.3 (𝜑 → (𝐹𝐴) = 0)
elqaa.4 𝐵 = (coeff‘𝐹)
elqaa.5 𝑁 = (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵𝑘) · 𝑛) ∈ ℤ}, ℝ, < ))
elqaa.6 𝑅 = (seq0( · , 𝑁)‘(deg‘𝐹))
Assertion
Ref Expression
elqaalem3 (𝜑𝐴 ∈ 𝔸)
Distinct variable groups:   𝑘,𝑛,𝐴   𝐵,𝑘,𝑛   𝜑,𝑘   𝑘,𝑁,𝑛   𝑅,𝑘
Allowed substitution hints:   𝜑(𝑛)   𝑅(𝑛)   𝐹(𝑘,𝑛)

Proof of Theorem elqaalem3
Dummy variables 𝑓 𝑚 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elqaa.1 . 2 (𝜑𝐴 ∈ ℂ)
2 cnex 11132 . . . . . . . 8 ℂ ∈ V
32a1i 11 . . . . . . 7 (𝜑 → ℂ ∈ V)
4 elqaa.6 . . . . . . . . 9 𝑅 = (seq0( · , 𝑁)‘(deg‘𝐹))
54fvexi 6856 . . . . . . . 8 𝑅 ∈ V
65a1i 11 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 𝑅 ∈ V)
7 fvexd 6857 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → (𝐹𝑧) ∈ V)
8 fconstmpt 5694 . . . . . . . 8 (ℂ × {𝑅}) = (𝑧 ∈ ℂ ↦ 𝑅)
98a1i 11 . . . . . . 7 (𝜑 → (ℂ × {𝑅}) = (𝑧 ∈ ℂ ↦ 𝑅))
10 elqaa.2 . . . . . . . . . 10 (𝜑𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝}))
1110eldifad 3922 . . . . . . . . 9 (𝜑𝐹 ∈ (Poly‘ℚ))
12 plyf 25559 . . . . . . . . 9 (𝐹 ∈ (Poly‘ℚ) → 𝐹:ℂ⟶ℂ)
1311, 12syl 17 . . . . . . . 8 (𝜑𝐹:ℂ⟶ℂ)
1413feqmptd 6910 . . . . . . 7 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ (𝐹𝑧)))
153, 6, 7, 9, 14offval2 7637 . . . . . 6 (𝜑 → ((ℂ × {𝑅}) ∘f · 𝐹) = (𝑧 ∈ ℂ ↦ (𝑅 · (𝐹𝑧))))
16 fzfid 13878 . . . . . . . . 9 ((𝜑𝑧 ∈ ℂ) → (0...(deg‘𝐹)) ∈ Fin)
17 nn0uz 12805 . . . . . . . . . . . . . 14 0 = (ℤ‘0)
18 0zd 12511 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℤ)
19 ssrab2 4037 . . . . . . . . . . . . . . 15 {𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ} ⊆ ℕ
20 fveq2 6842 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑚 → (𝐵𝑘) = (𝐵𝑚))
2120oveq1d 7372 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑚 → ((𝐵𝑘) · 𝑛) = ((𝐵𝑚) · 𝑛))
2221eleq1d 2822 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑚 → (((𝐵𝑘) · 𝑛) ∈ ℤ ↔ ((𝐵𝑚) · 𝑛) ∈ ℤ))
2322rabbidv 3415 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑚 → {𝑛 ∈ ℕ ∣ ((𝐵𝑘) · 𝑛) ∈ ℤ} = {𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ})
2423infeq1d 9413 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑚 → inf({𝑛 ∈ ℕ ∣ ((𝐵𝑘) · 𝑛) ∈ ℤ}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ}, ℝ, < ))
25 elqaa.5 . . . . . . . . . . . . . . . . . 18 𝑁 = (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵𝑘) · 𝑛) ∈ ℤ}, ℝ, < ))
26 ltso 11235 . . . . . . . . . . . . . . . . . . 19 < Or ℝ
2726infex 9429 . . . . . . . . . . . . . . . . . 18 inf({𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ}, ℝ, < ) ∈ V
2824, 25, 27fvmpt 6948 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ0 → (𝑁𝑚) = inf({𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ}, ℝ, < ))
2928adantl 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ0) → (𝑁𝑚) = inf({𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ}, ℝ, < ))
30 nnuz 12806 . . . . . . . . . . . . . . . . . 18 ℕ = (ℤ‘1)
3119, 30sseqtri 3980 . . . . . . . . . . . . . . . . 17 {𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ} ⊆ (ℤ‘1)
32 0z 12510 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℤ
33 zq 12879 . . . . . . . . . . . . . . . . . . . . . 22 (0 ∈ ℤ → 0 ∈ ℚ)
3432, 33ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ ℚ
35 elqaa.4 . . . . . . . . . . . . . . . . . . . . . 22 𝐵 = (coeff‘𝐹)
3635coef2 25592 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 ∈ (Poly‘ℚ) ∧ 0 ∈ ℚ) → 𝐵:ℕ0⟶ℚ)
3711, 34, 36sylancl 586 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐵:ℕ0⟶ℚ)
3837ffvelcdmda 7035 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ ℕ0) → (𝐵𝑚) ∈ ℚ)
39 qmulz 12876 . . . . . . . . . . . . . . . . . . 19 ((𝐵𝑚) ∈ ℚ → ∃𝑛 ∈ ℕ ((𝐵𝑚) · 𝑛) ∈ ℤ)
4038, 39syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ ℕ0) → ∃𝑛 ∈ ℕ ((𝐵𝑚) · 𝑛) ∈ ℤ)
41 rabn0 4345 . . . . . . . . . . . . . . . . . 18 ({𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ} ≠ ∅ ↔ ∃𝑛 ∈ ℕ ((𝐵𝑚) · 𝑛) ∈ ℤ)
4240, 41sylibr 233 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ ℕ0) → {𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ} ≠ ∅)
43 infssuzcl 12857 . . . . . . . . . . . . . . . . 17 (({𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ} ⊆ (ℤ‘1) ∧ {𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ} ≠ ∅) → inf({𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ})
4431, 42, 43sylancr 587 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ0) → inf({𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ})
4529, 44eqeltrd 2838 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ0) → (𝑁𝑚) ∈ {𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ})
4619, 45sselid 3942 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ0) → (𝑁𝑚) ∈ ℕ)
47 nnmulcl 12177 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (𝑚 · 𝑘) ∈ ℕ)
4847adantl 482 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑘 ∈ ℕ)) → (𝑚 · 𝑘) ∈ ℕ)
4917, 18, 46, 48seqf 13929 . . . . . . . . . . . . 13 (𝜑 → seq0( · , 𝑁):ℕ0⟶ℕ)
50 dgrcl 25594 . . . . . . . . . . . . . 14 (𝐹 ∈ (Poly‘ℚ) → (deg‘𝐹) ∈ ℕ0)
5111, 50syl 17 . . . . . . . . . . . . 13 (𝜑 → (deg‘𝐹) ∈ ℕ0)
5249, 51ffvelcdmd 7036 . . . . . . . . . . . 12 (𝜑 → (seq0( · , 𝑁)‘(deg‘𝐹)) ∈ ℕ)
534, 52eqeltrid 2842 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℕ)
5453nncnd 12169 . . . . . . . . . 10 (𝜑𝑅 ∈ ℂ)
5554adantr 481 . . . . . . . . 9 ((𝜑𝑧 ∈ ℂ) → 𝑅 ∈ ℂ)
56 elfznn0 13534 . . . . . . . . . 10 (𝑚 ∈ (0...(deg‘𝐹)) → 𝑚 ∈ ℕ0)
5735coef3 25593 . . . . . . . . . . . . . 14 (𝐹 ∈ (Poly‘ℚ) → 𝐵:ℕ0⟶ℂ)
5811, 57syl 17 . . . . . . . . . . . . 13 (𝜑𝐵:ℕ0⟶ℂ)
5958adantr 481 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ℂ) → 𝐵:ℕ0⟶ℂ)
6059ffvelcdmda 7035 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑚 ∈ ℕ0) → (𝐵𝑚) ∈ ℂ)
61 expcl 13985 . . . . . . . . . . . 12 ((𝑧 ∈ ℂ ∧ 𝑚 ∈ ℕ0) → (𝑧𝑚) ∈ ℂ)
6261adantll 712 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑚 ∈ ℕ0) → (𝑧𝑚) ∈ ℂ)
6360, 62mulcld 11175 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑚 ∈ ℕ0) → ((𝐵𝑚) · (𝑧𝑚)) ∈ ℂ)
6456, 63sylan2 593 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑚 ∈ (0...(deg‘𝐹))) → ((𝐵𝑚) · (𝑧𝑚)) ∈ ℂ)
6516, 55, 64fsummulc2 15669 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → (𝑅 · Σ𝑚 ∈ (0...(deg‘𝐹))((𝐵𝑚) · (𝑧𝑚))) = Σ𝑚 ∈ (0...(deg‘𝐹))(𝑅 · ((𝐵𝑚) · (𝑧𝑚))))
66 eqid 2736 . . . . . . . . . . 11 (deg‘𝐹) = (deg‘𝐹)
6735, 66coeid2 25600 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘ℚ) ∧ 𝑧 ∈ ℂ) → (𝐹𝑧) = Σ𝑚 ∈ (0...(deg‘𝐹))((𝐵𝑚) · (𝑧𝑚)))
6811, 67sylan 580 . . . . . . . . 9 ((𝜑𝑧 ∈ ℂ) → (𝐹𝑧) = Σ𝑚 ∈ (0...(deg‘𝐹))((𝐵𝑚) · (𝑧𝑚)))
6968oveq2d 7373 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → (𝑅 · (𝐹𝑧)) = (𝑅 · Σ𝑚 ∈ (0...(deg‘𝐹))((𝐵𝑚) · (𝑧𝑚))))
7055adantr 481 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑚 ∈ ℕ0) → 𝑅 ∈ ℂ)
7170, 60, 62mulassd 11178 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑚 ∈ ℕ0) → ((𝑅 · (𝐵𝑚)) · (𝑧𝑚)) = (𝑅 · ((𝐵𝑚) · (𝑧𝑚))))
7256, 71sylan2 593 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑚 ∈ (0...(deg‘𝐹))) → ((𝑅 · (𝐵𝑚)) · (𝑧𝑚)) = (𝑅 · ((𝐵𝑚) · (𝑧𝑚))))
7372sumeq2dv 15588 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → Σ𝑚 ∈ (0...(deg‘𝐹))((𝑅 · (𝐵𝑚)) · (𝑧𝑚)) = Σ𝑚 ∈ (0...(deg‘𝐹))(𝑅 · ((𝐵𝑚) · (𝑧𝑚))))
7465, 69, 733eqtr4d 2786 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → (𝑅 · (𝐹𝑧)) = Σ𝑚 ∈ (0...(deg‘𝐹))((𝑅 · (𝐵𝑚)) · (𝑧𝑚)))
7574mpteq2dva 5205 . . . . . 6 (𝜑 → (𝑧 ∈ ℂ ↦ (𝑅 · (𝐹𝑧))) = (𝑧 ∈ ℂ ↦ Σ𝑚 ∈ (0...(deg‘𝐹))((𝑅 · (𝐵𝑚)) · (𝑧𝑚))))
7615, 75eqtrd 2776 . . . . 5 (𝜑 → ((ℂ × {𝑅}) ∘f · 𝐹) = (𝑧 ∈ ℂ ↦ Σ𝑚 ∈ (0...(deg‘𝐹))((𝑅 · (𝐵𝑚)) · (𝑧𝑚))))
77 zsscn 12507 . . . . . . 7 ℤ ⊆ ℂ
7877a1i 11 . . . . . 6 (𝜑 → ℤ ⊆ ℂ)
7954adantr 481 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → 𝑅 ∈ ℂ)
8046nncnd 12169 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → (𝑁𝑚) ∈ ℂ)
8146nnne0d 12203 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → (𝑁𝑚) ≠ 0)
8279, 80, 81divcan2d 11933 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → ((𝑁𝑚) · (𝑅 / (𝑁𝑚))) = 𝑅)
8382oveq2d 7373 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → ((𝐵𝑚) · ((𝑁𝑚) · (𝑅 / (𝑁𝑚)))) = ((𝐵𝑚) · 𝑅))
8458ffvelcdmda 7035 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → (𝐵𝑚) ∈ ℂ)
8579, 80, 81divcld 11931 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → (𝑅 / (𝑁𝑚)) ∈ ℂ)
8684, 80, 85mulassd 11178 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → (((𝐵𝑚) · (𝑁𝑚)) · (𝑅 / (𝑁𝑚))) = ((𝐵𝑚) · ((𝑁𝑚) · (𝑅 / (𝑁𝑚)))))
8779, 84mulcomd 11176 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → (𝑅 · (𝐵𝑚)) = ((𝐵𝑚) · 𝑅))
8883, 86, 873eqtr4rd 2787 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → (𝑅 · (𝐵𝑚)) = (((𝐵𝑚) · (𝑁𝑚)) · (𝑅 / (𝑁𝑚))))
8956, 88sylan2 593 . . . . . . 7 ((𝜑𝑚 ∈ (0...(deg‘𝐹))) → (𝑅 · (𝐵𝑚)) = (((𝐵𝑚) · (𝑁𝑚)) · (𝑅 / (𝑁𝑚))))
90 oveq2 7365 . . . . . . . . . . . . 13 (𝑛 = (𝑁𝑚) → ((𝐵𝑚) · 𝑛) = ((𝐵𝑚) · (𝑁𝑚)))
9190eleq1d 2822 . . . . . . . . . . . 12 (𝑛 = (𝑁𝑚) → (((𝐵𝑚) · 𝑛) ∈ ℤ ↔ ((𝐵𝑚) · (𝑁𝑚)) ∈ ℤ))
9291elrab 3645 . . . . . . . . . . 11 ((𝑁𝑚) ∈ {𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ} ↔ ((𝑁𝑚) ∈ ℕ ∧ ((𝐵𝑚) · (𝑁𝑚)) ∈ ℤ))
9392simprbi 497 . . . . . . . . . 10 ((𝑁𝑚) ∈ {𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ} → ((𝐵𝑚) · (𝑁𝑚)) ∈ ℤ)
9445, 93syl 17 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → ((𝐵𝑚) · (𝑁𝑚)) ∈ ℤ)
9556, 94sylan2 593 . . . . . . . 8 ((𝜑𝑚 ∈ (0...(deg‘𝐹))) → ((𝐵𝑚) · (𝑁𝑚)) ∈ ℤ)
96 elqaa.3 . . . . . . . . . 10 (𝜑 → (𝐹𝐴) = 0)
97 eqid 2736 . . . . . . . . . 10 (𝑥 ∈ V, 𝑦 ∈ V ↦ ((𝑥 · 𝑦) mod (𝑁𝑚))) = (𝑥 ∈ V, 𝑦 ∈ V ↦ ((𝑥 · 𝑦) mod (𝑁𝑚)))
981, 10, 96, 35, 25, 4, 97elqaalem2 25680 . . . . . . . . 9 ((𝜑𝑚 ∈ (0...(deg‘𝐹))) → (𝑅 mod (𝑁𝑚)) = 0)
9953adantr 481 . . . . . . . . . 10 ((𝜑𝑚 ∈ (0...(deg‘𝐹))) → 𝑅 ∈ ℕ)
10056, 46sylan2 593 . . . . . . . . . 10 ((𝜑𝑚 ∈ (0...(deg‘𝐹))) → (𝑁𝑚) ∈ ℕ)
101 nnre 12160 . . . . . . . . . . 11 (𝑅 ∈ ℕ → 𝑅 ∈ ℝ)
102 nnrp 12926 . . . . . . . . . . 11 ((𝑁𝑚) ∈ ℕ → (𝑁𝑚) ∈ ℝ+)
103 mod0 13781 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ (𝑁𝑚) ∈ ℝ+) → ((𝑅 mod (𝑁𝑚)) = 0 ↔ (𝑅 / (𝑁𝑚)) ∈ ℤ))
104101, 102, 103syl2an 596 . . . . . . . . . 10 ((𝑅 ∈ ℕ ∧ (𝑁𝑚) ∈ ℕ) → ((𝑅 mod (𝑁𝑚)) = 0 ↔ (𝑅 / (𝑁𝑚)) ∈ ℤ))
10599, 100, 104syl2anc 584 . . . . . . . . 9 ((𝜑𝑚 ∈ (0...(deg‘𝐹))) → ((𝑅 mod (𝑁𝑚)) = 0 ↔ (𝑅 / (𝑁𝑚)) ∈ ℤ))
10698, 105mpbid 231 . . . . . . . 8 ((𝜑𝑚 ∈ (0...(deg‘𝐹))) → (𝑅 / (𝑁𝑚)) ∈ ℤ)
10795, 106zmulcld 12613 . . . . . . 7 ((𝜑𝑚 ∈ (0...(deg‘𝐹))) → (((𝐵𝑚) · (𝑁𝑚)) · (𝑅 / (𝑁𝑚))) ∈ ℤ)
10889, 107eqeltrd 2838 . . . . . 6 ((𝜑𝑚 ∈ (0...(deg‘𝐹))) → (𝑅 · (𝐵𝑚)) ∈ ℤ)
10978, 51, 108elplyd 25563 . . . . 5 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑚 ∈ (0...(deg‘𝐹))((𝑅 · (𝐵𝑚)) · (𝑧𝑚))) ∈ (Poly‘ℤ))
11076, 109eqeltrd 2838 . . . 4 (𝜑 → ((ℂ × {𝑅}) ∘f · 𝐹) ∈ (Poly‘ℤ))
111 eldifsn 4747 . . . . . . 7 (𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ↔ (𝐹 ∈ (Poly‘ℚ) ∧ 𝐹 ≠ 0𝑝))
11210, 111sylib 217 . . . . . 6 (𝜑 → (𝐹 ∈ (Poly‘ℚ) ∧ 𝐹 ≠ 0𝑝))
113112simprd 496 . . . . 5 (𝜑𝐹 ≠ 0𝑝)
114 oveq1 7364 . . . . . . 7 (((ℂ × {𝑅}) ∘f · 𝐹) = 0𝑝 → (((ℂ × {𝑅}) ∘f · 𝐹) ∘f / (ℂ × {𝑅})) = (0𝑝f / (ℂ × {𝑅})))
11513ffvelcdmda 7035 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ℂ) → (𝐹𝑧) ∈ ℂ)
11653nnne0d 12203 . . . . . . . . . . . 12 (𝜑𝑅 ≠ 0)
117116adantr 481 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ℂ) → 𝑅 ≠ 0)
118115, 55, 117divcan3d 11936 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℂ) → ((𝑅 · (𝐹𝑧)) / 𝑅) = (𝐹𝑧))
119118mpteq2dva 5205 . . . . . . . . 9 (𝜑 → (𝑧 ∈ ℂ ↦ ((𝑅 · (𝐹𝑧)) / 𝑅)) = (𝑧 ∈ ℂ ↦ (𝐹𝑧)))
120 ovexd 7392 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℂ) → (𝑅 · (𝐹𝑧)) ∈ V)
1213, 120, 6, 15, 9offval2 7637 . . . . . . . . 9 (𝜑 → (((ℂ × {𝑅}) ∘f · 𝐹) ∘f / (ℂ × {𝑅})) = (𝑧 ∈ ℂ ↦ ((𝑅 · (𝐹𝑧)) / 𝑅)))
122119, 121, 143eqtr4d 2786 . . . . . . . 8 (𝜑 → (((ℂ × {𝑅}) ∘f · 𝐹) ∘f / (ℂ × {𝑅})) = 𝐹)
12354, 116div0d 11930 . . . . . . . . . 10 (𝜑 → (0 / 𝑅) = 0)
124123mpteq2dv 5207 . . . . . . . . 9 (𝜑 → (𝑧 ∈ ℂ ↦ (0 / 𝑅)) = (𝑧 ∈ ℂ ↦ 0))
125 0cnd 11148 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℂ) → 0 ∈ ℂ)
126 df-0p 25034 . . . . . . . . . . . 12 0𝑝 = (ℂ × {0})
127 fconstmpt 5694 . . . . . . . . . . . 12 (ℂ × {0}) = (𝑧 ∈ ℂ ↦ 0)
128126, 127eqtri 2764 . . . . . . . . . . 11 0𝑝 = (𝑧 ∈ ℂ ↦ 0)
129128a1i 11 . . . . . . . . . 10 (𝜑 → 0𝑝 = (𝑧 ∈ ℂ ↦ 0))
1303, 125, 6, 129, 9offval2 7637 . . . . . . . . 9 (𝜑 → (0𝑝f / (ℂ × {𝑅})) = (𝑧 ∈ ℂ ↦ (0 / 𝑅)))
131124, 130, 1293eqtr4d 2786 . . . . . . . 8 (𝜑 → (0𝑝f / (ℂ × {𝑅})) = 0𝑝)
132122, 131eqeq12d 2752 . . . . . . 7 (𝜑 → ((((ℂ × {𝑅}) ∘f · 𝐹) ∘f / (ℂ × {𝑅})) = (0𝑝f / (ℂ × {𝑅})) ↔ 𝐹 = 0𝑝))
133114, 132imbitrid 243 . . . . . 6 (𝜑 → (((ℂ × {𝑅}) ∘f · 𝐹) = 0𝑝𝐹 = 0𝑝))
134133necon3d 2964 . . . . 5 (𝜑 → (𝐹 ≠ 0𝑝 → ((ℂ × {𝑅}) ∘f · 𝐹) ≠ 0𝑝))
135113, 134mpd 15 . . . 4 (𝜑 → ((ℂ × {𝑅}) ∘f · 𝐹) ≠ 0𝑝)
136 eldifsn 4747 . . . 4 (((ℂ × {𝑅}) ∘f · 𝐹) ∈ ((Poly‘ℤ) ∖ {0𝑝}) ↔ (((ℂ × {𝑅}) ∘f · 𝐹) ∈ (Poly‘ℤ) ∧ ((ℂ × {𝑅}) ∘f · 𝐹) ≠ 0𝑝))
137110, 135, 136sylanbrc 583 . . 3 (𝜑 → ((ℂ × {𝑅}) ∘f · 𝐹) ∈ ((Poly‘ℤ) ∖ {0𝑝}))
1385fconst 6728 . . . . . . 7 (ℂ × {𝑅}):ℂ⟶{𝑅}
139 ffn 6668 . . . . . . 7 ((ℂ × {𝑅}):ℂ⟶{𝑅} → (ℂ × {𝑅}) Fn ℂ)
140138, 139mp1i 13 . . . . . 6 (𝜑 → (ℂ × {𝑅}) Fn ℂ)
14113ffnd 6669 . . . . . 6 (𝜑𝐹 Fn ℂ)
142 inidm 4178 . . . . . 6 (ℂ ∩ ℂ) = ℂ
1435fvconst2 7153 . . . . . . 7 (𝐴 ∈ ℂ → ((ℂ × {𝑅})‘𝐴) = 𝑅)
144143adantl 482 . . . . . 6 ((𝜑𝐴 ∈ ℂ) → ((ℂ × {𝑅})‘𝐴) = 𝑅)
14596adantr 481 . . . . . 6 ((𝜑𝐴 ∈ ℂ) → (𝐹𝐴) = 0)
146140, 141, 3, 3, 142, 144, 145ofval 7628 . . . . 5 ((𝜑𝐴 ∈ ℂ) → (((ℂ × {𝑅}) ∘f · 𝐹)‘𝐴) = (𝑅 · 0))
1471, 146mpdan 685 . . . 4 (𝜑 → (((ℂ × {𝑅}) ∘f · 𝐹)‘𝐴) = (𝑅 · 0))
14854mul01d 11354 . . . 4 (𝜑 → (𝑅 · 0) = 0)
149147, 148eqtrd 2776 . . 3 (𝜑 → (((ℂ × {𝑅}) ∘f · 𝐹)‘𝐴) = 0)
150 fveq1 6841 . . . . 5 (𝑓 = ((ℂ × {𝑅}) ∘f · 𝐹) → (𝑓𝐴) = (((ℂ × {𝑅}) ∘f · 𝐹)‘𝐴))
151150eqeq1d 2738 . . . 4 (𝑓 = ((ℂ × {𝑅}) ∘f · 𝐹) → ((𝑓𝐴) = 0 ↔ (((ℂ × {𝑅}) ∘f · 𝐹)‘𝐴) = 0))
152151rspcev 3581 . . 3 ((((ℂ × {𝑅}) ∘f · 𝐹) ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (((ℂ × {𝑅}) ∘f · 𝐹)‘𝐴) = 0) → ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0)
153137, 149, 152syl2anc 584 . 2 (𝜑 → ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0)
154 elaa 25676 . 2 (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0))
1551, 153, 154sylanbrc 583 1 (𝜑𝐴 ∈ 𝔸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  wrex 3073  {crab 3407  Vcvv 3445  cdif 3907  wss 3910  c0 4282  {csn 4586  cmpt 5188   × cxp 5631   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  cmpo 7359  f cof 7615  infcinf 9377  cc 11049  cr 11050  0cc0 11051  1c1 11052   · cmul 11056   < clt 11189   / cdiv 11812  cn 12153  0cn0 12413  cz 12499  cuz 12763  cq 12873  +crp 12915  ...cfz 13424   mod cmo 13774  seqcseq 13906  cexp 13967  Σcsu 15570  0𝑝c0p 25033  Polycply 25545  coeffccoe 25547  degcdgr 25548  𝔸caa 25674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-rlim 15371  df-sum 15571  df-0p 25034  df-ply 25549  df-coe 25551  df-dgr 25552  df-aa 25675
This theorem is referenced by:  elqaa  25682
  Copyright terms: Public domain W3C validator