MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrmulc Structured version   Visualization version   GIF version

Theorem dgrmulc 26299
Description: Scalar multiplication by a nonzero constant does not change the degree of a function. (Contributed by Mario Carneiro, 24-Jul-2014.)
Assertion
Ref Expression
dgrmulc ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → (deg‘((ℂ × {𝐴}) ∘f · 𝐹)) = (deg‘𝐹))

Proof of Theorem dgrmulc
StepHypRef Expression
1 oveq2 7432 . . . 4 (𝐹 = 0𝑝 → ((ℂ × {𝐴}) ∘f · 𝐹) = ((ℂ × {𝐴}) ∘f · 0𝑝))
21fveq2d 6905 . . 3 (𝐹 = 0𝑝 → (deg‘((ℂ × {𝐴}) ∘f · 𝐹)) = (deg‘((ℂ × {𝐴}) ∘f · 0𝑝)))
3 fveq2 6901 . . . 4 (𝐹 = 0𝑝 → (deg‘𝐹) = (deg‘0𝑝))
4 dgr0 26290 . . . 4 (deg‘0𝑝) = 0
53, 4eqtrdi 2782 . . 3 (𝐹 = 0𝑝 → (deg‘𝐹) = 0)
62, 5eqeq12d 2742 . 2 (𝐹 = 0𝑝 → ((deg‘((ℂ × {𝐴}) ∘f · 𝐹)) = (deg‘𝐹) ↔ (deg‘((ℂ × {𝐴}) ∘f · 0𝑝)) = 0))
7 ssid 4002 . . . . 5 ℂ ⊆ ℂ
8 simpl1 1188 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → 𝐴 ∈ ℂ)
9 plyconst 26233 . . . . 5 ((ℂ ⊆ ℂ ∧ 𝐴 ∈ ℂ) → (ℂ × {𝐴}) ∈ (Poly‘ℂ))
107, 8, 9sylancr 585 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → (ℂ × {𝐴}) ∈ (Poly‘ℂ))
11 0cn 11256 . . . . 5 0 ∈ ℂ
12 fvconst2g 7219 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → ((ℂ × {𝐴})‘0) = 𝐴)
138, 11, 12sylancl 584 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → ((ℂ × {𝐴})‘0) = 𝐴)
14 simpl2 1189 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → 𝐴 ≠ 0)
1513, 14eqnetrd 2998 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → ((ℂ × {𝐴})‘0) ≠ 0)
16 ne0p 26234 . . . . 5 ((0 ∈ ℂ ∧ ((ℂ × {𝐴})‘0) ≠ 0) → (ℂ × {𝐴}) ≠ 0𝑝)
1711, 15, 16sylancr 585 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → (ℂ × {𝐴}) ≠ 0𝑝)
18 plyssc 26227 . . . . 5 (Poly‘𝑆) ⊆ (Poly‘ℂ)
19 simpl3 1190 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → 𝐹 ∈ (Poly‘𝑆))
2018, 19sselid 3977 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → 𝐹 ∈ (Poly‘ℂ))
21 simpr 483 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → 𝐹 ≠ 0𝑝)
22 eqid 2726 . . . . 5 (deg‘(ℂ × {𝐴})) = (deg‘(ℂ × {𝐴}))
23 eqid 2726 . . . . 5 (deg‘𝐹) = (deg‘𝐹)
2422, 23dgrmul 26298 . . . 4 ((((ℂ × {𝐴}) ∈ (Poly‘ℂ) ∧ (ℂ × {𝐴}) ≠ 0𝑝) ∧ (𝐹 ∈ (Poly‘ℂ) ∧ 𝐹 ≠ 0𝑝)) → (deg‘((ℂ × {𝐴}) ∘f · 𝐹)) = ((deg‘(ℂ × {𝐴})) + (deg‘𝐹)))
2510, 17, 20, 21, 24syl22anc 837 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → (deg‘((ℂ × {𝐴}) ∘f · 𝐹)) = ((deg‘(ℂ × {𝐴})) + (deg‘𝐹)))
26 0dgr 26272 . . . . 5 (𝐴 ∈ ℂ → (deg‘(ℂ × {𝐴})) = 0)
278, 26syl 17 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → (deg‘(ℂ × {𝐴})) = 0)
2827oveq1d 7439 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → ((deg‘(ℂ × {𝐴})) + (deg‘𝐹)) = (0 + (deg‘𝐹)))
29 dgrcl 26260 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
3019, 29syl 17 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → (deg‘𝐹) ∈ ℕ0)
3130nn0cnd 12586 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → (deg‘𝐹) ∈ ℂ)
3231addlidd 11465 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → (0 + (deg‘𝐹)) = (deg‘𝐹))
3325, 28, 323eqtrd 2770 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → (deg‘((ℂ × {𝐴}) ∘f · 𝐹)) = (deg‘𝐹))
34 cnex 11239 . . . . . . . 8 ℂ ∈ V
3534a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → ℂ ∈ V)
36 simp1 1133 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐴 ∈ ℂ)
3711a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → 0 ∈ ℂ)
3835, 36, 37ofc12 7719 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ × {𝐴}) ∘f · (ℂ × {0})) = (ℂ × {(𝐴 · 0)}))
3936mul01d 11463 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → (𝐴 · 0) = 0)
4039sneqd 4645 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → {(𝐴 · 0)} = {0})
4140xpeq2d 5712 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℂ × {(𝐴 · 0)}) = (ℂ × {0}))
4238, 41eqtrd 2766 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ × {𝐴}) ∘f · (ℂ × {0})) = (ℂ × {0}))
43 df-0p 25690 . . . . . 6 0𝑝 = (ℂ × {0})
4443oveq2i 7435 . . . . 5 ((ℂ × {𝐴}) ∘f · 0𝑝) = ((ℂ × {𝐴}) ∘f · (ℂ × {0}))
4542, 44, 433eqtr4g 2791 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ × {𝐴}) ∘f · 0𝑝) = 0𝑝)
4645fveq2d 6905 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → (deg‘((ℂ × {𝐴}) ∘f · 0𝑝)) = (deg‘0𝑝))
4746, 4eqtrdi 2782 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → (deg‘((ℂ × {𝐴}) ∘f · 0𝑝)) = 0)
486, 33, 47pm2.61ne 3017 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → (deg‘((ℂ × {𝐴}) ∘f · 𝐹)) = (deg‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  wne 2930  Vcvv 3462  wss 3947  {csn 4633   × cxp 5680  cfv 6554  (class class class)co 7424  f cof 7688  cc 11156  0cc0 11158   + caddc 11161   · cmul 11163  0cn0 12524  0𝑝c0p 25689  Polycply 26211  degcdgr 26214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9684  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7690  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-er 8734  df-map 8857  df-pm 8858  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-sup 9485  df-inf 9486  df-oi 9553  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12611  df-uz 12875  df-rp 13029  df-fz 13539  df-fzo 13682  df-fl 13812  df-seq 14022  df-exp 14082  df-hash 14348  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-clim 15490  df-rlim 15491  df-sum 15691  df-0p 25690  df-ply 26215  df-coe 26217  df-dgr 26218
This theorem is referenced by:  dgrsub  26300  dgrcolem2  26302  mpaaeu  42811
  Copyright terms: Public domain W3C validator