MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrmulc Structured version   Visualization version   GIF version

Theorem dgrmulc 25337
Description: Scalar multiplication by a nonzero constant does not change the degree of a function. (Contributed by Mario Carneiro, 24-Jul-2014.)
Assertion
Ref Expression
dgrmulc ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → (deg‘((ℂ × {𝐴}) ∘f · 𝐹)) = (deg‘𝐹))

Proof of Theorem dgrmulc
StepHypRef Expression
1 oveq2 7263 . . . 4 (𝐹 = 0𝑝 → ((ℂ × {𝐴}) ∘f · 𝐹) = ((ℂ × {𝐴}) ∘f · 0𝑝))
21fveq2d 6760 . . 3 (𝐹 = 0𝑝 → (deg‘((ℂ × {𝐴}) ∘f · 𝐹)) = (deg‘((ℂ × {𝐴}) ∘f · 0𝑝)))
3 fveq2 6756 . . . 4 (𝐹 = 0𝑝 → (deg‘𝐹) = (deg‘0𝑝))
4 dgr0 25328 . . . 4 (deg‘0𝑝) = 0
53, 4eqtrdi 2795 . . 3 (𝐹 = 0𝑝 → (deg‘𝐹) = 0)
62, 5eqeq12d 2754 . 2 (𝐹 = 0𝑝 → ((deg‘((ℂ × {𝐴}) ∘f · 𝐹)) = (deg‘𝐹) ↔ (deg‘((ℂ × {𝐴}) ∘f · 0𝑝)) = 0))
7 ssid 3939 . . . . 5 ℂ ⊆ ℂ
8 simpl1 1189 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → 𝐴 ∈ ℂ)
9 plyconst 25272 . . . . 5 ((ℂ ⊆ ℂ ∧ 𝐴 ∈ ℂ) → (ℂ × {𝐴}) ∈ (Poly‘ℂ))
107, 8, 9sylancr 586 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → (ℂ × {𝐴}) ∈ (Poly‘ℂ))
11 0cn 10898 . . . . 5 0 ∈ ℂ
12 fvconst2g 7059 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → ((ℂ × {𝐴})‘0) = 𝐴)
138, 11, 12sylancl 585 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → ((ℂ × {𝐴})‘0) = 𝐴)
14 simpl2 1190 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → 𝐴 ≠ 0)
1513, 14eqnetrd 3010 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → ((ℂ × {𝐴})‘0) ≠ 0)
16 ne0p 25273 . . . . 5 ((0 ∈ ℂ ∧ ((ℂ × {𝐴})‘0) ≠ 0) → (ℂ × {𝐴}) ≠ 0𝑝)
1711, 15, 16sylancr 586 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → (ℂ × {𝐴}) ≠ 0𝑝)
18 plyssc 25266 . . . . 5 (Poly‘𝑆) ⊆ (Poly‘ℂ)
19 simpl3 1191 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → 𝐹 ∈ (Poly‘𝑆))
2018, 19sselid 3915 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → 𝐹 ∈ (Poly‘ℂ))
21 simpr 484 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → 𝐹 ≠ 0𝑝)
22 eqid 2738 . . . . 5 (deg‘(ℂ × {𝐴})) = (deg‘(ℂ × {𝐴}))
23 eqid 2738 . . . . 5 (deg‘𝐹) = (deg‘𝐹)
2422, 23dgrmul 25336 . . . 4 ((((ℂ × {𝐴}) ∈ (Poly‘ℂ) ∧ (ℂ × {𝐴}) ≠ 0𝑝) ∧ (𝐹 ∈ (Poly‘ℂ) ∧ 𝐹 ≠ 0𝑝)) → (deg‘((ℂ × {𝐴}) ∘f · 𝐹)) = ((deg‘(ℂ × {𝐴})) + (deg‘𝐹)))
2510, 17, 20, 21, 24syl22anc 835 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → (deg‘((ℂ × {𝐴}) ∘f · 𝐹)) = ((deg‘(ℂ × {𝐴})) + (deg‘𝐹)))
26 0dgr 25311 . . . . 5 (𝐴 ∈ ℂ → (deg‘(ℂ × {𝐴})) = 0)
278, 26syl 17 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → (deg‘(ℂ × {𝐴})) = 0)
2827oveq1d 7270 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → ((deg‘(ℂ × {𝐴})) + (deg‘𝐹)) = (0 + (deg‘𝐹)))
29 dgrcl 25299 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
3019, 29syl 17 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → (deg‘𝐹) ∈ ℕ0)
3130nn0cnd 12225 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → (deg‘𝐹) ∈ ℂ)
3231addid2d 11106 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → (0 + (deg‘𝐹)) = (deg‘𝐹))
3325, 28, 323eqtrd 2782 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → (deg‘((ℂ × {𝐴}) ∘f · 𝐹)) = (deg‘𝐹))
34 cnex 10883 . . . . . . . 8 ℂ ∈ V
3534a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → ℂ ∈ V)
36 simp1 1134 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐴 ∈ ℂ)
3711a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → 0 ∈ ℂ)
3835, 36, 37ofc12 7539 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ × {𝐴}) ∘f · (ℂ × {0})) = (ℂ × {(𝐴 · 0)}))
3936mul01d 11104 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → (𝐴 · 0) = 0)
4039sneqd 4570 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → {(𝐴 · 0)} = {0})
4140xpeq2d 5610 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℂ × {(𝐴 · 0)}) = (ℂ × {0}))
4238, 41eqtrd 2778 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ × {𝐴}) ∘f · (ℂ × {0})) = (ℂ × {0}))
43 df-0p 24739 . . . . . 6 0𝑝 = (ℂ × {0})
4443oveq2i 7266 . . . . 5 ((ℂ × {𝐴}) ∘f · 0𝑝) = ((ℂ × {𝐴}) ∘f · (ℂ × {0}))
4542, 44, 433eqtr4g 2804 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ × {𝐴}) ∘f · 0𝑝) = 0𝑝)
4645fveq2d 6760 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → (deg‘((ℂ × {𝐴}) ∘f · 0𝑝)) = (deg‘0𝑝))
4746, 4eqtrdi 2795 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → (deg‘((ℂ × {𝐴}) ∘f · 0𝑝)) = 0)
486, 33, 47pm2.61ne 3029 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → (deg‘((ℂ × {𝐴}) ∘f · 𝐹)) = (deg‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  Vcvv 3422  wss 3883  {csn 4558   × cxp 5578  cfv 6418  (class class class)co 7255  f cof 7509  cc 10800  0cc0 10802   + caddc 10805   · cmul 10807  0cn0 12163  0𝑝c0p 24738  Polycply 25250  degcdgr 25253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-0p 24739  df-ply 25254  df-coe 25256  df-dgr 25257
This theorem is referenced by:  dgrsub  25338  dgrcolem2  25340  mpaaeu  40891
  Copyright terms: Public domain W3C validator