MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrmulc Structured version   Visualization version   GIF version

Theorem dgrmulc 24861
Description: Scalar multiplication by a nonzero constant does not change the degree of a function. (Contributed by Mario Carneiro, 24-Jul-2014.)
Assertion
Ref Expression
dgrmulc ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → (deg‘((ℂ × {𝐴}) ∘f · 𝐹)) = (deg‘𝐹))

Proof of Theorem dgrmulc
StepHypRef Expression
1 oveq2 7164 . . . 4 (𝐹 = 0𝑝 → ((ℂ × {𝐴}) ∘f · 𝐹) = ((ℂ × {𝐴}) ∘f · 0𝑝))
21fveq2d 6674 . . 3 (𝐹 = 0𝑝 → (deg‘((ℂ × {𝐴}) ∘f · 𝐹)) = (deg‘((ℂ × {𝐴}) ∘f · 0𝑝)))
3 fveq2 6670 . . . 4 (𝐹 = 0𝑝 → (deg‘𝐹) = (deg‘0𝑝))
4 dgr0 24852 . . . 4 (deg‘0𝑝) = 0
53, 4syl6eq 2872 . . 3 (𝐹 = 0𝑝 → (deg‘𝐹) = 0)
62, 5eqeq12d 2837 . 2 (𝐹 = 0𝑝 → ((deg‘((ℂ × {𝐴}) ∘f · 𝐹)) = (deg‘𝐹) ↔ (deg‘((ℂ × {𝐴}) ∘f · 0𝑝)) = 0))
7 ssid 3989 . . . . 5 ℂ ⊆ ℂ
8 simpl1 1187 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → 𝐴 ∈ ℂ)
9 plyconst 24796 . . . . 5 ((ℂ ⊆ ℂ ∧ 𝐴 ∈ ℂ) → (ℂ × {𝐴}) ∈ (Poly‘ℂ))
107, 8, 9sylancr 589 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → (ℂ × {𝐴}) ∈ (Poly‘ℂ))
11 0cn 10633 . . . . 5 0 ∈ ℂ
12 fvconst2g 6964 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → ((ℂ × {𝐴})‘0) = 𝐴)
138, 11, 12sylancl 588 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → ((ℂ × {𝐴})‘0) = 𝐴)
14 simpl2 1188 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → 𝐴 ≠ 0)
1513, 14eqnetrd 3083 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → ((ℂ × {𝐴})‘0) ≠ 0)
16 ne0p 24797 . . . . 5 ((0 ∈ ℂ ∧ ((ℂ × {𝐴})‘0) ≠ 0) → (ℂ × {𝐴}) ≠ 0𝑝)
1711, 15, 16sylancr 589 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → (ℂ × {𝐴}) ≠ 0𝑝)
18 plyssc 24790 . . . . 5 (Poly‘𝑆) ⊆ (Poly‘ℂ)
19 simpl3 1189 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → 𝐹 ∈ (Poly‘𝑆))
2018, 19sseldi 3965 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → 𝐹 ∈ (Poly‘ℂ))
21 simpr 487 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → 𝐹 ≠ 0𝑝)
22 eqid 2821 . . . . 5 (deg‘(ℂ × {𝐴})) = (deg‘(ℂ × {𝐴}))
23 eqid 2821 . . . . 5 (deg‘𝐹) = (deg‘𝐹)
2422, 23dgrmul 24860 . . . 4 ((((ℂ × {𝐴}) ∈ (Poly‘ℂ) ∧ (ℂ × {𝐴}) ≠ 0𝑝) ∧ (𝐹 ∈ (Poly‘ℂ) ∧ 𝐹 ≠ 0𝑝)) → (deg‘((ℂ × {𝐴}) ∘f · 𝐹)) = ((deg‘(ℂ × {𝐴})) + (deg‘𝐹)))
2510, 17, 20, 21, 24syl22anc 836 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → (deg‘((ℂ × {𝐴}) ∘f · 𝐹)) = ((deg‘(ℂ × {𝐴})) + (deg‘𝐹)))
26 0dgr 24835 . . . . 5 (𝐴 ∈ ℂ → (deg‘(ℂ × {𝐴})) = 0)
278, 26syl 17 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → (deg‘(ℂ × {𝐴})) = 0)
2827oveq1d 7171 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → ((deg‘(ℂ × {𝐴})) + (deg‘𝐹)) = (0 + (deg‘𝐹)))
29 dgrcl 24823 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
3019, 29syl 17 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → (deg‘𝐹) ∈ ℕ0)
3130nn0cnd 11958 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → (deg‘𝐹) ∈ ℂ)
3231addid2d 10841 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → (0 + (deg‘𝐹)) = (deg‘𝐹))
3325, 28, 323eqtrd 2860 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → (deg‘((ℂ × {𝐴}) ∘f · 𝐹)) = (deg‘𝐹))
34 cnex 10618 . . . . . . . 8 ℂ ∈ V
3534a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → ℂ ∈ V)
36 simp1 1132 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐴 ∈ ℂ)
3711a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → 0 ∈ ℂ)
3835, 36, 37ofc12 7434 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ × {𝐴}) ∘f · (ℂ × {0})) = (ℂ × {(𝐴 · 0)}))
3936mul01d 10839 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → (𝐴 · 0) = 0)
4039sneqd 4579 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → {(𝐴 · 0)} = {0})
4140xpeq2d 5585 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℂ × {(𝐴 · 0)}) = (ℂ × {0}))
4238, 41eqtrd 2856 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ × {𝐴}) ∘f · (ℂ × {0})) = (ℂ × {0}))
43 df-0p 24271 . . . . . 6 0𝑝 = (ℂ × {0})
4443oveq2i 7167 . . . . 5 ((ℂ × {𝐴}) ∘f · 0𝑝) = ((ℂ × {𝐴}) ∘f · (ℂ × {0}))
4542, 44, 433eqtr4g 2881 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ × {𝐴}) ∘f · 0𝑝) = 0𝑝)
4645fveq2d 6674 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → (deg‘((ℂ × {𝐴}) ∘f · 0𝑝)) = (deg‘0𝑝))
4746, 4syl6eq 2872 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → (deg‘((ℂ × {𝐴}) ∘f · 0𝑝)) = 0)
486, 33, 47pm2.61ne 3102 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → (deg‘((ℂ × {𝐴}) ∘f · 𝐹)) = (deg‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  Vcvv 3494  wss 3936  {csn 4567   × cxp 5553  cfv 6355  (class class class)co 7156  f cof 7407  cc 10535  0cc0 10537   + caddc 10540   · cmul 10542  0cn0 11898  0𝑝c0p 24270  Polycply 24774  degcdgr 24777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-fz 12894  df-fzo 13035  df-fl 13163  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-rlim 14846  df-sum 15043  df-0p 24271  df-ply 24778  df-coe 24780  df-dgr 24781
This theorem is referenced by:  dgrsub  24862  dgrcolem2  24864  mpaaeu  39770
  Copyright terms: Public domain W3C validator