Proof of Theorem dgrmulc
Step | Hyp | Ref
| Expression |
1 | | oveq2 7263 |
. . . 4
⊢ (𝐹 = 0𝑝 →
((ℂ × {𝐴})
∘f · 𝐹) = ((ℂ × {𝐴}) ∘f ·
0𝑝)) |
2 | 1 | fveq2d 6760 |
. . 3
⊢ (𝐹 = 0𝑝 →
(deg‘((ℂ × {𝐴}) ∘f · 𝐹)) = (deg‘((ℂ
× {𝐴})
∘f · 0𝑝))) |
3 | | fveq2 6756 |
. . . 4
⊢ (𝐹 = 0𝑝 →
(deg‘𝐹) =
(deg‘0𝑝)) |
4 | | dgr0 25328 |
. . . 4
⊢
(deg‘0𝑝) = 0 |
5 | 3, 4 | eqtrdi 2795 |
. . 3
⊢ (𝐹 = 0𝑝 →
(deg‘𝐹) =
0) |
6 | 2, 5 | eqeq12d 2754 |
. 2
⊢ (𝐹 = 0𝑝 →
((deg‘((ℂ × {𝐴}) ∘f · 𝐹)) = (deg‘𝐹) ↔ (deg‘((ℂ
× {𝐴})
∘f · 0𝑝)) = 0)) |
7 | | ssid 3939 |
. . . . 5
⊢ ℂ
⊆ ℂ |
8 | | simpl1 1189 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → 𝐴 ∈
ℂ) |
9 | | plyconst 25272 |
. . . . 5
⊢ ((ℂ
⊆ ℂ ∧ 𝐴
∈ ℂ) → (ℂ × {𝐴}) ∈
(Poly‘ℂ)) |
10 | 7, 8, 9 | sylancr 586 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → (ℂ
× {𝐴}) ∈
(Poly‘ℂ)) |
11 | | 0cn 10898 |
. . . . 5
⊢ 0 ∈
ℂ |
12 | | fvconst2g 7059 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 0 ∈
ℂ) → ((ℂ × {𝐴})‘0) = 𝐴) |
13 | 8, 11, 12 | sylancl 585 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) →
((ℂ × {𝐴})‘0) = 𝐴) |
14 | | simpl2 1190 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → 𝐴 ≠ 0) |
15 | 13, 14 | eqnetrd 3010 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) →
((ℂ × {𝐴})‘0) ≠ 0) |
16 | | ne0p 25273 |
. . . . 5
⊢ ((0
∈ ℂ ∧ ((ℂ × {𝐴})‘0) ≠ 0) → (ℂ ×
{𝐴}) ≠
0𝑝) |
17 | 11, 15, 16 | sylancr 586 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → (ℂ
× {𝐴}) ≠
0𝑝) |
18 | | plyssc 25266 |
. . . . 5
⊢
(Poly‘𝑆)
⊆ (Poly‘ℂ) |
19 | | simpl3 1191 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → 𝐹 ∈ (Poly‘𝑆)) |
20 | 18, 19 | sselid 3915 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → 𝐹 ∈
(Poly‘ℂ)) |
21 | | simpr 484 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → 𝐹 ≠
0𝑝) |
22 | | eqid 2738 |
. . . . 5
⊢
(deg‘(ℂ × {𝐴})) = (deg‘(ℂ × {𝐴})) |
23 | | eqid 2738 |
. . . . 5
⊢
(deg‘𝐹) =
(deg‘𝐹) |
24 | 22, 23 | dgrmul 25336 |
. . . 4
⊢
((((ℂ × {𝐴}) ∈ (Poly‘ℂ) ∧
(ℂ × {𝐴}) ≠
0𝑝) ∧ (𝐹 ∈ (Poly‘ℂ) ∧ 𝐹 ≠ 0𝑝))
→ (deg‘((ℂ × {𝐴}) ∘f · 𝐹)) = ((deg‘(ℂ
× {𝐴})) +
(deg‘𝐹))) |
25 | 10, 17, 20, 21, 24 | syl22anc 835 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) →
(deg‘((ℂ × {𝐴}) ∘f · 𝐹)) = ((deg‘(ℂ
× {𝐴})) +
(deg‘𝐹))) |
26 | | 0dgr 25311 |
. . . . 5
⊢ (𝐴 ∈ ℂ →
(deg‘(ℂ × {𝐴})) = 0) |
27 | 8, 26 | syl 17 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) →
(deg‘(ℂ × {𝐴})) = 0) |
28 | 27 | oveq1d 7270 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) →
((deg‘(ℂ × {𝐴})) + (deg‘𝐹)) = (0 + (deg‘𝐹))) |
29 | | dgrcl 25299 |
. . . . . 6
⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈
ℕ0) |
30 | 19, 29 | syl 17 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) →
(deg‘𝐹) ∈
ℕ0) |
31 | 30 | nn0cnd 12225 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) →
(deg‘𝐹) ∈
ℂ) |
32 | 31 | addid2d 11106 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → (0 +
(deg‘𝐹)) =
(deg‘𝐹)) |
33 | 25, 28, 32 | 3eqtrd 2782 |
. 2
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) →
(deg‘((ℂ × {𝐴}) ∘f · 𝐹)) = (deg‘𝐹)) |
34 | | cnex 10883 |
. . . . . . . 8
⊢ ℂ
∈ V |
35 | 34 | a1i 11 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → ℂ ∈ V) |
36 | | simp1 1134 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐴 ∈ ℂ) |
37 | 11 | a1i 11 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → 0 ∈ ℂ) |
38 | 35, 36, 37 | ofc12 7539 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ × {𝐴}) ∘f ·
(ℂ × {0})) = (ℂ × {(𝐴 · 0)})) |
39 | 36 | mul01d 11104 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → (𝐴 · 0) = 0) |
40 | 39 | sneqd 4570 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → {(𝐴 · 0)} = {0}) |
41 | 40 | xpeq2d 5610 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℂ × {(𝐴 · 0)}) = (ℂ
× {0})) |
42 | 38, 41 | eqtrd 2778 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ × {𝐴}) ∘f ·
(ℂ × {0})) = (ℂ × {0})) |
43 | | df-0p 24739 |
. . . . . 6
⊢
0𝑝 = (ℂ × {0}) |
44 | 43 | oveq2i 7266 |
. . . . 5
⊢ ((ℂ
× {𝐴})
∘f · 0𝑝) = ((ℂ × {𝐴}) ∘f ·
(ℂ × {0})) |
45 | 42, 44, 43 | 3eqtr4g 2804 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ × {𝐴}) ∘f ·
0𝑝) = 0𝑝) |
46 | 45 | fveq2d 6760 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → (deg‘((ℂ ×
{𝐴}) ∘f
· 0𝑝)) =
(deg‘0𝑝)) |
47 | 46, 4 | eqtrdi 2795 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → (deg‘((ℂ ×
{𝐴}) ∘f
· 0𝑝)) = 0) |
48 | 6, 33, 47 | pm2.61ne 3029 |
1
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → (deg‘((ℂ ×
{𝐴}) ∘f
· 𝐹)) =
(deg‘𝐹)) |