MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrmulc Structured version   Visualization version   GIF version

Theorem dgrmulc 26202
Description: Scalar multiplication by a nonzero constant does not change the degree of a function. (Contributed by Mario Carneiro, 24-Jul-2014.)
Assertion
Ref Expression
dgrmulc ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → (deg‘((ℂ × {𝐴}) ∘f · 𝐹)) = (deg‘𝐹))

Proof of Theorem dgrmulc
StepHypRef Expression
1 oveq2 7354 . . . 4 (𝐹 = 0𝑝 → ((ℂ × {𝐴}) ∘f · 𝐹) = ((ℂ × {𝐴}) ∘f · 0𝑝))
21fveq2d 6826 . . 3 (𝐹 = 0𝑝 → (deg‘((ℂ × {𝐴}) ∘f · 𝐹)) = (deg‘((ℂ × {𝐴}) ∘f · 0𝑝)))
3 fveq2 6822 . . . 4 (𝐹 = 0𝑝 → (deg‘𝐹) = (deg‘0𝑝))
4 dgr0 26193 . . . 4 (deg‘0𝑝) = 0
53, 4eqtrdi 2782 . . 3 (𝐹 = 0𝑝 → (deg‘𝐹) = 0)
62, 5eqeq12d 2747 . 2 (𝐹 = 0𝑝 → ((deg‘((ℂ × {𝐴}) ∘f · 𝐹)) = (deg‘𝐹) ↔ (deg‘((ℂ × {𝐴}) ∘f · 0𝑝)) = 0))
7 ssid 3957 . . . . 5 ℂ ⊆ ℂ
8 simpl1 1192 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → 𝐴 ∈ ℂ)
9 plyconst 26136 . . . . 5 ((ℂ ⊆ ℂ ∧ 𝐴 ∈ ℂ) → (ℂ × {𝐴}) ∈ (Poly‘ℂ))
107, 8, 9sylancr 587 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → (ℂ × {𝐴}) ∈ (Poly‘ℂ))
11 0cn 11101 . . . . 5 0 ∈ ℂ
12 fvconst2g 7136 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → ((ℂ × {𝐴})‘0) = 𝐴)
138, 11, 12sylancl 586 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → ((ℂ × {𝐴})‘0) = 𝐴)
14 simpl2 1193 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → 𝐴 ≠ 0)
1513, 14eqnetrd 2995 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → ((ℂ × {𝐴})‘0) ≠ 0)
16 ne0p 26137 . . . . 5 ((0 ∈ ℂ ∧ ((ℂ × {𝐴})‘0) ≠ 0) → (ℂ × {𝐴}) ≠ 0𝑝)
1711, 15, 16sylancr 587 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → (ℂ × {𝐴}) ≠ 0𝑝)
18 plyssc 26130 . . . . 5 (Poly‘𝑆) ⊆ (Poly‘ℂ)
19 simpl3 1194 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → 𝐹 ∈ (Poly‘𝑆))
2018, 19sselid 3932 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → 𝐹 ∈ (Poly‘ℂ))
21 simpr 484 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → 𝐹 ≠ 0𝑝)
22 eqid 2731 . . . . 5 (deg‘(ℂ × {𝐴})) = (deg‘(ℂ × {𝐴}))
23 eqid 2731 . . . . 5 (deg‘𝐹) = (deg‘𝐹)
2422, 23dgrmul 26201 . . . 4 ((((ℂ × {𝐴}) ∈ (Poly‘ℂ) ∧ (ℂ × {𝐴}) ≠ 0𝑝) ∧ (𝐹 ∈ (Poly‘ℂ) ∧ 𝐹 ≠ 0𝑝)) → (deg‘((ℂ × {𝐴}) ∘f · 𝐹)) = ((deg‘(ℂ × {𝐴})) + (deg‘𝐹)))
2510, 17, 20, 21, 24syl22anc 838 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → (deg‘((ℂ × {𝐴}) ∘f · 𝐹)) = ((deg‘(ℂ × {𝐴})) + (deg‘𝐹)))
26 0dgr 26175 . . . . 5 (𝐴 ∈ ℂ → (deg‘(ℂ × {𝐴})) = 0)
278, 26syl 17 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → (deg‘(ℂ × {𝐴})) = 0)
2827oveq1d 7361 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → ((deg‘(ℂ × {𝐴})) + (deg‘𝐹)) = (0 + (deg‘𝐹)))
29 dgrcl 26163 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
3019, 29syl 17 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → (deg‘𝐹) ∈ ℕ0)
3130nn0cnd 12441 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → (deg‘𝐹) ∈ ℂ)
3231addlidd 11311 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → (0 + (deg‘𝐹)) = (deg‘𝐹))
3325, 28, 323eqtrd 2770 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → (deg‘((ℂ × {𝐴}) ∘f · 𝐹)) = (deg‘𝐹))
34 cnex 11084 . . . . . . . 8 ℂ ∈ V
3534a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → ℂ ∈ V)
36 simp1 1136 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐴 ∈ ℂ)
3711a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → 0 ∈ ℂ)
3835, 36, 37ofc12 7640 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ × {𝐴}) ∘f · (ℂ × {0})) = (ℂ × {(𝐴 · 0)}))
3936mul01d 11309 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → (𝐴 · 0) = 0)
4039sneqd 4588 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → {(𝐴 · 0)} = {0})
4140xpeq2d 5646 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℂ × {(𝐴 · 0)}) = (ℂ × {0}))
4238, 41eqtrd 2766 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ × {𝐴}) ∘f · (ℂ × {0})) = (ℂ × {0}))
43 df-0p 25596 . . . . . 6 0𝑝 = (ℂ × {0})
4443oveq2i 7357 . . . . 5 ((ℂ × {𝐴}) ∘f · 0𝑝) = ((ℂ × {𝐴}) ∘f · (ℂ × {0}))
4542, 44, 433eqtr4g 2791 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ × {𝐴}) ∘f · 0𝑝) = 0𝑝)
4645fveq2d 6826 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → (deg‘((ℂ × {𝐴}) ∘f · 0𝑝)) = (deg‘0𝑝))
4746, 4eqtrdi 2782 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → (deg‘((ℂ × {𝐴}) ∘f · 0𝑝)) = 0)
486, 33, 47pm2.61ne 3013 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → (deg‘((ℂ × {𝐴}) ∘f · 𝐹)) = (deg‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436  wss 3902  {csn 4576   × cxp 5614  cfv 6481  (class class class)co 7346  f cof 7608  cc 11001  0cc0 11003   + caddc 11006   · cmul 11008  0cn0 12378  0𝑝c0p 25595  Polycply 26114  degcdgr 26117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-n0 12379  df-z 12466  df-uz 12730  df-rp 12888  df-fz 13405  df-fzo 13552  df-fl 13693  df-seq 13906  df-exp 13966  df-hash 14235  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-clim 15392  df-rlim 15393  df-sum 15591  df-0p 25596  df-ply 26118  df-coe 26120  df-dgr 26121
This theorem is referenced by:  dgrsub  26203  dgrcolem2  26205  mpaaeu  43182
  Copyright terms: Public domain W3C validator