MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrmulc Structured version   Visualization version   GIF version

Theorem dgrmulc 24579
Description: Scalar multiplication by a nonzero constant does not change the degree of a function. (Contributed by Mario Carneiro, 24-Jul-2014.)
Assertion
Ref Expression
dgrmulc ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → (deg‘((ℂ × {𝐴}) ∘𝑓 · 𝐹)) = (deg‘𝐹))

Proof of Theorem dgrmulc
StepHypRef Expression
1 oveq2 6990 . . . 4 (𝐹 = 0𝑝 → ((ℂ × {𝐴}) ∘𝑓 · 𝐹) = ((ℂ × {𝐴}) ∘𝑓 · 0𝑝))
21fveq2d 6508 . . 3 (𝐹 = 0𝑝 → (deg‘((ℂ × {𝐴}) ∘𝑓 · 𝐹)) = (deg‘((ℂ × {𝐴}) ∘𝑓 · 0𝑝)))
3 fveq2 6504 . . . 4 (𝐹 = 0𝑝 → (deg‘𝐹) = (deg‘0𝑝))
4 dgr0 24570 . . . 4 (deg‘0𝑝) = 0
53, 4syl6eq 2832 . . 3 (𝐹 = 0𝑝 → (deg‘𝐹) = 0)
62, 5eqeq12d 2795 . 2 (𝐹 = 0𝑝 → ((deg‘((ℂ × {𝐴}) ∘𝑓 · 𝐹)) = (deg‘𝐹) ↔ (deg‘((ℂ × {𝐴}) ∘𝑓 · 0𝑝)) = 0))
7 ssid 3881 . . . . 5 ℂ ⊆ ℂ
8 simpl1 1172 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → 𝐴 ∈ ℂ)
9 plyconst 24514 . . . . 5 ((ℂ ⊆ ℂ ∧ 𝐴 ∈ ℂ) → (ℂ × {𝐴}) ∈ (Poly‘ℂ))
107, 8, 9sylancr 579 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → (ℂ × {𝐴}) ∈ (Poly‘ℂ))
11 0cn 10437 . . . . 5 0 ∈ ℂ
12 fvconst2g 6797 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → ((ℂ × {𝐴})‘0) = 𝐴)
138, 11, 12sylancl 578 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → ((ℂ × {𝐴})‘0) = 𝐴)
14 simpl2 1173 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → 𝐴 ≠ 0)
1513, 14eqnetrd 3036 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → ((ℂ × {𝐴})‘0) ≠ 0)
16 ne0p 24515 . . . . 5 ((0 ∈ ℂ ∧ ((ℂ × {𝐴})‘0) ≠ 0) → (ℂ × {𝐴}) ≠ 0𝑝)
1711, 15, 16sylancr 579 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → (ℂ × {𝐴}) ≠ 0𝑝)
18 plyssc 24508 . . . . 5 (Poly‘𝑆) ⊆ (Poly‘ℂ)
19 simpl3 1174 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → 𝐹 ∈ (Poly‘𝑆))
2018, 19sseldi 3858 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → 𝐹 ∈ (Poly‘ℂ))
21 simpr 477 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → 𝐹 ≠ 0𝑝)
22 eqid 2780 . . . . 5 (deg‘(ℂ × {𝐴})) = (deg‘(ℂ × {𝐴}))
23 eqid 2780 . . . . 5 (deg‘𝐹) = (deg‘𝐹)
2422, 23dgrmul 24578 . . . 4 ((((ℂ × {𝐴}) ∈ (Poly‘ℂ) ∧ (ℂ × {𝐴}) ≠ 0𝑝) ∧ (𝐹 ∈ (Poly‘ℂ) ∧ 𝐹 ≠ 0𝑝)) → (deg‘((ℂ × {𝐴}) ∘𝑓 · 𝐹)) = ((deg‘(ℂ × {𝐴})) + (deg‘𝐹)))
2510, 17, 20, 21, 24syl22anc 827 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → (deg‘((ℂ × {𝐴}) ∘𝑓 · 𝐹)) = ((deg‘(ℂ × {𝐴})) + (deg‘𝐹)))
26 0dgr 24553 . . . . 5 (𝐴 ∈ ℂ → (deg‘(ℂ × {𝐴})) = 0)
278, 26syl 17 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → (deg‘(ℂ × {𝐴})) = 0)
2827oveq1d 6997 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → ((deg‘(ℂ × {𝐴})) + (deg‘𝐹)) = (0 + (deg‘𝐹)))
29 dgrcl 24541 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
3019, 29syl 17 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → (deg‘𝐹) ∈ ℕ0)
3130nn0cnd 11775 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → (deg‘𝐹) ∈ ℂ)
3231addid2d 10647 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → (0 + (deg‘𝐹)) = (deg‘𝐹))
3325, 28, 323eqtrd 2820 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝐹 ≠ 0𝑝) → (deg‘((ℂ × {𝐴}) ∘𝑓 · 𝐹)) = (deg‘𝐹))
34 cnex 10422 . . . . . . . 8 ℂ ∈ V
3534a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → ℂ ∈ V)
36 simp1 1117 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐴 ∈ ℂ)
3711a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → 0 ∈ ℂ)
3835, 36, 37ofc12 7258 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ × {𝐴}) ∘𝑓 · (ℂ × {0})) = (ℂ × {(𝐴 · 0)}))
3936mul01d 10645 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → (𝐴 · 0) = 0)
4039sneqd 4456 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → {(𝐴 · 0)} = {0})
4140xpeq2d 5441 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℂ × {(𝐴 · 0)}) = (ℂ × {0}))
4238, 41eqtrd 2816 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ × {𝐴}) ∘𝑓 · (ℂ × {0})) = (ℂ × {0}))
43 df-0p 23989 . . . . . 6 0𝑝 = (ℂ × {0})
4443oveq2i 6993 . . . . 5 ((ℂ × {𝐴}) ∘𝑓 · 0𝑝) = ((ℂ × {𝐴}) ∘𝑓 · (ℂ × {0}))
4542, 44, 433eqtr4g 2841 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ × {𝐴}) ∘𝑓 · 0𝑝) = 0𝑝)
4645fveq2d 6508 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → (deg‘((ℂ × {𝐴}) ∘𝑓 · 0𝑝)) = (deg‘0𝑝))
4746, 4syl6eq 2832 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → (deg‘((ℂ × {𝐴}) ∘𝑓 · 0𝑝)) = 0)
486, 33, 47pm2.61ne 3055 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → (deg‘((ℂ × {𝐴}) ∘𝑓 · 𝐹)) = (deg‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1069   = wceq 1508  wcel 2051  wne 2969  Vcvv 3417  wss 3831  {csn 4444   × cxp 5409  cfv 6193  (class class class)co 6982  𝑓 cof 7231  cc 10339  0cc0 10341   + caddc 10344   · cmul 10346  0cn0 11713  0𝑝c0p 23988  Polycply 24492  degcdgr 24495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-rep 5053  ax-sep 5064  ax-nul 5071  ax-pow 5123  ax-pr 5190  ax-un 7285  ax-inf2 8904  ax-cnex 10397  ax-resscn 10398  ax-1cn 10399  ax-icn 10400  ax-addcl 10401  ax-addrcl 10402  ax-mulcl 10403  ax-mulrcl 10404  ax-mulcom 10405  ax-addass 10406  ax-mulass 10407  ax-distr 10408  ax-i2m1 10409  ax-1ne0 10410  ax-1rid 10411  ax-rnegex 10412  ax-rrecex 10413  ax-cnre 10414  ax-pre-lttri 10415  ax-pre-lttrn 10416  ax-pre-ltadd 10417  ax-pre-mulgt0 10418  ax-pre-sup 10419  ax-addf 10420
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-fal 1521  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2551  df-eu 2589  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3419  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4182  df-if 4354  df-pw 4427  df-sn 4445  df-pr 4447  df-tp 4449  df-op 4451  df-uni 4718  df-int 4755  df-iun 4799  df-br 4935  df-opab 4997  df-mpt 5014  df-tr 5036  df-id 5316  df-eprel 5321  df-po 5330  df-so 5331  df-fr 5370  df-se 5371  df-we 5372  df-xp 5417  df-rel 5418  df-cnv 5419  df-co 5420  df-dm 5421  df-rn 5422  df-res 5423  df-ima 5424  df-pred 5991  df-ord 6037  df-on 6038  df-lim 6039  df-suc 6040  df-iota 6157  df-fun 6195  df-fn 6196  df-f 6197  df-f1 6198  df-fo 6199  df-f1o 6200  df-fv 6201  df-isom 6202  df-riota 6943  df-ov 6985  df-oprab 6986  df-mpo 6987  df-of 7233  df-om 7403  df-1st 7507  df-2nd 7508  df-wrecs 7756  df-recs 7818  df-rdg 7856  df-1o 7911  df-oadd 7915  df-er 8095  df-map 8214  df-pm 8215  df-en 8313  df-dom 8314  df-sdom 8315  df-fin 8316  df-sup 8707  df-inf 8708  df-oi 8775  df-card 9168  df-pnf 10482  df-mnf 10483  df-xr 10484  df-ltxr 10485  df-le 10486  df-sub 10678  df-neg 10679  df-div 11105  df-nn 11446  df-2 11509  df-3 11510  df-n0 11714  df-z 11800  df-uz 12065  df-rp 12211  df-fz 12715  df-fzo 12856  df-fl 12983  df-seq 13191  df-exp 13251  df-hash 13512  df-cj 14325  df-re 14326  df-im 14327  df-sqrt 14461  df-abs 14462  df-clim 14712  df-rlim 14713  df-sum 14910  df-0p 23989  df-ply 24496  df-coe 24498  df-dgr 24499
This theorem is referenced by:  dgrsub  24580  dgrcolem2  24582  mpaaeu  39187
  Copyright terms: Public domain W3C validator