Step | Hyp | Ref
| Expression |
1 | | oveq2 7420 |
. . . 4
β’ (πΉ = 0π β
((β Γ {π΄})
βf Β· πΉ) = ((β Γ {π΄}) βf Β·
0π)) |
2 | 1 | fveq2d 6895 |
. . 3
β’ (πΉ = 0π β
(degβ((β Γ {π΄}) βf Β· πΉ)) = (degβ((β
Γ {π΄})
βf Β· 0π))) |
3 | | fveq2 6891 |
. . . 4
β’ (πΉ = 0π β
(degβπΉ) =
(degβ0π)) |
4 | | dgr0 26013 |
. . . 4
β’
(degβ0π) = 0 |
5 | 3, 4 | eqtrdi 2787 |
. . 3
β’ (πΉ = 0π β
(degβπΉ) =
0) |
6 | 2, 5 | eqeq12d 2747 |
. 2
β’ (πΉ = 0π β
((degβ((β Γ {π΄}) βf Β· πΉ)) = (degβπΉ) β (degβ((β
Γ {π΄})
βf Β· 0π)) = 0)) |
7 | | ssid 4004 |
. . . . 5
β’ β
β β |
8 | | simpl1 1190 |
. . . . 5
β’ (((π΄ β β β§ π΄ β 0 β§ πΉ β (Polyβπ)) β§ πΉ β 0π) β π΄ β
β) |
9 | | plyconst 25956 |
. . . . 5
β’ ((β
β β β§ π΄
β β) β (β Γ {π΄}) β
(Polyββ)) |
10 | 7, 8, 9 | sylancr 586 |
. . . 4
β’ (((π΄ β β β§ π΄ β 0 β§ πΉ β (Polyβπ)) β§ πΉ β 0π) β (β
Γ {π΄}) β
(Polyββ)) |
11 | | 0cn 11211 |
. . . . 5
β’ 0 β
β |
12 | | fvconst2g 7205 |
. . . . . . 7
β’ ((π΄ β β β§ 0 β
β) β ((β Γ {π΄})β0) = π΄) |
13 | 8, 11, 12 | sylancl 585 |
. . . . . 6
β’ (((π΄ β β β§ π΄ β 0 β§ πΉ β (Polyβπ)) β§ πΉ β 0π) β
((β Γ {π΄})β0) = π΄) |
14 | | simpl2 1191 |
. . . . . 6
β’ (((π΄ β β β§ π΄ β 0 β§ πΉ β (Polyβπ)) β§ πΉ β 0π) β π΄ β 0) |
15 | 13, 14 | eqnetrd 3007 |
. . . . 5
β’ (((π΄ β β β§ π΄ β 0 β§ πΉ β (Polyβπ)) β§ πΉ β 0π) β
((β Γ {π΄})β0) β 0) |
16 | | ne0p 25957 |
. . . . 5
β’ ((0
β β β§ ((β Γ {π΄})β0) β 0) β (β Γ
{π΄}) β
0π) |
17 | 11, 15, 16 | sylancr 586 |
. . . 4
β’ (((π΄ β β β§ π΄ β 0 β§ πΉ β (Polyβπ)) β§ πΉ β 0π) β (β
Γ {π΄}) β
0π) |
18 | | plyssc 25950 |
. . . . 5
β’
(Polyβπ)
β (Polyββ) |
19 | | simpl3 1192 |
. . . . 5
β’ (((π΄ β β β§ π΄ β 0 β§ πΉ β (Polyβπ)) β§ πΉ β 0π) β πΉ β (Polyβπ)) |
20 | 18, 19 | sselid 3980 |
. . . 4
β’ (((π΄ β β β§ π΄ β 0 β§ πΉ β (Polyβπ)) β§ πΉ β 0π) β πΉ β
(Polyββ)) |
21 | | simpr 484 |
. . . 4
β’ (((π΄ β β β§ π΄ β 0 β§ πΉ β (Polyβπ)) β§ πΉ β 0π) β πΉ β
0π) |
22 | | eqid 2731 |
. . . . 5
β’
(degβ(β Γ {π΄})) = (degβ(β Γ {π΄})) |
23 | | eqid 2731 |
. . . . 5
β’
(degβπΉ) =
(degβπΉ) |
24 | 22, 23 | dgrmul 26021 |
. . . 4
β’
((((β Γ {π΄}) β (Polyββ) β§
(β Γ {π΄}) β
0π) β§ (πΉ β (Polyββ) β§ πΉ β 0π))
β (degβ((β Γ {π΄}) βf Β· πΉ)) = ((degβ(β
Γ {π΄})) +
(degβπΉ))) |
25 | 10, 17, 20, 21, 24 | syl22anc 836 |
. . 3
β’ (((π΄ β β β§ π΄ β 0 β§ πΉ β (Polyβπ)) β§ πΉ β 0π) β
(degβ((β Γ {π΄}) βf Β· πΉ)) = ((degβ(β
Γ {π΄})) +
(degβπΉ))) |
26 | | 0dgr 25995 |
. . . . 5
β’ (π΄ β β β
(degβ(β Γ {π΄})) = 0) |
27 | 8, 26 | syl 17 |
. . . 4
β’ (((π΄ β β β§ π΄ β 0 β§ πΉ β (Polyβπ)) β§ πΉ β 0π) β
(degβ(β Γ {π΄})) = 0) |
28 | 27 | oveq1d 7427 |
. . 3
β’ (((π΄ β β β§ π΄ β 0 β§ πΉ β (Polyβπ)) β§ πΉ β 0π) β
((degβ(β Γ {π΄})) + (degβπΉ)) = (0 + (degβπΉ))) |
29 | | dgrcl 25983 |
. . . . . 6
β’ (πΉ β (Polyβπ) β (degβπΉ) β
β0) |
30 | 19, 29 | syl 17 |
. . . . 5
β’ (((π΄ β β β§ π΄ β 0 β§ πΉ β (Polyβπ)) β§ πΉ β 0π) β
(degβπΉ) β
β0) |
31 | 30 | nn0cnd 12539 |
. . . 4
β’ (((π΄ β β β§ π΄ β 0 β§ πΉ β (Polyβπ)) β§ πΉ β 0π) β
(degβπΉ) β
β) |
32 | 31 | addlidd 11420 |
. . 3
β’ (((π΄ β β β§ π΄ β 0 β§ πΉ β (Polyβπ)) β§ πΉ β 0π) β (0 +
(degβπΉ)) =
(degβπΉ)) |
33 | 25, 28, 32 | 3eqtrd 2775 |
. 2
β’ (((π΄ β β β§ π΄ β 0 β§ πΉ β (Polyβπ)) β§ πΉ β 0π) β
(degβ((β Γ {π΄}) βf Β· πΉ)) = (degβπΉ)) |
34 | | cnex 11194 |
. . . . . . . 8
β’ β
β V |
35 | 34 | a1i 11 |
. . . . . . 7
β’ ((π΄ β β β§ π΄ β 0 β§ πΉ β (Polyβπ)) β β β V) |
36 | | simp1 1135 |
. . . . . . 7
β’ ((π΄ β β β§ π΄ β 0 β§ πΉ β (Polyβπ)) β π΄ β β) |
37 | 11 | a1i 11 |
. . . . . . 7
β’ ((π΄ β β β§ π΄ β 0 β§ πΉ β (Polyβπ)) β 0 β β) |
38 | 35, 36, 37 | ofc12 7701 |
. . . . . 6
β’ ((π΄ β β β§ π΄ β 0 β§ πΉ β (Polyβπ)) β ((β Γ {π΄}) βf Β·
(β Γ {0})) = (β Γ {(π΄ Β· 0)})) |
39 | 36 | mul01d 11418 |
. . . . . . . 8
β’ ((π΄ β β β§ π΄ β 0 β§ πΉ β (Polyβπ)) β (π΄ Β· 0) = 0) |
40 | 39 | sneqd 4640 |
. . . . . . 7
β’ ((π΄ β β β§ π΄ β 0 β§ πΉ β (Polyβπ)) β {(π΄ Β· 0)} = {0}) |
41 | 40 | xpeq2d 5706 |
. . . . . 6
β’ ((π΄ β β β§ π΄ β 0 β§ πΉ β (Polyβπ)) β (β Γ {(π΄ Β· 0)}) = (β
Γ {0})) |
42 | 38, 41 | eqtrd 2771 |
. . . . 5
β’ ((π΄ β β β§ π΄ β 0 β§ πΉ β (Polyβπ)) β ((β Γ {π΄}) βf Β·
(β Γ {0})) = (β Γ {0})) |
43 | | df-0p 25420 |
. . . . . 6
β’
0π = (β Γ {0}) |
44 | 43 | oveq2i 7423 |
. . . . 5
β’ ((β
Γ {π΄})
βf Β· 0π) = ((β Γ {π΄}) βf Β·
(β Γ {0})) |
45 | 42, 44, 43 | 3eqtr4g 2796 |
. . . 4
β’ ((π΄ β β β§ π΄ β 0 β§ πΉ β (Polyβπ)) β ((β Γ {π΄}) βf Β·
0π) = 0π) |
46 | 45 | fveq2d 6895 |
. . 3
β’ ((π΄ β β β§ π΄ β 0 β§ πΉ β (Polyβπ)) β (degβ((β Γ
{π΄}) βf
Β· 0π)) =
(degβ0π)) |
47 | 46, 4 | eqtrdi 2787 |
. 2
β’ ((π΄ β β β§ π΄ β 0 β§ πΉ β (Polyβπ)) β (degβ((β Γ
{π΄}) βf
Β· 0π)) = 0) |
48 | 6, 33, 47 | pm2.61ne 3026 |
1
β’ ((π΄ β β β§ π΄ β 0 β§ πΉ β (Polyβπ)) β (degβ((β Γ
{π΄}) βf
Β· πΉ)) =
(degβπΉ)) |