MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrnznn Structured version   Visualization version   GIF version

Theorem dgrnznn 26152
Description: A nonzero polynomial with a root has positive degree. (Contributed by Stefan O'Rear, 25-Nov-2014.)
Assertion
Ref Expression
dgrnznn (((𝑃 ∈ (Poly‘𝑆) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → (deg‘𝑃) ∈ ℕ)

Proof of Theorem dgrnznn
StepHypRef Expression
1 simpr 484 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → 𝑃 = (ℂ × {(𝑃‘0)}))
21fveq1d 6860 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → (𝑃𝐴) = ((ℂ × {(𝑃‘0)})‘𝐴))
3 simplr 768 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → (𝑃𝐴) = 0)
4 fvex 6871 . . . . . . . . . . . . . 14 (𝑃‘0) ∈ V
54fvconst2 7178 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → ((ℂ × {(𝑃‘0)})‘𝐴) = (𝑃‘0))
65ad2antrr 726 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → ((ℂ × {(𝑃‘0)})‘𝐴) = (𝑃‘0))
72, 3, 63eqtr3rd 2773 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → (𝑃‘0) = 0)
87sneqd 4601 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → {(𝑃‘0)} = {0})
98xpeq2d 5668 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → (ℂ × {(𝑃‘0)}) = (ℂ × {0}))
101, 9eqtrd 2764 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → 𝑃 = (ℂ × {0}))
11 df-0p 25571 . . . . . . . 8 0𝑝 = (ℂ × {0})
1210, 11eqtr4di 2782 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → 𝑃 = 0𝑝)
1312ex 412 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0) → (𝑃 = (ℂ × {(𝑃‘0)}) → 𝑃 = 0𝑝))
1413necon3ad 2938 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0) → (𝑃 ≠ 0𝑝 → ¬ 𝑃 = (ℂ × {(𝑃‘0)})))
1514impcom 407 . . . 4 ((𝑃 ≠ 0𝑝 ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → ¬ 𝑃 = (ℂ × {(𝑃‘0)}))
1615adantll 714 . . 3 (((𝑃 ∈ (Poly‘𝑆) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → ¬ 𝑃 = (ℂ × {(𝑃‘0)}))
17 0dgrb 26151 . . . 4 (𝑃 ∈ (Poly‘𝑆) → ((deg‘𝑃) = 0 ↔ 𝑃 = (ℂ × {(𝑃‘0)})))
1817ad2antrr 726 . . 3 (((𝑃 ∈ (Poly‘𝑆) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → ((deg‘𝑃) = 0 ↔ 𝑃 = (ℂ × {(𝑃‘0)})))
1916, 18mtbird 325 . 2 (((𝑃 ∈ (Poly‘𝑆) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → ¬ (deg‘𝑃) = 0)
20 dgrcl 26138 . . . 4 (𝑃 ∈ (Poly‘𝑆) → (deg‘𝑃) ∈ ℕ0)
2120ad2antrr 726 . . 3 (((𝑃 ∈ (Poly‘𝑆) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → (deg‘𝑃) ∈ ℕ0)
22 elnn0 12444 . . 3 ((deg‘𝑃) ∈ ℕ0 ↔ ((deg‘𝑃) ∈ ℕ ∨ (deg‘𝑃) = 0))
2321, 22sylib 218 . 2 (((𝑃 ∈ (Poly‘𝑆) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → ((deg‘𝑃) ∈ ℕ ∨ (deg‘𝑃) = 0))
24 orel2 890 . 2 (¬ (deg‘𝑃) = 0 → (((deg‘𝑃) ∈ ℕ ∨ (deg‘𝑃) = 0) → (deg‘𝑃) ∈ ℕ))
2519, 23, 24sylc 65 1 (((𝑃 ∈ (Poly‘𝑆) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → (deg‘𝑃) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  {csn 4589   × cxp 5636  cfv 6511  cc 11066  0cc0 11068  cn 12186  0cn0 12442  0𝑝c0p 25570  Polycply 26089  degcdgr 26092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-0p 25571  df-ply 26093  df-coe 26095  df-dgr 26096
This theorem is referenced by:  dgraalem  43134  dgraaub  43137  etransclem47  46279
  Copyright terms: Public domain W3C validator