![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dgrnznn | Structured version Visualization version GIF version |
Description: A nonzero polynomial with a root has positive degree. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
Ref | Expression |
---|---|
dgrnznn | ⊢ (((𝑃 ∈ (Poly‘𝑆) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0)) → (deg‘𝑃) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → 𝑃 = (ℂ × {(𝑃‘0)})) | |
2 | 1 | fveq1d 6909 | . . . . . . . . . . . 12 ⊢ (((𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → (𝑃‘𝐴) = ((ℂ × {(𝑃‘0)})‘𝐴)) |
3 | simplr 769 | . . . . . . . . . . . 12 ⊢ (((𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → (𝑃‘𝐴) = 0) | |
4 | fvex 6920 | . . . . . . . . . . . . . 14 ⊢ (𝑃‘0) ∈ V | |
5 | 4 | fvconst2 7224 | . . . . . . . . . . . . 13 ⊢ (𝐴 ∈ ℂ → ((ℂ × {(𝑃‘0)})‘𝐴) = (𝑃‘0)) |
6 | 5 | ad2antrr 726 | . . . . . . . . . . . 12 ⊢ (((𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → ((ℂ × {(𝑃‘0)})‘𝐴) = (𝑃‘0)) |
7 | 2, 3, 6 | 3eqtr3rd 2784 | . . . . . . . . . . 11 ⊢ (((𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → (𝑃‘0) = 0) |
8 | 7 | sneqd 4643 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → {(𝑃‘0)} = {0}) |
9 | 8 | xpeq2d 5719 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → (ℂ × {(𝑃‘0)}) = (ℂ × {0})) |
10 | 1, 9 | eqtrd 2775 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → 𝑃 = (ℂ × {0})) |
11 | df-0p 25719 | . . . . . . . 8 ⊢ 0𝑝 = (ℂ × {0}) | |
12 | 10, 11 | eqtr4di 2793 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → 𝑃 = 0𝑝) |
13 | 12 | ex 412 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0) → (𝑃 = (ℂ × {(𝑃‘0)}) → 𝑃 = 0𝑝)) |
14 | 13 | necon3ad 2951 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0) → (𝑃 ≠ 0𝑝 → ¬ 𝑃 = (ℂ × {(𝑃‘0)}))) |
15 | 14 | impcom 407 | . . . 4 ⊢ ((𝑃 ≠ 0𝑝 ∧ (𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0)) → ¬ 𝑃 = (ℂ × {(𝑃‘0)})) |
16 | 15 | adantll 714 | . . 3 ⊢ (((𝑃 ∈ (Poly‘𝑆) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0)) → ¬ 𝑃 = (ℂ × {(𝑃‘0)})) |
17 | 0dgrb 26300 | . . . 4 ⊢ (𝑃 ∈ (Poly‘𝑆) → ((deg‘𝑃) = 0 ↔ 𝑃 = (ℂ × {(𝑃‘0)}))) | |
18 | 17 | ad2antrr 726 | . . 3 ⊢ (((𝑃 ∈ (Poly‘𝑆) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0)) → ((deg‘𝑃) = 0 ↔ 𝑃 = (ℂ × {(𝑃‘0)}))) |
19 | 16, 18 | mtbird 325 | . 2 ⊢ (((𝑃 ∈ (Poly‘𝑆) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0)) → ¬ (deg‘𝑃) = 0) |
20 | dgrcl 26287 | . . . 4 ⊢ (𝑃 ∈ (Poly‘𝑆) → (deg‘𝑃) ∈ ℕ0) | |
21 | 20 | ad2antrr 726 | . . 3 ⊢ (((𝑃 ∈ (Poly‘𝑆) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0)) → (deg‘𝑃) ∈ ℕ0) |
22 | elnn0 12526 | . . 3 ⊢ ((deg‘𝑃) ∈ ℕ0 ↔ ((deg‘𝑃) ∈ ℕ ∨ (deg‘𝑃) = 0)) | |
23 | 21, 22 | sylib 218 | . 2 ⊢ (((𝑃 ∈ (Poly‘𝑆) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0)) → ((deg‘𝑃) ∈ ℕ ∨ (deg‘𝑃) = 0)) |
24 | orel2 890 | . 2 ⊢ (¬ (deg‘𝑃) = 0 → (((deg‘𝑃) ∈ ℕ ∨ (deg‘𝑃) = 0) → (deg‘𝑃) ∈ ℕ)) | |
25 | 19, 23, 24 | sylc 65 | 1 ⊢ (((𝑃 ∈ (Poly‘𝑆) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0)) → (deg‘𝑃) ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 {csn 4631 × cxp 5687 ‘cfv 6563 ℂcc 11151 0cc0 11153 ℕcn 12264 ℕ0cn0 12524 0𝑝c0p 25718 Polycply 26238 degcdgr 26241 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-inf 9481 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-fz 13545 df-fzo 13692 df-fl 13829 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-rlim 15522 df-sum 15720 df-0p 25719 df-ply 26242 df-coe 26244 df-dgr 26245 |
This theorem is referenced by: dgraalem 43134 dgraaub 43137 etransclem47 46237 |
Copyright terms: Public domain | W3C validator |