Step | Hyp | Ref
| Expression |
1 | | simpr 484 |
. . . . . . . . 9
β’ (((π΄ β β β§ (πβπ΄) = 0) β§ π = (β Γ {(πβ0)})) β π = (β Γ {(πβ0)})) |
2 | 1 | fveq1d 6893 |
. . . . . . . . . . . 12
β’ (((π΄ β β β§ (πβπ΄) = 0) β§ π = (β Γ {(πβ0)})) β (πβπ΄) = ((β Γ {(πβ0)})βπ΄)) |
3 | | simplr 766 |
. . . . . . . . . . . 12
β’ (((π΄ β β β§ (πβπ΄) = 0) β§ π = (β Γ {(πβ0)})) β (πβπ΄) = 0) |
4 | | fvex 6904 |
. . . . . . . . . . . . . 14
β’ (πβ0) β
V |
5 | 4 | fvconst2 7207 |
. . . . . . . . . . . . 13
β’ (π΄ β β β ((β
Γ {(πβ0)})βπ΄) = (πβ0)) |
6 | 5 | ad2antrr 723 |
. . . . . . . . . . . 12
β’ (((π΄ β β β§ (πβπ΄) = 0) β§ π = (β Γ {(πβ0)})) β ((β Γ
{(πβ0)})βπ΄) = (πβ0)) |
7 | 2, 3, 6 | 3eqtr3rd 2780 |
. . . . . . . . . . 11
β’ (((π΄ β β β§ (πβπ΄) = 0) β§ π = (β Γ {(πβ0)})) β (πβ0) = 0) |
8 | 7 | sneqd 4640 |
. . . . . . . . . 10
β’ (((π΄ β β β§ (πβπ΄) = 0) β§ π = (β Γ {(πβ0)})) β {(πβ0)} = {0}) |
9 | 8 | xpeq2d 5706 |
. . . . . . . . 9
β’ (((π΄ β β β§ (πβπ΄) = 0) β§ π = (β Γ {(πβ0)})) β (β Γ {(πβ0)}) = (β Γ
{0})) |
10 | 1, 9 | eqtrd 2771 |
. . . . . . . 8
β’ (((π΄ β β β§ (πβπ΄) = 0) β§ π = (β Γ {(πβ0)})) β π = (β Γ {0})) |
11 | | df-0p 25420 |
. . . . . . . 8
β’
0π = (β Γ {0}) |
12 | 10, 11 | eqtr4di 2789 |
. . . . . . 7
β’ (((π΄ β β β§ (πβπ΄) = 0) β§ π = (β Γ {(πβ0)})) β π = 0π) |
13 | 12 | ex 412 |
. . . . . 6
β’ ((π΄ β β β§ (πβπ΄) = 0) β (π = (β Γ {(πβ0)}) β π = 0π)) |
14 | 13 | necon3ad 2952 |
. . . . 5
β’ ((π΄ β β β§ (πβπ΄) = 0) β (π β 0π β Β¬
π = (β Γ
{(πβ0)}))) |
15 | 14 | impcom 407 |
. . . 4
β’ ((π β 0π
β§ (π΄ β β
β§ (πβπ΄) = 0)) β Β¬ π = (β Γ {(πβ0)})) |
16 | 15 | adantll 711 |
. . 3
β’ (((π β (Polyβπ) β§ π β 0π) β§ (π΄ β β β§ (πβπ΄) = 0)) β Β¬ π = (β Γ {(πβ0)})) |
17 | | 0dgrb 25996 |
. . . 4
β’ (π β (Polyβπ) β ((degβπ) = 0 β π = (β Γ {(πβ0)}))) |
18 | 17 | ad2antrr 723 |
. . 3
β’ (((π β (Polyβπ) β§ π β 0π) β§ (π΄ β β β§ (πβπ΄) = 0)) β ((degβπ) = 0 β π = (β Γ {(πβ0)}))) |
19 | 16, 18 | mtbird 325 |
. 2
β’ (((π β (Polyβπ) β§ π β 0π) β§ (π΄ β β β§ (πβπ΄) = 0)) β Β¬ (degβπ) = 0) |
20 | | dgrcl 25983 |
. . . 4
β’ (π β (Polyβπ) β (degβπ) β
β0) |
21 | 20 | ad2antrr 723 |
. . 3
β’ (((π β (Polyβπ) β§ π β 0π) β§ (π΄ β β β§ (πβπ΄) = 0)) β (degβπ) β
β0) |
22 | | elnn0 12479 |
. . 3
β’
((degβπ)
β β0 β ((degβπ) β β β¨ (degβπ) = 0)) |
23 | 21, 22 | sylib 217 |
. 2
β’ (((π β (Polyβπ) β§ π β 0π) β§ (π΄ β β β§ (πβπ΄) = 0)) β ((degβπ) β β β¨ (degβπ) = 0)) |
24 | | orel2 888 |
. 2
β’ (Β¬
(degβπ) = 0 β
(((degβπ) β
β β¨ (degβπ)
= 0) β (degβπ)
β β)) |
25 | 19, 23, 24 | sylc 65 |
1
β’ (((π β (Polyβπ) β§ π β 0π) β§ (π΄ β β β§ (πβπ΄) = 0)) β (degβπ) β β) |