MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrnznn Structured version   Visualization version   GIF version

Theorem dgrnznn 24996
Description: A nonzero polynomial with a root has positive degree. (Contributed by Stefan O'Rear, 25-Nov-2014.)
Assertion
Ref Expression
dgrnznn (((𝑃 ∈ (Poly‘𝑆) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → (deg‘𝑃) ∈ ℕ)

Proof of Theorem dgrnznn
StepHypRef Expression
1 simpr 488 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → 𝑃 = (ℂ × {(𝑃‘0)}))
21fveq1d 6676 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → (𝑃𝐴) = ((ℂ × {(𝑃‘0)})‘𝐴))
3 simplr 769 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → (𝑃𝐴) = 0)
4 fvex 6687 . . . . . . . . . . . . . 14 (𝑃‘0) ∈ V
54fvconst2 6976 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → ((ℂ × {(𝑃‘0)})‘𝐴) = (𝑃‘0))
65ad2antrr 726 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → ((ℂ × {(𝑃‘0)})‘𝐴) = (𝑃‘0))
72, 3, 63eqtr3rd 2782 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → (𝑃‘0) = 0)
87sneqd 4528 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → {(𝑃‘0)} = {0})
98xpeq2d 5555 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → (ℂ × {(𝑃‘0)}) = (ℂ × {0}))
101, 9eqtrd 2773 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → 𝑃 = (ℂ × {0}))
11 df-0p 24422 . . . . . . . 8 0𝑝 = (ℂ × {0})
1210, 11eqtr4di 2791 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → 𝑃 = 0𝑝)
1312ex 416 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0) → (𝑃 = (ℂ × {(𝑃‘0)}) → 𝑃 = 0𝑝))
1413necon3ad 2947 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0) → (𝑃 ≠ 0𝑝 → ¬ 𝑃 = (ℂ × {(𝑃‘0)})))
1514impcom 411 . . . 4 ((𝑃 ≠ 0𝑝 ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → ¬ 𝑃 = (ℂ × {(𝑃‘0)}))
1615adantll 714 . . 3 (((𝑃 ∈ (Poly‘𝑆) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → ¬ 𝑃 = (ℂ × {(𝑃‘0)}))
17 0dgrb 24995 . . . 4 (𝑃 ∈ (Poly‘𝑆) → ((deg‘𝑃) = 0 ↔ 𝑃 = (ℂ × {(𝑃‘0)})))
1817ad2antrr 726 . . 3 (((𝑃 ∈ (Poly‘𝑆) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → ((deg‘𝑃) = 0 ↔ 𝑃 = (ℂ × {(𝑃‘0)})))
1916, 18mtbird 328 . 2 (((𝑃 ∈ (Poly‘𝑆) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → ¬ (deg‘𝑃) = 0)
20 dgrcl 24982 . . . 4 (𝑃 ∈ (Poly‘𝑆) → (deg‘𝑃) ∈ ℕ0)
2120ad2antrr 726 . . 3 (((𝑃 ∈ (Poly‘𝑆) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → (deg‘𝑃) ∈ ℕ0)
22 elnn0 11978 . . 3 ((deg‘𝑃) ∈ ℕ0 ↔ ((deg‘𝑃) ∈ ℕ ∨ (deg‘𝑃) = 0))
2321, 22sylib 221 . 2 (((𝑃 ∈ (Poly‘𝑆) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → ((deg‘𝑃) ∈ ℕ ∨ (deg‘𝑃) = 0))
24 orel2 890 . 2 (¬ (deg‘𝑃) = 0 → (((deg‘𝑃) ∈ ℕ ∨ (deg‘𝑃) = 0) → (deg‘𝑃) ∈ ℕ))
2519, 23, 24sylc 65 1 (((𝑃 ∈ (Poly‘𝑆) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → (deg‘𝑃) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 846   = wceq 1542  wcel 2114  wne 2934  {csn 4516   × cxp 5523  cfv 6339  cc 10613  0cc0 10615  cn 11716  0cn0 11976  0𝑝c0p 24421  Polycply 24933  degcdgr 24936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-inf2 9177  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-se 5484  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-of 7425  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-er 8320  df-map 8439  df-pm 8440  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-sup 8979  df-inf 8980  df-oi 9047  df-card 9441  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-3 11780  df-n0 11977  df-z 12063  df-uz 12325  df-rp 12473  df-fz 12982  df-fzo 13125  df-fl 13253  df-seq 13461  df-exp 13522  df-hash 13783  df-cj 14548  df-re 14549  df-im 14550  df-sqrt 14684  df-abs 14685  df-clim 14935  df-rlim 14936  df-sum 15136  df-0p 24422  df-ply 24937  df-coe 24939  df-dgr 24940
This theorem is referenced by:  dgraalem  40542  dgraaub  40545  etransclem47  43364
  Copyright terms: Public domain W3C validator