MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrnznn Structured version   Visualization version   GIF version

Theorem dgrnznn 26199
Description: A nonzero polynomial with a root has positive degree. (Contributed by Stefan O'Rear, 25-Nov-2014.)
Assertion
Ref Expression
dgrnznn (((𝑃 ∈ (Poly‘𝑆) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → (deg‘𝑃) ∈ ℕ)

Proof of Theorem dgrnznn
StepHypRef Expression
1 simpr 484 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → 𝑃 = (ℂ × {(𝑃‘0)}))
21fveq1d 6833 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → (𝑃𝐴) = ((ℂ × {(𝑃‘0)})‘𝐴))
3 simplr 768 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → (𝑃𝐴) = 0)
4 fvex 6844 . . . . . . . . . . . . . 14 (𝑃‘0) ∈ V
54fvconst2 7147 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → ((ℂ × {(𝑃‘0)})‘𝐴) = (𝑃‘0))
65ad2antrr 726 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → ((ℂ × {(𝑃‘0)})‘𝐴) = (𝑃‘0))
72, 3, 63eqtr3rd 2777 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → (𝑃‘0) = 0)
87sneqd 4589 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → {(𝑃‘0)} = {0})
98xpeq2d 5651 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → (ℂ × {(𝑃‘0)}) = (ℂ × {0}))
101, 9eqtrd 2768 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → 𝑃 = (ℂ × {0}))
11 df-0p 25618 . . . . . . . 8 0𝑝 = (ℂ × {0})
1210, 11eqtr4di 2786 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → 𝑃 = 0𝑝)
1312ex 412 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0) → (𝑃 = (ℂ × {(𝑃‘0)}) → 𝑃 = 0𝑝))
1413necon3ad 2942 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0) → (𝑃 ≠ 0𝑝 → ¬ 𝑃 = (ℂ × {(𝑃‘0)})))
1514impcom 407 . . . 4 ((𝑃 ≠ 0𝑝 ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → ¬ 𝑃 = (ℂ × {(𝑃‘0)}))
1615adantll 714 . . 3 (((𝑃 ∈ (Poly‘𝑆) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → ¬ 𝑃 = (ℂ × {(𝑃‘0)}))
17 0dgrb 26198 . . . 4 (𝑃 ∈ (Poly‘𝑆) → ((deg‘𝑃) = 0 ↔ 𝑃 = (ℂ × {(𝑃‘0)})))
1817ad2antrr 726 . . 3 (((𝑃 ∈ (Poly‘𝑆) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → ((deg‘𝑃) = 0 ↔ 𝑃 = (ℂ × {(𝑃‘0)})))
1916, 18mtbird 325 . 2 (((𝑃 ∈ (Poly‘𝑆) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → ¬ (deg‘𝑃) = 0)
20 dgrcl 26185 . . . 4 (𝑃 ∈ (Poly‘𝑆) → (deg‘𝑃) ∈ ℕ0)
2120ad2antrr 726 . . 3 (((𝑃 ∈ (Poly‘𝑆) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → (deg‘𝑃) ∈ ℕ0)
22 elnn0 12394 . . 3 ((deg‘𝑃) ∈ ℕ0 ↔ ((deg‘𝑃) ∈ ℕ ∨ (deg‘𝑃) = 0))
2321, 22sylib 218 . 2 (((𝑃 ∈ (Poly‘𝑆) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → ((deg‘𝑃) ∈ ℕ ∨ (deg‘𝑃) = 0))
24 orel2 890 . 2 (¬ (deg‘𝑃) = 0 → (((deg‘𝑃) ∈ ℕ ∨ (deg‘𝑃) = 0) → (deg‘𝑃) ∈ ℕ))
2519, 23, 24sylc 65 1 (((𝑃 ∈ (Poly‘𝑆) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → (deg‘𝑃) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2113  wne 2929  {csn 4577   × cxp 5619  cfv 6489  cc 11015  0cc0 11017  cn 12136  0cn0 12392  0𝑝c0p 25617  Polycply 26136  degcdgr 26139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-pm 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-inf 9338  df-oi 9407  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-n0 12393  df-z 12480  df-uz 12743  df-rp 12897  df-fz 13415  df-fzo 13562  df-fl 13703  df-seq 13916  df-exp 13976  df-hash 14245  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-clim 15402  df-rlim 15403  df-sum 15601  df-0p 25618  df-ply 26140  df-coe 26142  df-dgr 26143
This theorem is referenced by:  dgraalem  43302  dgraaub  43305  etransclem47  46441
  Copyright terms: Public domain W3C validator