| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dgrnznn | Structured version Visualization version GIF version | ||
| Description: A nonzero polynomial with a root has positive degree. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
| Ref | Expression |
|---|---|
| dgrnznn | ⊢ (((𝑃 ∈ (Poly‘𝑆) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0)) → (deg‘𝑃) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → 𝑃 = (ℂ × {(𝑃‘0)})) | |
| 2 | 1 | fveq1d 6819 | . . . . . . . . . . . 12 ⊢ (((𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → (𝑃‘𝐴) = ((ℂ × {(𝑃‘0)})‘𝐴)) |
| 3 | simplr 768 | . . . . . . . . . . . 12 ⊢ (((𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → (𝑃‘𝐴) = 0) | |
| 4 | fvex 6830 | . . . . . . . . . . . . . 14 ⊢ (𝑃‘0) ∈ V | |
| 5 | 4 | fvconst2 7133 | . . . . . . . . . . . . 13 ⊢ (𝐴 ∈ ℂ → ((ℂ × {(𝑃‘0)})‘𝐴) = (𝑃‘0)) |
| 6 | 5 | ad2antrr 726 | . . . . . . . . . . . 12 ⊢ (((𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → ((ℂ × {(𝑃‘0)})‘𝐴) = (𝑃‘0)) |
| 7 | 2, 3, 6 | 3eqtr3rd 2775 | . . . . . . . . . . 11 ⊢ (((𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → (𝑃‘0) = 0) |
| 8 | 7 | sneqd 4583 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → {(𝑃‘0)} = {0}) |
| 9 | 8 | xpeq2d 5641 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → (ℂ × {(𝑃‘0)}) = (ℂ × {0})) |
| 10 | 1, 9 | eqtrd 2766 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → 𝑃 = (ℂ × {0})) |
| 11 | df-0p 25593 | . . . . . . . 8 ⊢ 0𝑝 = (ℂ × {0}) | |
| 12 | 10, 11 | eqtr4di 2784 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → 𝑃 = 0𝑝) |
| 13 | 12 | ex 412 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0) → (𝑃 = (ℂ × {(𝑃‘0)}) → 𝑃 = 0𝑝)) |
| 14 | 13 | necon3ad 2941 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0) → (𝑃 ≠ 0𝑝 → ¬ 𝑃 = (ℂ × {(𝑃‘0)}))) |
| 15 | 14 | impcom 407 | . . . 4 ⊢ ((𝑃 ≠ 0𝑝 ∧ (𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0)) → ¬ 𝑃 = (ℂ × {(𝑃‘0)})) |
| 16 | 15 | adantll 714 | . . 3 ⊢ (((𝑃 ∈ (Poly‘𝑆) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0)) → ¬ 𝑃 = (ℂ × {(𝑃‘0)})) |
| 17 | 0dgrb 26173 | . . . 4 ⊢ (𝑃 ∈ (Poly‘𝑆) → ((deg‘𝑃) = 0 ↔ 𝑃 = (ℂ × {(𝑃‘0)}))) | |
| 18 | 17 | ad2antrr 726 | . . 3 ⊢ (((𝑃 ∈ (Poly‘𝑆) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0)) → ((deg‘𝑃) = 0 ↔ 𝑃 = (ℂ × {(𝑃‘0)}))) |
| 19 | 16, 18 | mtbird 325 | . 2 ⊢ (((𝑃 ∈ (Poly‘𝑆) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0)) → ¬ (deg‘𝑃) = 0) |
| 20 | dgrcl 26160 | . . . 4 ⊢ (𝑃 ∈ (Poly‘𝑆) → (deg‘𝑃) ∈ ℕ0) | |
| 21 | 20 | ad2antrr 726 | . . 3 ⊢ (((𝑃 ∈ (Poly‘𝑆) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0)) → (deg‘𝑃) ∈ ℕ0) |
| 22 | elnn0 12378 | . . 3 ⊢ ((deg‘𝑃) ∈ ℕ0 ↔ ((deg‘𝑃) ∈ ℕ ∨ (deg‘𝑃) = 0)) | |
| 23 | 21, 22 | sylib 218 | . 2 ⊢ (((𝑃 ∈ (Poly‘𝑆) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0)) → ((deg‘𝑃) ∈ ℕ ∨ (deg‘𝑃) = 0)) |
| 24 | orel2 890 | . 2 ⊢ (¬ (deg‘𝑃) = 0 → (((deg‘𝑃) ∈ ℕ ∨ (deg‘𝑃) = 0) → (deg‘𝑃) ∈ ℕ)) | |
| 25 | 19, 23, 24 | sylc 65 | 1 ⊢ (((𝑃 ∈ (Poly‘𝑆) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0)) → (deg‘𝑃) ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 {csn 4571 × cxp 5609 ‘cfv 6476 ℂcc 10999 0cc0 11001 ℕcn 12120 ℕ0cn0 12376 0𝑝c0p 25592 Polycply 26111 degcdgr 26114 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-inf 9322 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-n0 12377 df-z 12464 df-uz 12728 df-rp 12886 df-fz 13403 df-fzo 13550 df-fl 13691 df-seq 13904 df-exp 13964 df-hash 14233 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-clim 15390 df-rlim 15391 df-sum 15589 df-0p 25593 df-ply 26115 df-coe 26117 df-dgr 26118 |
| This theorem is referenced by: dgraalem 43178 dgraaub 43181 etransclem47 46319 |
| Copyright terms: Public domain | W3C validator |