| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coe0 | Structured version Visualization version GIF version | ||
| Description: The coefficients of the zero polynomial are zero. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| Ref | Expression |
|---|---|
| coe0 | ⊢ (coeff‘0𝑝) = (ℕ0 × {0}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cnd 11112 | . . . 4 ⊢ (⊤ → 0 ∈ ℂ) | |
| 2 | ssid 3953 | . . . . 5 ⊢ ℂ ⊆ ℂ | |
| 3 | ply0 26141 | . . . . 5 ⊢ (ℂ ⊆ ℂ → 0𝑝 ∈ (Poly‘ℂ)) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ 0𝑝 ∈ (Poly‘ℂ) |
| 5 | coemulc 26188 | . . . 4 ⊢ ((0 ∈ ℂ ∧ 0𝑝 ∈ (Poly‘ℂ)) → (coeff‘((ℂ × {0}) ∘f · 0𝑝)) = ((ℕ0 × {0}) ∘f · (coeff‘0𝑝))) | |
| 6 | 1, 4, 5 | sylancl 586 | . . 3 ⊢ (⊤ → (coeff‘((ℂ × {0}) ∘f · 0𝑝)) = ((ℕ0 × {0}) ∘f · (coeff‘0𝑝))) |
| 7 | cnex 11094 | . . . . . . 7 ⊢ ℂ ∈ V | |
| 8 | 7 | a1i 11 | . . . . . 6 ⊢ (⊤ → ℂ ∈ V) |
| 9 | plyf 26131 | . . . . . . 7 ⊢ (0𝑝 ∈ (Poly‘ℂ) → 0𝑝:ℂ⟶ℂ) | |
| 10 | 4, 9 | mp1i 13 | . . . . . 6 ⊢ (⊤ → 0𝑝:ℂ⟶ℂ) |
| 11 | mul02 11298 | . . . . . . 7 ⊢ (𝑥 ∈ ℂ → (0 · 𝑥) = 0) | |
| 12 | 11 | adantl 481 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℂ) → (0 · 𝑥) = 0) |
| 13 | 8, 10, 1, 1, 12 | caofid2 7652 | . . . . 5 ⊢ (⊤ → ((ℂ × {0}) ∘f · 0𝑝) = (ℂ × {0})) |
| 14 | df-0p 25599 | . . . . 5 ⊢ 0𝑝 = (ℂ × {0}) | |
| 15 | 13, 14 | eqtr4di 2786 | . . . 4 ⊢ (⊤ → ((ℂ × {0}) ∘f · 0𝑝) = 0𝑝) |
| 16 | 15 | fveq2d 6832 | . . 3 ⊢ (⊤ → (coeff‘((ℂ × {0}) ∘f · 0𝑝)) = (coeff‘0𝑝)) |
| 17 | nn0ex 12394 | . . . . 5 ⊢ ℕ0 ∈ V | |
| 18 | 17 | a1i 11 | . . . 4 ⊢ (⊤ → ℕ0 ∈ V) |
| 19 | eqid 2733 | . . . . . 6 ⊢ (coeff‘0𝑝) = (coeff‘0𝑝) | |
| 20 | 19 | coef3 26165 | . . . . 5 ⊢ (0𝑝 ∈ (Poly‘ℂ) → (coeff‘0𝑝):ℕ0⟶ℂ) |
| 21 | 4, 20 | mp1i 13 | . . . 4 ⊢ (⊤ → (coeff‘0𝑝):ℕ0⟶ℂ) |
| 22 | 18, 21, 1, 1, 12 | caofid2 7652 | . . 3 ⊢ (⊤ → ((ℕ0 × {0}) ∘f · (coeff‘0𝑝)) = (ℕ0 × {0})) |
| 23 | 6, 16, 22 | 3eqtr3d 2776 | . 2 ⊢ (⊤ → (coeff‘0𝑝) = (ℕ0 × {0})) |
| 24 | 23 | mptru 1548 | 1 ⊢ (coeff‘0𝑝) = (ℕ0 × {0}) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ⊤wtru 1542 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 {csn 4575 × cxp 5617 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 ∘f cof 7614 ℂcc 11011 0cc0 11013 · cmul 11018 ℕ0cn0 12388 0𝑝c0p 25598 Polycply 26117 coeffccoe 26119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-inf 9334 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-n0 12389 df-z 12476 df-uz 12739 df-rp 12893 df-fz 13410 df-fzo 13557 df-fl 13698 df-seq 13911 df-exp 13971 df-hash 14240 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-clim 15397 df-rlim 15398 df-sum 15596 df-0p 25599 df-ply 26121 df-coe 26123 df-dgr 26124 |
| This theorem is referenced by: dgreq0 26199 dgrlt 26200 plymul0or 26216 plydivlem4 26232 plymulx 34582 mncn0 43256 aaitgo 43279 n0p 45166 elaa2 46356 aacllem 49926 |
| Copyright terms: Public domain | W3C validator |