MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe0 Structured version   Visualization version   GIF version

Theorem coe0 26189
Description: The coefficients of the zero polynomial are zero. (Contributed by Mario Carneiro, 22-Jul-2014.)
Assertion
Ref Expression
coe0 (coeff‘0𝑝) = (ℕ0 × {0})

Proof of Theorem coe0
StepHypRef Expression
1 0cnd 11112 . . . 4 (⊤ → 0 ∈ ℂ)
2 ssid 3953 . . . . 5 ℂ ⊆ ℂ
3 ply0 26141 . . . . 5 (ℂ ⊆ ℂ → 0𝑝 ∈ (Poly‘ℂ))
42, 3ax-mp 5 . . . 4 0𝑝 ∈ (Poly‘ℂ)
5 coemulc 26188 . . . 4 ((0 ∈ ℂ ∧ 0𝑝 ∈ (Poly‘ℂ)) → (coeff‘((ℂ × {0}) ∘f · 0𝑝)) = ((ℕ0 × {0}) ∘f · (coeff‘0𝑝)))
61, 4, 5sylancl 586 . . 3 (⊤ → (coeff‘((ℂ × {0}) ∘f · 0𝑝)) = ((ℕ0 × {0}) ∘f · (coeff‘0𝑝)))
7 cnex 11094 . . . . . . 7 ℂ ∈ V
87a1i 11 . . . . . 6 (⊤ → ℂ ∈ V)
9 plyf 26131 . . . . . . 7 (0𝑝 ∈ (Poly‘ℂ) → 0𝑝:ℂ⟶ℂ)
104, 9mp1i 13 . . . . . 6 (⊤ → 0𝑝:ℂ⟶ℂ)
11 mul02 11298 . . . . . . 7 (𝑥 ∈ ℂ → (0 · 𝑥) = 0)
1211adantl 481 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℂ) → (0 · 𝑥) = 0)
138, 10, 1, 1, 12caofid2 7652 . . . . 5 (⊤ → ((ℂ × {0}) ∘f · 0𝑝) = (ℂ × {0}))
14 df-0p 25599 . . . . 5 0𝑝 = (ℂ × {0})
1513, 14eqtr4di 2786 . . . 4 (⊤ → ((ℂ × {0}) ∘f · 0𝑝) = 0𝑝)
1615fveq2d 6832 . . 3 (⊤ → (coeff‘((ℂ × {0}) ∘f · 0𝑝)) = (coeff‘0𝑝))
17 nn0ex 12394 . . . . 5 0 ∈ V
1817a1i 11 . . . 4 (⊤ → ℕ0 ∈ V)
19 eqid 2733 . . . . . 6 (coeff‘0𝑝) = (coeff‘0𝑝)
2019coef3 26165 . . . . 5 (0𝑝 ∈ (Poly‘ℂ) → (coeff‘0𝑝):ℕ0⟶ℂ)
214, 20mp1i 13 . . . 4 (⊤ → (coeff‘0𝑝):ℕ0⟶ℂ)
2218, 21, 1, 1, 12caofid2 7652 . . 3 (⊤ → ((ℕ0 × {0}) ∘f · (coeff‘0𝑝)) = (ℕ0 × {0}))
236, 16, 223eqtr3d 2776 . 2 (⊤ → (coeff‘0𝑝) = (ℕ0 × {0}))
2423mptru 1548 1 (coeff‘0𝑝) = (ℕ0 × {0})
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wtru 1542  wcel 2113  Vcvv 3437  wss 3898  {csn 4575   × cxp 5617  wf 6482  cfv 6486  (class class class)co 7352  f cof 7614  cc 11011  0cc0 11013   · cmul 11018  0cn0 12388  0𝑝c0p 25598  Polycply 26117  coeffccoe 26119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-fz 13410  df-fzo 13557  df-fl 13698  df-seq 13911  df-exp 13971  df-hash 14240  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-clim 15397  df-rlim 15398  df-sum 15596  df-0p 25599  df-ply 26121  df-coe 26123  df-dgr 26124
This theorem is referenced by:  dgreq0  26199  dgrlt  26200  plymul0or  26216  plydivlem4  26232  plymulx  34582  mncn0  43256  aaitgo  43279  n0p  45166  elaa2  46356  aacllem  49926
  Copyright terms: Public domain W3C validator