Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > coe0 | Structured version Visualization version GIF version |
Description: The coefficients of the zero polynomial are zero. (Contributed by Mario Carneiro, 22-Jul-2014.) |
Ref | Expression |
---|---|
coe0 | ⊢ (coeff‘0𝑝) = (ℕ0 × {0}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cnd 10968 | . . . 4 ⊢ (⊤ → 0 ∈ ℂ) | |
2 | ssid 3943 | . . . . 5 ⊢ ℂ ⊆ ℂ | |
3 | ply0 25369 | . . . . 5 ⊢ (ℂ ⊆ ℂ → 0𝑝 ∈ (Poly‘ℂ)) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ 0𝑝 ∈ (Poly‘ℂ) |
5 | coemulc 25416 | . . . 4 ⊢ ((0 ∈ ℂ ∧ 0𝑝 ∈ (Poly‘ℂ)) → (coeff‘((ℂ × {0}) ∘f · 0𝑝)) = ((ℕ0 × {0}) ∘f · (coeff‘0𝑝))) | |
6 | 1, 4, 5 | sylancl 586 | . . 3 ⊢ (⊤ → (coeff‘((ℂ × {0}) ∘f · 0𝑝)) = ((ℕ0 × {0}) ∘f · (coeff‘0𝑝))) |
7 | cnex 10952 | . . . . . . 7 ⊢ ℂ ∈ V | |
8 | 7 | a1i 11 | . . . . . 6 ⊢ (⊤ → ℂ ∈ V) |
9 | plyf 25359 | . . . . . . 7 ⊢ (0𝑝 ∈ (Poly‘ℂ) → 0𝑝:ℂ⟶ℂ) | |
10 | 4, 9 | mp1i 13 | . . . . . 6 ⊢ (⊤ → 0𝑝:ℂ⟶ℂ) |
11 | mul02 11153 | . . . . . . 7 ⊢ (𝑥 ∈ ℂ → (0 · 𝑥) = 0) | |
12 | 11 | adantl 482 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℂ) → (0 · 𝑥) = 0) |
13 | 8, 10, 1, 1, 12 | caofid2 7567 | . . . . 5 ⊢ (⊤ → ((ℂ × {0}) ∘f · 0𝑝) = (ℂ × {0})) |
14 | df-0p 24834 | . . . . 5 ⊢ 0𝑝 = (ℂ × {0}) | |
15 | 13, 14 | eqtr4di 2796 | . . . 4 ⊢ (⊤ → ((ℂ × {0}) ∘f · 0𝑝) = 0𝑝) |
16 | 15 | fveq2d 6778 | . . 3 ⊢ (⊤ → (coeff‘((ℂ × {0}) ∘f · 0𝑝)) = (coeff‘0𝑝)) |
17 | nn0ex 12239 | . . . . 5 ⊢ ℕ0 ∈ V | |
18 | 17 | a1i 11 | . . . 4 ⊢ (⊤ → ℕ0 ∈ V) |
19 | eqid 2738 | . . . . . 6 ⊢ (coeff‘0𝑝) = (coeff‘0𝑝) | |
20 | 19 | coef3 25393 | . . . . 5 ⊢ (0𝑝 ∈ (Poly‘ℂ) → (coeff‘0𝑝):ℕ0⟶ℂ) |
21 | 4, 20 | mp1i 13 | . . . 4 ⊢ (⊤ → (coeff‘0𝑝):ℕ0⟶ℂ) |
22 | 18, 21, 1, 1, 12 | caofid2 7567 | . . 3 ⊢ (⊤ → ((ℕ0 × {0}) ∘f · (coeff‘0𝑝)) = (ℕ0 × {0})) |
23 | 6, 16, 22 | 3eqtr3d 2786 | . 2 ⊢ (⊤ → (coeff‘0𝑝) = (ℕ0 × {0})) |
24 | 23 | mptru 1546 | 1 ⊢ (coeff‘0𝑝) = (ℕ0 × {0}) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⊤wtru 1540 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 {csn 4561 × cxp 5587 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ∘f cof 7531 ℂcc 10869 0cc0 10871 · cmul 10876 ℕ0cn0 12233 0𝑝c0p 24833 Polycply 25345 coeffccoe 25347 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-fz 13240 df-fzo 13383 df-fl 13512 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-rlim 15198 df-sum 15398 df-0p 24834 df-ply 25349 df-coe 25351 df-dgr 25352 |
This theorem is referenced by: dgreq0 25426 dgrlt 25427 plymul0or 25441 plydivlem4 25456 plymulx 32527 mncn0 40964 aaitgo 40987 n0p 42591 elaa2 43775 aacllem 46505 |
Copyright terms: Public domain | W3C validator |