MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plymul0or Structured version   Visualization version   GIF version

Theorem plymul0or 25041
Description: Polynomial multiplication has no zero divisors. (Contributed by Mario Carneiro, 26-Jul-2014.)
Assertion
Ref Expression
plymul0or ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝐹f · 𝐺) = 0𝑝 ↔ (𝐹 = 0𝑝𝐺 = 0𝑝)))

Proof of Theorem plymul0or
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dgrcl 24994 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
2 dgrcl 24994 . . . . . . 7 (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈ ℕ0)
3 nn0addcl 12023 . . . . . . 7 (((deg‘𝐹) ∈ ℕ0 ∧ (deg‘𝐺) ∈ ℕ0) → ((deg‘𝐹) + (deg‘𝐺)) ∈ ℕ0)
41, 2, 3syl2an 599 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((deg‘𝐹) + (deg‘𝐺)) ∈ ℕ0)
5 c0ex 10725 . . . . . . 7 0 ∈ V
65fvconst2 6988 . . . . . 6 (((deg‘𝐹) + (deg‘𝐺)) ∈ ℕ0 → ((ℕ0 × {0})‘((deg‘𝐹) + (deg‘𝐺))) = 0)
74, 6syl 17 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((ℕ0 × {0})‘((deg‘𝐹) + (deg‘𝐺))) = 0)
8 fveq2 6686 . . . . . . . 8 ((𝐹f · 𝐺) = 0𝑝 → (coeff‘(𝐹f · 𝐺)) = (coeff‘0𝑝))
9 coe0 25017 . . . . . . . 8 (coeff‘0𝑝) = (ℕ0 × {0})
108, 9eqtrdi 2790 . . . . . . 7 ((𝐹f · 𝐺) = 0𝑝 → (coeff‘(𝐹f · 𝐺)) = (ℕ0 × {0}))
1110fveq1d 6688 . . . . . 6 ((𝐹f · 𝐺) = 0𝑝 → ((coeff‘(𝐹f · 𝐺))‘((deg‘𝐹) + (deg‘𝐺))) = ((ℕ0 × {0})‘((deg‘𝐹) + (deg‘𝐺))))
1211eqeq1d 2741 . . . . 5 ((𝐹f · 𝐺) = 0𝑝 → (((coeff‘(𝐹f · 𝐺))‘((deg‘𝐹) + (deg‘𝐺))) = 0 ↔ ((ℕ0 × {0})‘((deg‘𝐹) + (deg‘𝐺))) = 0))
137, 12syl5ibrcom 250 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝐹f · 𝐺) = 0𝑝 → ((coeff‘(𝐹f · 𝐺))‘((deg‘𝐹) + (deg‘𝐺))) = 0))
14 eqid 2739 . . . . . . 7 (coeff‘𝐹) = (coeff‘𝐹)
15 eqid 2739 . . . . . . 7 (coeff‘𝐺) = (coeff‘𝐺)
16 eqid 2739 . . . . . . 7 (deg‘𝐹) = (deg‘𝐹)
17 eqid 2739 . . . . . . 7 (deg‘𝐺) = (deg‘𝐺)
1814, 15, 16, 17coemulhi 25015 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹f · 𝐺))‘((deg‘𝐹) + (deg‘𝐺))) = (((coeff‘𝐹)‘(deg‘𝐹)) · ((coeff‘𝐺)‘(deg‘𝐺))))
1918eqeq1d 2741 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (((coeff‘(𝐹f · 𝐺))‘((deg‘𝐹) + (deg‘𝐺))) = 0 ↔ (((coeff‘𝐹)‘(deg‘𝐹)) · ((coeff‘𝐺)‘(deg‘𝐺))) = 0))
2014coef3 24993 . . . . . . . 8 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶ℂ)
2120adantr 484 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘𝐹):ℕ0⟶ℂ)
221adantr 484 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘𝐹) ∈ ℕ0)
2321, 22ffvelrnd 6874 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘𝐹)‘(deg‘𝐹)) ∈ ℂ)
2415coef3 24993 . . . . . . . 8 (𝐺 ∈ (Poly‘𝑆) → (coeff‘𝐺):ℕ0⟶ℂ)
2524adantl 485 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘𝐺):ℕ0⟶ℂ)
262adantl 485 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘𝐺) ∈ ℕ0)
2725, 26ffvelrnd 6874 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘𝐺)‘(deg‘𝐺)) ∈ ℂ)
2823, 27mul0ord 11380 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((((coeff‘𝐹)‘(deg‘𝐹)) · ((coeff‘𝐺)‘(deg‘𝐺))) = 0 ↔ (((coeff‘𝐹)‘(deg‘𝐹)) = 0 ∨ ((coeff‘𝐺)‘(deg‘𝐺)) = 0)))
2919, 28bitrd 282 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (((coeff‘(𝐹f · 𝐺))‘((deg‘𝐹) + (deg‘𝐺))) = 0 ↔ (((coeff‘𝐹)‘(deg‘𝐹)) = 0 ∨ ((coeff‘𝐺)‘(deg‘𝐺)) = 0)))
3013, 29sylibd 242 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝐹f · 𝐺) = 0𝑝 → (((coeff‘𝐹)‘(deg‘𝐹)) = 0 ∨ ((coeff‘𝐺)‘(deg‘𝐺)) = 0)))
3116, 14dgreq0 25026 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ ((coeff‘𝐹)‘(deg‘𝐹)) = 0))
3231adantr 484 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 = 0𝑝 ↔ ((coeff‘𝐹)‘(deg‘𝐹)) = 0))
3317, 15dgreq0 25026 . . . . 5 (𝐺 ∈ (Poly‘𝑆) → (𝐺 = 0𝑝 ↔ ((coeff‘𝐺)‘(deg‘𝐺)) = 0))
3433adantl 485 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐺 = 0𝑝 ↔ ((coeff‘𝐺)‘(deg‘𝐺)) = 0))
3532, 34orbi12d 918 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝐹 = 0𝑝𝐺 = 0𝑝) ↔ (((coeff‘𝐹)‘(deg‘𝐹)) = 0 ∨ ((coeff‘𝐺)‘(deg‘𝐺)) = 0)))
3630, 35sylibrd 262 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝐹f · 𝐺) = 0𝑝 → (𝐹 = 0𝑝𝐺 = 0𝑝)))
37 cnex 10708 . . . . . . 7 ℂ ∈ V
3837a1i 11 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ℂ ∈ V)
39 plyf 24959 . . . . . . 7 (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ)
4039adantl 485 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐺:ℂ⟶ℂ)
41 0cnd 10724 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 0 ∈ ℂ)
42 mul02 10908 . . . . . . 7 (𝑥 ∈ ℂ → (0 · 𝑥) = 0)
4342adantl 485 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑥 ∈ ℂ) → (0 · 𝑥) = 0)
4438, 40, 41, 41, 43caofid2 7470 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((ℂ × {0}) ∘f · 𝐺) = (ℂ × {0}))
45 id 22 . . . . . . . 8 (𝐹 = 0𝑝𝐹 = 0𝑝)
46 df-0p 24434 . . . . . . . 8 0𝑝 = (ℂ × {0})
4745, 46eqtrdi 2790 . . . . . . 7 (𝐹 = 0𝑝𝐹 = (ℂ × {0}))
4847oveq1d 7197 . . . . . 6 (𝐹 = 0𝑝 → (𝐹f · 𝐺) = ((ℂ × {0}) ∘f · 𝐺))
4948eqeq1d 2741 . . . . 5 (𝐹 = 0𝑝 → ((𝐹f · 𝐺) = (ℂ × {0}) ↔ ((ℂ × {0}) ∘f · 𝐺) = (ℂ × {0})))
5044, 49syl5ibrcom 250 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 = 0𝑝 → (𝐹f · 𝐺) = (ℂ × {0})))
51 plyf 24959 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
5251adantr 484 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐹:ℂ⟶ℂ)
53 mul01 10909 . . . . . . 7 (𝑥 ∈ ℂ → (𝑥 · 0) = 0)
5453adantl 485 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑥 ∈ ℂ) → (𝑥 · 0) = 0)
5538, 52, 41, 41, 54caofid1 7469 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹f · (ℂ × {0})) = (ℂ × {0}))
56 id 22 . . . . . . . 8 (𝐺 = 0𝑝𝐺 = 0𝑝)
5756, 46eqtrdi 2790 . . . . . . 7 (𝐺 = 0𝑝𝐺 = (ℂ × {0}))
5857oveq2d 7198 . . . . . 6 (𝐺 = 0𝑝 → (𝐹f · 𝐺) = (𝐹f · (ℂ × {0})))
5958eqeq1d 2741 . . . . 5 (𝐺 = 0𝑝 → ((𝐹f · 𝐺) = (ℂ × {0}) ↔ (𝐹f · (ℂ × {0})) = (ℂ × {0})))
6055, 59syl5ibrcom 250 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐺 = 0𝑝 → (𝐹f · 𝐺) = (ℂ × {0})))
6150, 60jaod 858 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝐹 = 0𝑝𝐺 = 0𝑝) → (𝐹f · 𝐺) = (ℂ × {0})))
6246eqeq2i 2752 . . 3 ((𝐹f · 𝐺) = 0𝑝 ↔ (𝐹f · 𝐺) = (ℂ × {0}))
6361, 62syl6ibr 255 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝐹 = 0𝑝𝐺 = 0𝑝) → (𝐹f · 𝐺) = 0𝑝))
6436, 63impbid 215 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝐹f · 𝐺) = 0𝑝 ↔ (𝐹 = 0𝑝𝐺 = 0𝑝)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 846   = wceq 1542  wcel 2114  Vcvv 3400  {csn 4526   × cxp 5533  wf 6345  cfv 6349  (class class class)co 7182  f cof 7435  cc 10625  0cc0 10627   + caddc 10630   · cmul 10632  0cn0 11988  0𝑝c0p 24433  Polycply 24945  coeffccoe 24947  degcdgr 24948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7491  ax-inf2 9189  ax-cnex 10683  ax-resscn 10684  ax-1cn 10685  ax-icn 10686  ax-addcl 10687  ax-addrcl 10688  ax-mulcl 10689  ax-mulrcl 10690  ax-mulcom 10691  ax-addass 10692  ax-mulass 10693  ax-distr 10694  ax-i2m1 10695  ax-1ne0 10696  ax-1rid 10697  ax-rnegex 10698  ax-rrecex 10699  ax-cnre 10700  ax-pre-lttri 10701  ax-pre-lttrn 10702  ax-pre-ltadd 10703  ax-pre-mulgt0 10704  ax-pre-sup 10705
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-int 4847  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-se 5494  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6185  df-on 6186  df-lim 6187  df-suc 6188  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7139  df-ov 7185  df-oprab 7186  df-mpo 7187  df-of 7437  df-om 7612  df-1st 7726  df-2nd 7727  df-wrecs 7988  df-recs 8049  df-rdg 8087  df-1o 8143  df-er 8332  df-map 8451  df-pm 8452  df-en 8568  df-dom 8569  df-sdom 8570  df-fin 8571  df-sup 8991  df-inf 8992  df-oi 9059  df-card 9453  df-pnf 10767  df-mnf 10768  df-xr 10769  df-ltxr 10770  df-le 10771  df-sub 10962  df-neg 10963  df-div 11388  df-nn 11729  df-2 11791  df-3 11792  df-n0 11989  df-z 12075  df-uz 12337  df-rp 12485  df-fz 12994  df-fzo 13137  df-fl 13265  df-seq 13473  df-exp 13534  df-hash 13795  df-cj 14560  df-re 14561  df-im 14562  df-sqrt 14696  df-abs 14697  df-clim 14947  df-rlim 14948  df-sum 15148  df-0p 24434  df-ply 24949  df-coe 24951  df-dgr 24952
This theorem is referenced by:  plydiveu  25058  quotcan  25069  vieta1lem1  25070  vieta1lem2  25071
  Copyright terms: Public domain W3C validator