Step | Hyp | Ref
| Expression |
1 | | elin 3965 |
. 2
β’ (π΄ β (πΈ β©
β) β (π΄ β
πΈ β§ π΄ β
β)) |
2 | | elaa 25829 |
. . . 4
β’ (π΄ β πΈ β (π΄ β β β§
βπ β
((Polyββ€) β {0π})(πβπ΄) = 0)) |
3 | | eldifn 4128 |
. . . . . . . . . . 11
β’ (π β ((Polyββ€)
β {0π}) β Β¬ π β
{0π}) |
4 | 3 | 3ad2ant1 1134 |
. . . . . . . . . 10
β’ ((π β ((Polyββ€)
β {0π}) β§ (πβπ΄) = 0 β§ π΄ β β) β Β¬ π β
{0π}) |
5 | | simpr 486 |
. . . . . . . . . . . . 13
β’ (((π β ((Polyββ€)
β {0π}) β§ (πβπ΄) = 0 β§ π΄ β β) β§ π = (β Γ {(πβ0)})) β π = (β Γ {(πβ0)})) |
6 | | fveq1 6891 |
. . . . . . . . . . . . . . . . 17
β’ (π = (β Γ {(πβ0)}) β (πβπ΄) = ((β Γ {(πβ0)})βπ΄)) |
7 | 6 | adantl 483 |
. . . . . . . . . . . . . . . 16
β’ (((π β ((Polyββ€)
β {0π}) β§ (πβπ΄) = 0 β§ π΄ β β) β§ π = (β Γ {(πβ0)})) β (πβπ΄) = ((β Γ {(πβ0)})βπ΄)) |
8 | | simpl2 1193 |
. . . . . . . . . . . . . . . 16
β’ (((π β ((Polyββ€)
β {0π}) β§ (πβπ΄) = 0 β§ π΄ β β) β§ π = (β Γ {(πβ0)})) β (πβπ΄) = 0) |
9 | | simpl3 1194 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β ((Polyββ€)
β {0π}) β§ (πβπ΄) = 0 β§ π΄ β β) β§ π = (β Γ {(πβ0)})) β π΄ β β) |
10 | 9 | recnd 11242 |
. . . . . . . . . . . . . . . . 17
β’ (((π β ((Polyββ€)
β {0π}) β§ (πβπ΄) = 0 β§ π΄ β β) β§ π = (β Γ {(πβ0)})) β π΄ β β) |
11 | | fvex 6905 |
. . . . . . . . . . . . . . . . . 18
β’ (πβ0) β
V |
12 | 11 | fvconst2 7205 |
. . . . . . . . . . . . . . . . 17
β’ (π΄ β β β ((β
Γ {(πβ0)})βπ΄) = (πβ0)) |
13 | 10, 12 | syl 17 |
. . . . . . . . . . . . . . . 16
β’ (((π β ((Polyββ€)
β {0π}) β§ (πβπ΄) = 0 β§ π΄ β β) β§ π = (β Γ {(πβ0)})) β ((β Γ {(πβ0)})βπ΄) = (πβ0)) |
14 | 7, 8, 13 | 3eqtr3rd 2782 |
. . . . . . . . . . . . . . 15
β’ (((π β ((Polyββ€)
β {0π}) β§ (πβπ΄) = 0 β§ π΄ β β) β§ π = (β Γ {(πβ0)})) β (πβ0) = 0) |
15 | 14 | sneqd 4641 |
. . . . . . . . . . . . . 14
β’ (((π β ((Polyββ€)
β {0π}) β§ (πβπ΄) = 0 β§ π΄ β β) β§ π = (β Γ {(πβ0)})) β {(πβ0)} = {0}) |
16 | 15 | xpeq2d 5707 |
. . . . . . . . . . . . 13
β’ (((π β ((Polyββ€)
β {0π}) β§ (πβπ΄) = 0 β§ π΄ β β) β§ π = (β Γ {(πβ0)})) β (β Γ {(πβ0)}) = (β Γ
{0})) |
17 | 5, 16 | eqtrd 2773 |
. . . . . . . . . . . 12
β’ (((π β ((Polyββ€)
β {0π}) β§ (πβπ΄) = 0 β§ π΄ β β) β§ π = (β Γ {(πβ0)})) β π = (β Γ {0})) |
18 | | df-0p 25187 |
. . . . . . . . . . . 12
β’
0π = (β Γ {0}) |
19 | 17, 18 | eqtr4di 2791 |
. . . . . . . . . . 11
β’ (((π β ((Polyββ€)
β {0π}) β§ (πβπ΄) = 0 β§ π΄ β β) β§ π = (β Γ {(πβ0)})) β π = 0π) |
20 | | velsn 4645 |
. . . . . . . . . . 11
β’ (π β {0π}
β π =
0π) |
21 | 19, 20 | sylibr 233 |
. . . . . . . . . 10
β’ (((π β ((Polyββ€)
β {0π}) β§ (πβπ΄) = 0 β§ π΄ β β) β§ π = (β Γ {(πβ0)})) β π β
{0π}) |
22 | 4, 21 | mtand 815 |
. . . . . . . . 9
β’ ((π β ((Polyββ€)
β {0π}) β§ (πβπ΄) = 0 β§ π΄ β β) β Β¬ π = (β Γ {(πβ0)})) |
23 | | eldifi 4127 |
. . . . . . . . . . 11
β’ (π β ((Polyββ€)
β {0π}) β π β
(Polyββ€)) |
24 | 23 | 3ad2ant1 1134 |
. . . . . . . . . 10
β’ ((π β ((Polyββ€)
β {0π}) β§ (πβπ΄) = 0 β§ π΄ β β) β π β
(Polyββ€)) |
25 | | 0dgrb 25760 |
. . . . . . . . . 10
β’ (π β (Polyββ€)
β ((degβπ) = 0
β π = (β Γ
{(πβ0)}))) |
26 | 24, 25 | syl 17 |
. . . . . . . . 9
β’ ((π β ((Polyββ€)
β {0π}) β§ (πβπ΄) = 0 β§ π΄ β β) β ((degβπ) = 0 β π = (β Γ {(πβ0)}))) |
27 | 22, 26 | mtbird 325 |
. . . . . . . 8
β’ ((π β ((Polyββ€)
β {0π}) β§ (πβπ΄) = 0 β§ π΄ β β) β Β¬
(degβπ) =
0) |
28 | | dgrcl 25747 |
. . . . . . . . . 10
β’ (π β (Polyββ€)
β (degβπ) β
β0) |
29 | 24, 28 | syl 17 |
. . . . . . . . 9
β’ ((π β ((Polyββ€)
β {0π}) β§ (πβπ΄) = 0 β§ π΄ β β) β (degβπ) β
β0) |
30 | | elnn0 12474 |
. . . . . . . . 9
β’
((degβπ)
β β0 β ((degβπ) β β β¨ (degβπ) = 0)) |
31 | 29, 30 | sylib 217 |
. . . . . . . 8
β’ ((π β ((Polyββ€)
β {0π}) β§ (πβπ΄) = 0 β§ π΄ β β) β ((degβπ) β β β¨
(degβπ) =
0)) |
32 | | orel2 890 |
. . . . . . . 8
β’ (Β¬
(degβπ) = 0 β
(((degβπ) β
β β¨ (degβπ)
= 0) β (degβπ)
β β)) |
33 | 27, 31, 32 | sylc 65 |
. . . . . . 7
β’ ((π β ((Polyββ€)
β {0π}) β§ (πβπ΄) = 0 β§ π΄ β β) β (degβπ) β
β) |
34 | | eqid 2733 |
. . . . . . . 8
β’
(degβπ) =
(degβπ) |
35 | | simp3 1139 |
. . . . . . . 8
β’ ((π β ((Polyββ€)
β {0π}) β§ (πβπ΄) = 0 β§ π΄ β β) β π΄ β β) |
36 | | simp2 1138 |
. . . . . . . 8
β’ ((π β ((Polyββ€)
β {0π}) β§ (πβπ΄) = 0 β§ π΄ β β) β (πβπ΄) = 0) |
37 | 34, 24, 33, 35, 36 | aaliou 25851 |
. . . . . . 7
β’ ((π β ((Polyββ€)
β {0π}) β§ (πβπ΄) = 0 β§ π΄ β β) β βπ₯ β β+
βπ β β€
βπ β β
(π΄ = (π / π) β¨ (π₯ / (πβ(degβπ))) < (absβ(π΄ β (π / π))))) |
38 | | oveq2 7417 |
. . . . . . . . . . . . 13
β’ (π = (degβπ) β (πβπ) = (πβ(degβπ))) |
39 | 38 | oveq2d 7425 |
. . . . . . . . . . . 12
β’ (π = (degβπ) β (π₯ / (πβπ)) = (π₯ / (πβ(degβπ)))) |
40 | 39 | breq1d 5159 |
. . . . . . . . . . 11
β’ (π = (degβπ) β ((π₯ / (πβπ)) < (absβ(π΄ β (π / π))) β (π₯ / (πβ(degβπ))) < (absβ(π΄ β (π / π))))) |
41 | 40 | orbi2d 915 |
. . . . . . . . . 10
β’ (π = (degβπ) β ((π΄ = (π / π) β¨ (π₯ / (πβπ)) < (absβ(π΄ β (π / π)))) β (π΄ = (π / π) β¨ (π₯ / (πβ(degβπ))) < (absβ(π΄ β (π / π)))))) |
42 | 41 | 2ralbidv 3219 |
. . . . . . . . 9
β’ (π = (degβπ) β (βπ β β€ βπ β β (π΄ = (π / π) β¨ (π₯ / (πβπ)) < (absβ(π΄ β (π / π)))) β βπ β β€ βπ β β (π΄ = (π / π) β¨ (π₯ / (πβ(degβπ))) < (absβ(π΄ β (π / π)))))) |
43 | 42 | rexbidv 3179 |
. . . . . . . 8
β’ (π = (degβπ) β (βπ₯ β β+ βπ β β€ βπ β β (π΄ = (π / π) β¨ (π₯ / (πβπ)) < (absβ(π΄ β (π / π)))) β βπ₯ β β+ βπ β β€ βπ β β (π΄ = (π / π) β¨ (π₯ / (πβ(degβπ))) < (absβ(π΄ β (π / π)))))) |
44 | 43 | rspcev 3613 |
. . . . . . 7
β’
(((degβπ)
β β β§ βπ₯ β β+ βπ β β€ βπ β β (π΄ = (π / π) β¨ (π₯ / (πβ(degβπ))) < (absβ(π΄ β (π / π))))) β βπ β β βπ₯ β β+ βπ β β€ βπ β β (π΄ = (π / π) β¨ (π₯ / (πβπ)) < (absβ(π΄ β (π / π))))) |
45 | 33, 37, 44 | syl2anc 585 |
. . . . . 6
β’ ((π β ((Polyββ€)
β {0π}) β§ (πβπ΄) = 0 β§ π΄ β β) β βπ β β βπ₯ β β+
βπ β β€
βπ β β
(π΄ = (π / π) β¨ (π₯ / (πβπ)) < (absβ(π΄ β (π / π))))) |
46 | 45 | 3exp 1120 |
. . . . 5
β’ (π β ((Polyββ€)
β {0π}) β ((πβπ΄) = 0 β (π΄ β β β βπ β β βπ₯ β β+
βπ β β€
βπ β β
(π΄ = (π / π) β¨ (π₯ / (πβπ)) < (absβ(π΄ β (π / π))))))) |
47 | 46 | rexlimiv 3149 |
. . . 4
β’
(βπ β
((Polyββ€) β {0π})(πβπ΄) = 0 β (π΄ β β β βπ β β βπ₯ β β+
βπ β β€
βπ β β
(π΄ = (π / π) β¨ (π₯ / (πβπ)) < (absβ(π΄ β (π / π)))))) |
48 | 2, 47 | simplbiim 506 |
. . 3
β’ (π΄ β πΈ β (π΄ β β β
βπ β β
βπ₯ β
β+ βπ β β€ βπ β β (π΄ = (π / π) β¨ (π₯ / (πβπ)) < (absβ(π΄ β (π / π)))))) |
49 | 48 | imp 408 |
. 2
β’ ((π΄ β πΈ β§ π΄ β β) β
βπ β β
βπ₯ β
β+ βπ β β€ βπ β β (π΄ = (π / π) β¨ (π₯ / (πβπ)) < (absβ(π΄ β (π / π))))) |
50 | 1, 49 | sylbi 216 |
1
β’ (π΄ β (πΈ β©
β) β βπ
β β βπ₯
β β+ βπ β β€ βπ β β (π΄ = (π / π) β¨ (π₯ / (πβπ)) < (absβ(π΄ β (π / π))))) |