| Step | Hyp | Ref
| Expression |
| 1 | | elin 3967 |
. 2
⊢ (𝐴 ∈ (𝔸 ∩
ℝ) ↔ (𝐴 ∈
𝔸 ∧ 𝐴 ∈
ℝ)) |
| 2 | | elaa 26358 |
. . . 4
⊢ (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧
∃𝑎 ∈
((Poly‘ℤ) ∖ {0𝑝})(𝑎‘𝐴) = 0)) |
| 3 | | eldifn 4132 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) → ¬ 𝑎 ∈
{0𝑝}) |
| 4 | 3 | 3ad2ant1 1134 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) → ¬ 𝑎 ∈
{0𝑝}) |
| 5 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → 𝑎 = (ℂ × {(𝑎‘0)})) |
| 6 | | fveq1 6905 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = (ℂ × {(𝑎‘0)}) → (𝑎‘𝐴) = ((ℂ × {(𝑎‘0)})‘𝐴)) |
| 7 | 6 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → (𝑎‘𝐴) = ((ℂ × {(𝑎‘0)})‘𝐴)) |
| 8 | | simpl2 1193 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → (𝑎‘𝐴) = 0) |
| 9 | | simpl3 1194 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → 𝐴 ∈ ℝ) |
| 10 | 9 | recnd 11289 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → 𝐴 ∈ ℂ) |
| 11 | | fvex 6919 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎‘0) ∈
V |
| 12 | 11 | fvconst2 7224 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ ℂ → ((ℂ
× {(𝑎‘0)})‘𝐴) = (𝑎‘0)) |
| 13 | 10, 12 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → ((ℂ × {(𝑎‘0)})‘𝐴) = (𝑎‘0)) |
| 14 | 7, 8, 13 | 3eqtr3rd 2786 |
. . . . . . . . . . . . . . 15
⊢ (((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → (𝑎‘0) = 0) |
| 15 | 14 | sneqd 4638 |
. . . . . . . . . . . . . 14
⊢ (((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → {(𝑎‘0)} = {0}) |
| 16 | 15 | xpeq2d 5715 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → (ℂ × {(𝑎‘0)}) = (ℂ ×
{0})) |
| 17 | 5, 16 | eqtrd 2777 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → 𝑎 = (ℂ × {0})) |
| 18 | | df-0p 25705 |
. . . . . . . . . . . 12
⊢
0𝑝 = (ℂ × {0}) |
| 19 | 17, 18 | eqtr4di 2795 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → 𝑎 = 0𝑝) |
| 20 | | velsn 4642 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ {0𝑝}
↔ 𝑎 =
0𝑝) |
| 21 | 19, 20 | sylibr 234 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → 𝑎 ∈
{0𝑝}) |
| 22 | 4, 21 | mtand 816 |
. . . . . . . . 9
⊢ ((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) → ¬ 𝑎 = (ℂ × {(𝑎‘0)})) |
| 23 | | eldifi 4131 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) → 𝑎 ∈
(Poly‘ℤ)) |
| 24 | 23 | 3ad2ant1 1134 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) → 𝑎 ∈
(Poly‘ℤ)) |
| 25 | | 0dgrb 26285 |
. . . . . . . . . 10
⊢ (𝑎 ∈ (Poly‘ℤ)
→ ((deg‘𝑎) = 0
↔ 𝑎 = (ℂ ×
{(𝑎‘0)}))) |
| 26 | 24, 25 | syl 17 |
. . . . . . . . 9
⊢ ((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) → ((deg‘𝑎) = 0 ↔ 𝑎 = (ℂ × {(𝑎‘0)}))) |
| 27 | 22, 26 | mtbird 325 |
. . . . . . . 8
⊢ ((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) → ¬
(deg‘𝑎) =
0) |
| 28 | | dgrcl 26272 |
. . . . . . . . . 10
⊢ (𝑎 ∈ (Poly‘ℤ)
→ (deg‘𝑎) ∈
ℕ0) |
| 29 | 24, 28 | syl 17 |
. . . . . . . . 9
⊢ ((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) → (deg‘𝑎) ∈
ℕ0) |
| 30 | | elnn0 12528 |
. . . . . . . . 9
⊢
((deg‘𝑎)
∈ ℕ0 ↔ ((deg‘𝑎) ∈ ℕ ∨ (deg‘𝑎) = 0)) |
| 31 | 29, 30 | sylib 218 |
. . . . . . . 8
⊢ ((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) → ((deg‘𝑎) ∈ ℕ ∨
(deg‘𝑎) =
0)) |
| 32 | | orel2 891 |
. . . . . . . 8
⊢ (¬
(deg‘𝑎) = 0 →
(((deg‘𝑎) ∈
ℕ ∨ (deg‘𝑎)
= 0) → (deg‘𝑎)
∈ ℕ)) |
| 33 | 27, 31, 32 | sylc 65 |
. . . . . . 7
⊢ ((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) → (deg‘𝑎) ∈
ℕ) |
| 34 | | eqid 2737 |
. . . . . . . 8
⊢
(deg‘𝑎) =
(deg‘𝑎) |
| 35 | | simp3 1139 |
. . . . . . . 8
⊢ ((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ) |
| 36 | | simp2 1138 |
. . . . . . . 8
⊢ ((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) → (𝑎‘𝐴) = 0) |
| 37 | 34, 24, 33, 35, 36 | aaliou 26380 |
. . . . . . 7
⊢ ((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) → ∃𝑥 ∈ ℝ+
∀𝑝 ∈ ℤ
∀𝑞 ∈ ℕ
(𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑(deg‘𝑎))) < (abs‘(𝐴 − (𝑝 / 𝑞))))) |
| 38 | | oveq2 7439 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (deg‘𝑎) → (𝑞↑𝑘) = (𝑞↑(deg‘𝑎))) |
| 39 | 38 | oveq2d 7447 |
. . . . . . . . . . . 12
⊢ (𝑘 = (deg‘𝑎) → (𝑥 / (𝑞↑𝑘)) = (𝑥 / (𝑞↑(deg‘𝑎)))) |
| 40 | 39 | breq1d 5153 |
. . . . . . . . . . 11
⊢ (𝑘 = (deg‘𝑎) → ((𝑥 / (𝑞↑𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞))) ↔ (𝑥 / (𝑞↑(deg‘𝑎))) < (abs‘(𝐴 − (𝑝 / 𝑞))))) |
| 41 | 40 | orbi2d 916 |
. . . . . . . . . 10
⊢ (𝑘 = (deg‘𝑎) → ((𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑(deg‘𝑎))) < (abs‘(𝐴 − (𝑝 / 𝑞)))))) |
| 42 | 41 | 2ralbidv 3221 |
. . . . . . . . 9
⊢ (𝑘 = (deg‘𝑎) → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑(deg‘𝑎))) < (abs‘(𝐴 − (𝑝 / 𝑞)))))) |
| 43 | 42 | rexbidv 3179 |
. . . . . . . 8
⊢ (𝑘 = (deg‘𝑎) → (∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑(deg‘𝑎))) < (abs‘(𝐴 − (𝑝 / 𝑞)))))) |
| 44 | 43 | rspcev 3622 |
. . . . . . 7
⊢
(((deg‘𝑎)
∈ ℕ ∧ ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑(deg‘𝑎))) < (abs‘(𝐴 − (𝑝 / 𝑞))))) → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) |
| 45 | 33, 37, 44 | syl2anc 584 |
. . . . . 6
⊢ ((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+
∀𝑝 ∈ ℤ
∀𝑞 ∈ ℕ
(𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) |
| 46 | 45 | 3exp 1120 |
. . . . 5
⊢ (𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) → ((𝑎‘𝐴) = 0 → (𝐴 ∈ ℝ → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+
∀𝑝 ∈ ℤ
∀𝑞 ∈ ℕ
(𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞))))))) |
| 47 | 46 | rexlimiv 3148 |
. . . 4
⊢
(∃𝑎 ∈
((Poly‘ℤ) ∖ {0𝑝})(𝑎‘𝐴) = 0 → (𝐴 ∈ ℝ → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+
∀𝑝 ∈ ℤ
∀𝑞 ∈ ℕ
(𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))) |
| 48 | 2, 47 | simplbiim 504 |
. . 3
⊢ (𝐴 ∈ 𝔸 → (𝐴 ∈ ℝ →
∃𝑘 ∈ ℕ
∃𝑥 ∈
ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))) |
| 49 | 48 | imp 406 |
. 2
⊢ ((𝐴 ∈ 𝔸 ∧ 𝐴 ∈ ℝ) →
∃𝑘 ∈ ℕ
∃𝑥 ∈
ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) |
| 50 | 1, 49 | sylbi 217 |
1
⊢ (𝐴 ∈ (𝔸 ∩
ℝ) → ∃𝑘
∈ ℕ ∃𝑥
∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) |