MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou2 Structured version   Visualization version   GIF version

Theorem aaliou2 24929
Description: Liouville's approximation theorem for algebraic numbers per se. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Assertion
Ref Expression
aaliou2 (𝐴 ∈ (𝔸 ∩ ℝ) → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
Distinct variable group:   𝐴,𝑘,𝑥,𝑝,𝑞

Proof of Theorem aaliou2
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 elin 4169 . 2 (𝐴 ∈ (𝔸 ∩ ℝ) ↔ (𝐴 ∈ 𝔸 ∧ 𝐴 ∈ ℝ))
2 elaa 24905 . . . 4 (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑎𝐴) = 0))
3 eldifn 4104 . . . . . . . . . . 11 (𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) → ¬ 𝑎 ∈ {0𝑝})
433ad2ant1 1129 . . . . . . . . . 10 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → ¬ 𝑎 ∈ {0𝑝})
5 simpr 487 . . . . . . . . . . . . 13 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → 𝑎 = (ℂ × {(𝑎‘0)}))
6 fveq1 6669 . . . . . . . . . . . . . . . . 17 (𝑎 = (ℂ × {(𝑎‘0)}) → (𝑎𝐴) = ((ℂ × {(𝑎‘0)})‘𝐴))
76adantl 484 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → (𝑎𝐴) = ((ℂ × {(𝑎‘0)})‘𝐴))
8 simpl2 1188 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → (𝑎𝐴) = 0)
9 simpl3 1189 . . . . . . . . . . . . . . . . . 18 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → 𝐴 ∈ ℝ)
109recnd 10669 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → 𝐴 ∈ ℂ)
11 fvex 6683 . . . . . . . . . . . . . . . . . 18 (𝑎‘0) ∈ V
1211fvconst2 6966 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → ((ℂ × {(𝑎‘0)})‘𝐴) = (𝑎‘0))
1310, 12syl 17 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → ((ℂ × {(𝑎‘0)})‘𝐴) = (𝑎‘0))
147, 8, 133eqtr3rd 2865 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → (𝑎‘0) = 0)
1514sneqd 4579 . . . . . . . . . . . . . 14 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → {(𝑎‘0)} = {0})
1615xpeq2d 5585 . . . . . . . . . . . . 13 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → (ℂ × {(𝑎‘0)}) = (ℂ × {0}))
175, 16eqtrd 2856 . . . . . . . . . . . 12 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → 𝑎 = (ℂ × {0}))
18 df-0p 24271 . . . . . . . . . . . 12 0𝑝 = (ℂ × {0})
1917, 18syl6eqr 2874 . . . . . . . . . . 11 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → 𝑎 = 0𝑝)
20 velsn 4583 . . . . . . . . . . 11 (𝑎 ∈ {0𝑝} ↔ 𝑎 = 0𝑝)
2119, 20sylibr 236 . . . . . . . . . 10 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → 𝑎 ∈ {0𝑝})
224, 21mtand 814 . . . . . . . . 9 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → ¬ 𝑎 = (ℂ × {(𝑎‘0)}))
23 eldifi 4103 . . . . . . . . . . 11 (𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) → 𝑎 ∈ (Poly‘ℤ))
24233ad2ant1 1129 . . . . . . . . . 10 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → 𝑎 ∈ (Poly‘ℤ))
25 0dgrb 24836 . . . . . . . . . 10 (𝑎 ∈ (Poly‘ℤ) → ((deg‘𝑎) = 0 ↔ 𝑎 = (ℂ × {(𝑎‘0)})))
2624, 25syl 17 . . . . . . . . 9 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → ((deg‘𝑎) = 0 ↔ 𝑎 = (ℂ × {(𝑎‘0)})))
2722, 26mtbird 327 . . . . . . . 8 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → ¬ (deg‘𝑎) = 0)
28 dgrcl 24823 . . . . . . . . . 10 (𝑎 ∈ (Poly‘ℤ) → (deg‘𝑎) ∈ ℕ0)
2924, 28syl 17 . . . . . . . . 9 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → (deg‘𝑎) ∈ ℕ0)
30 elnn0 11900 . . . . . . . . 9 ((deg‘𝑎) ∈ ℕ0 ↔ ((deg‘𝑎) ∈ ℕ ∨ (deg‘𝑎) = 0))
3129, 30sylib 220 . . . . . . . 8 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → ((deg‘𝑎) ∈ ℕ ∨ (deg‘𝑎) = 0))
32 orel2 887 . . . . . . . 8 (¬ (deg‘𝑎) = 0 → (((deg‘𝑎) ∈ ℕ ∨ (deg‘𝑎) = 0) → (deg‘𝑎) ∈ ℕ))
3327, 31, 32sylc 65 . . . . . . 7 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → (deg‘𝑎) ∈ ℕ)
34 eqid 2821 . . . . . . . 8 (deg‘𝑎) = (deg‘𝑎)
35 simp3 1134 . . . . . . . 8 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
36 simp2 1133 . . . . . . . 8 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → (𝑎𝐴) = 0)
3734, 24, 33, 35, 36aaliou 24927 . . . . . . 7 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑(deg‘𝑎))) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
38 oveq2 7164 . . . . . . . . . . . . 13 (𝑘 = (deg‘𝑎) → (𝑞𝑘) = (𝑞↑(deg‘𝑎)))
3938oveq2d 7172 . . . . . . . . . . . 12 (𝑘 = (deg‘𝑎) → (𝑥 / (𝑞𝑘)) = (𝑥 / (𝑞↑(deg‘𝑎))))
4039breq1d 5076 . . . . . . . . . . 11 (𝑘 = (deg‘𝑎) → ((𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞))) ↔ (𝑥 / (𝑞↑(deg‘𝑎))) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
4140orbi2d 912 . . . . . . . . . 10 (𝑘 = (deg‘𝑎) → ((𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑(deg‘𝑎))) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
42412ralbidv 3199 . . . . . . . . 9 (𝑘 = (deg‘𝑎) → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑(deg‘𝑎))) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
4342rexbidv 3297 . . . . . . . 8 (𝑘 = (deg‘𝑎) → (∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑(deg‘𝑎))) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
4443rspcev 3623 . . . . . . 7 (((deg‘𝑎) ∈ ℕ ∧ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑(deg‘𝑎))) < (abs‘(𝐴 − (𝑝 / 𝑞))))) → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
4533, 37, 44syl2anc 586 . . . . . 6 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
46453exp 1115 . . . . 5 (𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) → ((𝑎𝐴) = 0 → (𝐴 ∈ ℝ → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))))
4746rexlimiv 3280 . . . 4 (∃𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑎𝐴) = 0 → (𝐴 ∈ ℝ → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
482, 47simplbiim 507 . . 3 (𝐴 ∈ 𝔸 → (𝐴 ∈ ℝ → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
4948imp 409 . 2 ((𝐴 ∈ 𝔸 ∧ 𝐴 ∈ ℝ) → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
501, 49sylbi 219 1 (𝐴 ∈ (𝔸 ∩ ℝ) → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wral 3138  wrex 3139  cdif 3933  cin 3935  {csn 4567   class class class wbr 5066   × cxp 5553  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537   < clt 10675  cmin 10870   / cdiv 11297  cn 11638  0cn0 11898  cz 11982  +crp 12390  cexp 13430  abscabs 14593  0𝑝c0p 24270  Polycply 24774  degcdgr 24777  𝔸caa 24903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-xnn0 11969  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-rlim 14846  df-sum 15043  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-grp 18106  df-minusg 18107  df-mulg 18225  df-subg 18276  df-cntz 18447  df-cmn 18908  df-mgp 19240  df-ur 19252  df-ring 19299  df-cring 19300  df-subrg 19533  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-cmp 21995  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-0p 24271  df-limc 24464  df-dv 24465  df-dvn 24466  df-cpn 24467  df-ply 24778  df-idp 24779  df-coe 24780  df-dgr 24781  df-quot 24880  df-aa 24904
This theorem is referenced by:  aaliou2b  24930
  Copyright terms: Public domain W3C validator