Step | Hyp | Ref
| Expression |
1 | | elin 3899 |
. 2
⊢ (𝐴 ∈ (𝔸 ∩
ℝ) ↔ (𝐴 ∈
𝔸 ∧ 𝐴 ∈
ℝ)) |
2 | | elaa 25381 |
. . . 4
⊢ (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧
∃𝑎 ∈
((Poly‘ℤ) ∖ {0𝑝})(𝑎‘𝐴) = 0)) |
3 | | eldifn 4058 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) → ¬ 𝑎 ∈
{0𝑝}) |
4 | 3 | 3ad2ant1 1131 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) → ¬ 𝑎 ∈
{0𝑝}) |
5 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → 𝑎 = (ℂ × {(𝑎‘0)})) |
6 | | fveq1 6755 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = (ℂ × {(𝑎‘0)}) → (𝑎‘𝐴) = ((ℂ × {(𝑎‘0)})‘𝐴)) |
7 | 6 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → (𝑎‘𝐴) = ((ℂ × {(𝑎‘0)})‘𝐴)) |
8 | | simpl2 1190 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → (𝑎‘𝐴) = 0) |
9 | | simpl3 1191 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → 𝐴 ∈ ℝ) |
10 | 9 | recnd 10934 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → 𝐴 ∈ ℂ) |
11 | | fvex 6769 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎‘0) ∈
V |
12 | 11 | fvconst2 7061 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ ℂ → ((ℂ
× {(𝑎‘0)})‘𝐴) = (𝑎‘0)) |
13 | 10, 12 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → ((ℂ × {(𝑎‘0)})‘𝐴) = (𝑎‘0)) |
14 | 7, 8, 13 | 3eqtr3rd 2787 |
. . . . . . . . . . . . . . 15
⊢ (((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → (𝑎‘0) = 0) |
15 | 14 | sneqd 4570 |
. . . . . . . . . . . . . 14
⊢ (((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → {(𝑎‘0)} = {0}) |
16 | 15 | xpeq2d 5610 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → (ℂ × {(𝑎‘0)}) = (ℂ ×
{0})) |
17 | 5, 16 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → 𝑎 = (ℂ × {0})) |
18 | | df-0p 24739 |
. . . . . . . . . . . 12
⊢
0𝑝 = (ℂ × {0}) |
19 | 17, 18 | eqtr4di 2797 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → 𝑎 = 0𝑝) |
20 | | velsn 4574 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ {0𝑝}
↔ 𝑎 =
0𝑝) |
21 | 19, 20 | sylibr 233 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → 𝑎 ∈
{0𝑝}) |
22 | 4, 21 | mtand 812 |
. . . . . . . . 9
⊢ ((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) → ¬ 𝑎 = (ℂ × {(𝑎‘0)})) |
23 | | eldifi 4057 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) → 𝑎 ∈
(Poly‘ℤ)) |
24 | 23 | 3ad2ant1 1131 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) → 𝑎 ∈
(Poly‘ℤ)) |
25 | | 0dgrb 25312 |
. . . . . . . . . 10
⊢ (𝑎 ∈ (Poly‘ℤ)
→ ((deg‘𝑎) = 0
↔ 𝑎 = (ℂ ×
{(𝑎‘0)}))) |
26 | 24, 25 | syl 17 |
. . . . . . . . 9
⊢ ((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) → ((deg‘𝑎) = 0 ↔ 𝑎 = (ℂ × {(𝑎‘0)}))) |
27 | 22, 26 | mtbird 324 |
. . . . . . . 8
⊢ ((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) → ¬
(deg‘𝑎) =
0) |
28 | | dgrcl 25299 |
. . . . . . . . . 10
⊢ (𝑎 ∈ (Poly‘ℤ)
→ (deg‘𝑎) ∈
ℕ0) |
29 | 24, 28 | syl 17 |
. . . . . . . . 9
⊢ ((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) → (deg‘𝑎) ∈
ℕ0) |
30 | | elnn0 12165 |
. . . . . . . . 9
⊢
((deg‘𝑎)
∈ ℕ0 ↔ ((deg‘𝑎) ∈ ℕ ∨ (deg‘𝑎) = 0)) |
31 | 29, 30 | sylib 217 |
. . . . . . . 8
⊢ ((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) → ((deg‘𝑎) ∈ ℕ ∨
(deg‘𝑎) =
0)) |
32 | | orel2 887 |
. . . . . . . 8
⊢ (¬
(deg‘𝑎) = 0 →
(((deg‘𝑎) ∈
ℕ ∨ (deg‘𝑎)
= 0) → (deg‘𝑎)
∈ ℕ)) |
33 | 27, 31, 32 | sylc 65 |
. . . . . . 7
⊢ ((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) → (deg‘𝑎) ∈
ℕ) |
34 | | eqid 2738 |
. . . . . . . 8
⊢
(deg‘𝑎) =
(deg‘𝑎) |
35 | | simp3 1136 |
. . . . . . . 8
⊢ ((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ) |
36 | | simp2 1135 |
. . . . . . . 8
⊢ ((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) → (𝑎‘𝐴) = 0) |
37 | 34, 24, 33, 35, 36 | aaliou 25403 |
. . . . . . 7
⊢ ((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) → ∃𝑥 ∈ ℝ+
∀𝑝 ∈ ℤ
∀𝑞 ∈ ℕ
(𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑(deg‘𝑎))) < (abs‘(𝐴 − (𝑝 / 𝑞))))) |
38 | | oveq2 7263 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (deg‘𝑎) → (𝑞↑𝑘) = (𝑞↑(deg‘𝑎))) |
39 | 38 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ (𝑘 = (deg‘𝑎) → (𝑥 / (𝑞↑𝑘)) = (𝑥 / (𝑞↑(deg‘𝑎)))) |
40 | 39 | breq1d 5080 |
. . . . . . . . . . 11
⊢ (𝑘 = (deg‘𝑎) → ((𝑥 / (𝑞↑𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞))) ↔ (𝑥 / (𝑞↑(deg‘𝑎))) < (abs‘(𝐴 − (𝑝 / 𝑞))))) |
41 | 40 | orbi2d 912 |
. . . . . . . . . 10
⊢ (𝑘 = (deg‘𝑎) → ((𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑(deg‘𝑎))) < (abs‘(𝐴 − (𝑝 / 𝑞)))))) |
42 | 41 | 2ralbidv 3122 |
. . . . . . . . 9
⊢ (𝑘 = (deg‘𝑎) → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑(deg‘𝑎))) < (abs‘(𝐴 − (𝑝 / 𝑞)))))) |
43 | 42 | rexbidv 3225 |
. . . . . . . 8
⊢ (𝑘 = (deg‘𝑎) → (∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑(deg‘𝑎))) < (abs‘(𝐴 − (𝑝 / 𝑞)))))) |
44 | 43 | rspcev 3552 |
. . . . . . 7
⊢
(((deg‘𝑎)
∈ ℕ ∧ ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑(deg‘𝑎))) < (abs‘(𝐴 − (𝑝 / 𝑞))))) → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) |
45 | 33, 37, 44 | syl2anc 583 |
. . . . . 6
⊢ ((𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) ∧ (𝑎‘𝐴) = 0 ∧ 𝐴 ∈ ℝ) → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+
∀𝑝 ∈ ℤ
∀𝑞 ∈ ℕ
(𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) |
46 | 45 | 3exp 1117 |
. . . . 5
⊢ (𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝}) → ((𝑎‘𝐴) = 0 → (𝐴 ∈ ℝ → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+
∀𝑝 ∈ ℤ
∀𝑞 ∈ ℕ
(𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞))))))) |
47 | 46 | rexlimiv 3208 |
. . . 4
⊢
(∃𝑎 ∈
((Poly‘ℤ) ∖ {0𝑝})(𝑎‘𝐴) = 0 → (𝐴 ∈ ℝ → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+
∀𝑝 ∈ ℤ
∀𝑞 ∈ ℕ
(𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))) |
48 | 2, 47 | simplbiim 504 |
. . 3
⊢ (𝐴 ∈ 𝔸 → (𝐴 ∈ ℝ →
∃𝑘 ∈ ℕ
∃𝑥 ∈
ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))) |
49 | 48 | imp 406 |
. 2
⊢ ((𝐴 ∈ 𝔸 ∧ 𝐴 ∈ ℝ) →
∃𝑘 ∈ ℕ
∃𝑥 ∈
ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) |
50 | 1, 49 | sylbi 216 |
1
⊢ (𝐴 ∈ (𝔸 ∩
ℝ) → ∃𝑘
∈ ℕ ∃𝑥
∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) |