MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou2 Structured version   Visualization version   GIF version

Theorem aaliou2 26248
Description: Liouville's approximation theorem for algebraic numbers per se. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Assertion
Ref Expression
aaliou2 (𝐴 ∈ (𝔸 ∩ ℝ) → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
Distinct variable group:   𝐴,𝑘,𝑥,𝑝,𝑞

Proof of Theorem aaliou2
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 elin 3930 . 2 (𝐴 ∈ (𝔸 ∩ ℝ) ↔ (𝐴 ∈ 𝔸 ∧ 𝐴 ∈ ℝ))
2 elaa 26224 . . . 4 (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑎𝐴) = 0))
3 eldifn 4095 . . . . . . . . . . 11 (𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) → ¬ 𝑎 ∈ {0𝑝})
433ad2ant1 1133 . . . . . . . . . 10 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → ¬ 𝑎 ∈ {0𝑝})
5 simpr 484 . . . . . . . . . . . . 13 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → 𝑎 = (ℂ × {(𝑎‘0)}))
6 fveq1 6857 . . . . . . . . . . . . . . . . 17 (𝑎 = (ℂ × {(𝑎‘0)}) → (𝑎𝐴) = ((ℂ × {(𝑎‘0)})‘𝐴))
76adantl 481 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → (𝑎𝐴) = ((ℂ × {(𝑎‘0)})‘𝐴))
8 simpl2 1193 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → (𝑎𝐴) = 0)
9 simpl3 1194 . . . . . . . . . . . . . . . . . 18 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → 𝐴 ∈ ℝ)
109recnd 11202 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → 𝐴 ∈ ℂ)
11 fvex 6871 . . . . . . . . . . . . . . . . . 18 (𝑎‘0) ∈ V
1211fvconst2 7178 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → ((ℂ × {(𝑎‘0)})‘𝐴) = (𝑎‘0))
1310, 12syl 17 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → ((ℂ × {(𝑎‘0)})‘𝐴) = (𝑎‘0))
147, 8, 133eqtr3rd 2773 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → (𝑎‘0) = 0)
1514sneqd 4601 . . . . . . . . . . . . . 14 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → {(𝑎‘0)} = {0})
1615xpeq2d 5668 . . . . . . . . . . . . 13 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → (ℂ × {(𝑎‘0)}) = (ℂ × {0}))
175, 16eqtrd 2764 . . . . . . . . . . . 12 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → 𝑎 = (ℂ × {0}))
18 df-0p 25571 . . . . . . . . . . . 12 0𝑝 = (ℂ × {0})
1917, 18eqtr4di 2782 . . . . . . . . . . 11 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → 𝑎 = 0𝑝)
20 velsn 4605 . . . . . . . . . . 11 (𝑎 ∈ {0𝑝} ↔ 𝑎 = 0𝑝)
2119, 20sylibr 234 . . . . . . . . . 10 (((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) ∧ 𝑎 = (ℂ × {(𝑎‘0)})) → 𝑎 ∈ {0𝑝})
224, 21mtand 815 . . . . . . . . 9 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → ¬ 𝑎 = (ℂ × {(𝑎‘0)}))
23 eldifi 4094 . . . . . . . . . . 11 (𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) → 𝑎 ∈ (Poly‘ℤ))
24233ad2ant1 1133 . . . . . . . . . 10 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → 𝑎 ∈ (Poly‘ℤ))
25 0dgrb 26151 . . . . . . . . . 10 (𝑎 ∈ (Poly‘ℤ) → ((deg‘𝑎) = 0 ↔ 𝑎 = (ℂ × {(𝑎‘0)})))
2624, 25syl 17 . . . . . . . . 9 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → ((deg‘𝑎) = 0 ↔ 𝑎 = (ℂ × {(𝑎‘0)})))
2722, 26mtbird 325 . . . . . . . 8 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → ¬ (deg‘𝑎) = 0)
28 dgrcl 26138 . . . . . . . . . 10 (𝑎 ∈ (Poly‘ℤ) → (deg‘𝑎) ∈ ℕ0)
2924, 28syl 17 . . . . . . . . 9 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → (deg‘𝑎) ∈ ℕ0)
30 elnn0 12444 . . . . . . . . 9 ((deg‘𝑎) ∈ ℕ0 ↔ ((deg‘𝑎) ∈ ℕ ∨ (deg‘𝑎) = 0))
3129, 30sylib 218 . . . . . . . 8 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → ((deg‘𝑎) ∈ ℕ ∨ (deg‘𝑎) = 0))
32 orel2 890 . . . . . . . 8 (¬ (deg‘𝑎) = 0 → (((deg‘𝑎) ∈ ℕ ∨ (deg‘𝑎) = 0) → (deg‘𝑎) ∈ ℕ))
3327, 31, 32sylc 65 . . . . . . 7 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → (deg‘𝑎) ∈ ℕ)
34 eqid 2729 . . . . . . . 8 (deg‘𝑎) = (deg‘𝑎)
35 simp3 1138 . . . . . . . 8 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
36 simp2 1137 . . . . . . . 8 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → (𝑎𝐴) = 0)
3734, 24, 33, 35, 36aaliou 26246 . . . . . . 7 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑(deg‘𝑎))) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
38 oveq2 7395 . . . . . . . . . . . . 13 (𝑘 = (deg‘𝑎) → (𝑞𝑘) = (𝑞↑(deg‘𝑎)))
3938oveq2d 7403 . . . . . . . . . . . 12 (𝑘 = (deg‘𝑎) → (𝑥 / (𝑞𝑘)) = (𝑥 / (𝑞↑(deg‘𝑎))))
4039breq1d 5117 . . . . . . . . . . 11 (𝑘 = (deg‘𝑎) → ((𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞))) ↔ (𝑥 / (𝑞↑(deg‘𝑎))) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
4140orbi2d 915 . . . . . . . . . 10 (𝑘 = (deg‘𝑎) → ((𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑(deg‘𝑎))) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
42412ralbidv 3201 . . . . . . . . 9 (𝑘 = (deg‘𝑎) → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑(deg‘𝑎))) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
4342rexbidv 3157 . . . . . . . 8 (𝑘 = (deg‘𝑎) → (∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑(deg‘𝑎))) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
4443rspcev 3588 . . . . . . 7 (((deg‘𝑎) ∈ ℕ ∧ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑(deg‘𝑎))) < (abs‘(𝐴 − (𝑝 / 𝑞))))) → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
4533, 37, 44syl2anc 584 . . . . . 6 ((𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) ∧ (𝑎𝐴) = 0 ∧ 𝐴 ∈ ℝ) → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
46453exp 1119 . . . . 5 (𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝}) → ((𝑎𝐴) = 0 → (𝐴 ∈ ℝ → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))))
4746rexlimiv 3127 . . . 4 (∃𝑎 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑎𝐴) = 0 → (𝐴 ∈ ℝ → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
482, 47simplbiim 504 . . 3 (𝐴 ∈ 𝔸 → (𝐴 ∈ ℝ → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
4948imp 406 . 2 ((𝐴 ∈ 𝔸 ∧ 𝐴 ∈ ℝ) → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
501, 49sylbi 217 1 (𝐴 ∈ (𝔸 ∩ ℝ) → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cdif 3911  cin 3913  {csn 4589   class class class wbr 5107   × cxp 5636  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068   < clt 11208  cmin 11405   / cdiv 11835  cn 12186  0cn0 12442  cz 12529  +crp 12951  cexp 14026  abscabs 15200  0𝑝c0p 25570  Polycply 26089  degcdgr 26092  𝔸caa 26222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-grp 18868  df-minusg 18869  df-mulg 19000  df-subg 19055  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-subrng 20455  df-subrg 20479  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-0p 25571  df-limc 25767  df-dv 25768  df-dvn 25769  df-cpn 25770  df-ply 26093  df-idp 26094  df-coe 26095  df-dgr 26096  df-quot 26199  df-aa 26223
This theorem is referenced by:  aaliou2b  26249
  Copyright terms: Public domain W3C validator