| Step | Hyp | Ref
| Expression |
| 1 | | ssidd 3987 |
. . 3
⊢ (𝜑 → ℂ ⊆
ℂ) |
| 2 | | coeeu.4 |
. . . 4
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
| 3 | | coeeu.5 |
. . . 4
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 4 | 2, 3 | nn0addcld 12574 |
. . 3
⊢ (𝜑 → (𝑀 + 𝑁) ∈
ℕ0) |
| 5 | | subcl 11489 |
. . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 − 𝑦) ∈ ℂ) |
| 6 | 5 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 − 𝑦) ∈ ℂ) |
| 7 | | coeeu.2 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ (ℂ ↑m
ℕ0)) |
| 8 | | cnex 11218 |
. . . . . . . 8
⊢ ℂ
∈ V |
| 9 | | nn0ex 12515 |
. . . . . . . 8
⊢
ℕ0 ∈ V |
| 10 | 8, 9 | elmap 8893 |
. . . . . . 7
⊢ (𝐴 ∈ (ℂ
↑m ℕ0) ↔ 𝐴:ℕ0⟶ℂ) |
| 11 | 7, 10 | sylib 218 |
. . . . . 6
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| 12 | | coeeu.3 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ (ℂ ↑m
ℕ0)) |
| 13 | 8, 9 | elmap 8893 |
. . . . . . 7
⊢ (𝐵 ∈ (ℂ
↑m ℕ0) ↔ 𝐵:ℕ0⟶ℂ) |
| 14 | 12, 13 | sylib 218 |
. . . . . 6
⊢ (𝜑 → 𝐵:ℕ0⟶ℂ) |
| 15 | 9 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ℕ0 ∈
V) |
| 16 | | inidm 4207 |
. . . . . 6
⊢
(ℕ0 ∩ ℕ0) =
ℕ0 |
| 17 | 6, 11, 14, 15, 15, 16 | off 7697 |
. . . . 5
⊢ (𝜑 → (𝐴 ∘f − 𝐵):ℕ0⟶ℂ) |
| 18 | 8, 9 | elmap 8893 |
. . . . 5
⊢ ((𝐴 ∘f −
𝐵) ∈ (ℂ
↑m ℕ0) ↔ (𝐴 ∘f − 𝐵):ℕ0⟶ℂ) |
| 19 | 17, 18 | sylibr 234 |
. . . 4
⊢ (𝜑 → (𝐴 ∘f − 𝐵) ∈ (ℂ
↑m ℕ0)) |
| 20 | | 0cn 11235 |
. . . . . . 7
⊢ 0 ∈
ℂ |
| 21 | | snssi 4788 |
. . . . . . 7
⊢ (0 ∈
ℂ → {0} ⊆ ℂ) |
| 22 | 20, 21 | ax-mp 5 |
. . . . . 6
⊢ {0}
⊆ ℂ |
| 23 | | ssequn2 4169 |
. . . . . 6
⊢ ({0}
⊆ ℂ ↔ (ℂ ∪ {0}) = ℂ) |
| 24 | 22, 23 | mpbi 230 |
. . . . 5
⊢ (ℂ
∪ {0}) = ℂ |
| 25 | 24 | oveq1i 7423 |
. . . 4
⊢ ((ℂ
∪ {0}) ↑m ℕ0) = (ℂ
↑m ℕ0) |
| 26 | 19, 25 | eleqtrrdi 2844 |
. . 3
⊢ (𝜑 → (𝐴 ∘f − 𝐵) ∈ ((ℂ ∪ {0})
↑m ℕ0)) |
| 27 | 4 | nn0red 12571 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 + 𝑁) ∈ ℝ) |
| 28 | | nn0re 12518 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℝ) |
| 29 | | ltnle 11322 |
. . . . . . . 8
⊢ (((𝑀 + 𝑁) ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((𝑀 + 𝑁) < 𝑘 ↔ ¬ 𝑘 ≤ (𝑀 + 𝑁))) |
| 30 | 27, 28, 29 | syl2an 596 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑀 + 𝑁) < 𝑘 ↔ ¬ 𝑘 ≤ (𝑀 + 𝑁))) |
| 31 | 11 | ffnd 6717 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 Fn ℕ0) |
| 32 | 14 | ffnd 6717 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 Fn ℕ0) |
| 33 | | eqidd 2735 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) = (𝐴‘𝑘)) |
| 34 | | eqidd 2735 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐵‘𝑘) = (𝐵‘𝑘)) |
| 35 | 31, 32, 15, 15, 16, 33, 34 | ofval 7690 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐴 ∘f −
𝐵)‘𝑘) = ((𝐴‘𝑘) − (𝐵‘𝑘))) |
| 36 | 35 | adantrr 717 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → ((𝐴 ∘f − 𝐵)‘𝑘) = ((𝐴‘𝑘) − (𝐵‘𝑘))) |
| 37 | 2 | nn0red 12571 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 38 | 37 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → 𝑀 ∈ ℝ) |
| 39 | 27 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → (𝑀 + 𝑁) ∈ ℝ) |
| 40 | 28 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℝ) |
| 41 | 40 | adantrr 717 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → 𝑘 ∈ ℝ) |
| 42 | 2 | nn0cnd 12572 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 43 | 3 | nn0cnd 12572 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 44 | 42, 43 | addcomd 11445 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑀 + 𝑁) = (𝑁 + 𝑀)) |
| 45 | | nn0uz 12902 |
. . . . . . . . . . . . . . . . . . . 20
⊢
ℕ0 = (ℤ≥‘0) |
| 46 | 3, 45 | eleqtrdi 2843 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘0)) |
| 47 | 2 | nn0zd 12622 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 48 | | eluzadd 12889 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈
(ℤ≥‘0) ∧ 𝑀 ∈ ℤ) → (𝑁 + 𝑀) ∈ (ℤ≥‘(0 +
𝑀))) |
| 49 | 46, 47, 48 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑁 + 𝑀) ∈ (ℤ≥‘(0 +
𝑀))) |
| 50 | 44, 49 | eqeltrd 2833 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑀 + 𝑁) ∈ (ℤ≥‘(0 +
𝑀))) |
| 51 | 42 | addlidd 11444 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (0 + 𝑀) = 𝑀) |
| 52 | 51 | fveq2d 6890 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 →
(ℤ≥‘(0 + 𝑀)) = (ℤ≥‘𝑀)) |
| 53 | 50, 52 | eleqtrd 2835 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑀 + 𝑁) ∈ (ℤ≥‘𝑀)) |
| 54 | | eluzle 12873 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑀 + 𝑁) ∈ (ℤ≥‘𝑀) → 𝑀 ≤ (𝑀 + 𝑁)) |
| 55 | 53, 54 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑀 ≤ (𝑀 + 𝑁)) |
| 56 | 55 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → 𝑀 ≤ (𝑀 + 𝑁)) |
| 57 | | simprr 772 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → (𝑀 + 𝑁) < 𝑘) |
| 58 | 38, 39, 41, 56, 57 | lelttrd 11401 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → 𝑀 < 𝑘) |
| 59 | 38, 41 | ltnled 11390 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → (𝑀 < 𝑘 ↔ ¬ 𝑘 ≤ 𝑀)) |
| 60 | 58, 59 | mpbid 232 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → ¬ 𝑘 ≤ 𝑀) |
| 61 | | coeeu.6 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) |
| 62 | | plyco0 26168 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑀 ∈ ℕ0
∧ 𝐴:ℕ0⟶ℂ) →
((𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0
((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ 𝑀))) |
| 63 | 2, 11, 62 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0
((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ 𝑀))) |
| 64 | 61, 63 | mpbid 232 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑘 ∈ ℕ0 ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ 𝑀)) |
| 65 | 64 | r19.21bi 3237 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ 𝑀)) |
| 66 | 65 | adantrr 717 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ 𝑀)) |
| 67 | 66 | necon1bd 2949 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → (¬ 𝑘 ≤ 𝑀 → (𝐴‘𝑘) = 0)) |
| 68 | 60, 67 | mpd 15 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → (𝐴‘𝑘) = 0) |
| 69 | 3 | nn0red 12571 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 70 | 69 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → 𝑁 ∈ ℝ) |
| 71 | 2, 45 | eleqtrdi 2843 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘0)) |
| 72 | 3 | nn0zd 12622 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 73 | | eluzadd 12889 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑀 ∈
(ℤ≥‘0) ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ (ℤ≥‘(0 +
𝑁))) |
| 74 | 71, 72, 73 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑀 + 𝑁) ∈ (ℤ≥‘(0 +
𝑁))) |
| 75 | 43 | addlidd 11444 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (0 + 𝑁) = 𝑁) |
| 76 | 75 | fveq2d 6890 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 →
(ℤ≥‘(0 + 𝑁)) = (ℤ≥‘𝑁)) |
| 77 | 74, 76 | eleqtrd 2835 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑀 + 𝑁) ∈ (ℤ≥‘𝑁)) |
| 78 | | eluzle 12873 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑀 + 𝑁) ∈ (ℤ≥‘𝑁) → 𝑁 ≤ (𝑀 + 𝑁)) |
| 79 | 77, 78 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑁 ≤ (𝑀 + 𝑁)) |
| 80 | 79 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → 𝑁 ≤ (𝑀 + 𝑁)) |
| 81 | 70, 39, 41, 80, 57 | lelttrd 11401 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → 𝑁 < 𝑘) |
| 82 | 70, 41 | ltnled 11390 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → (𝑁 < 𝑘 ↔ ¬ 𝑘 ≤ 𝑁)) |
| 83 | 81, 82 | mpbid 232 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → ¬ 𝑘 ≤ 𝑁) |
| 84 | | coeeu.7 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐵 “
(ℤ≥‘(𝑁 + 1))) = {0}) |
| 85 | | plyco0 26168 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℕ0
∧ 𝐵:ℕ0⟶ℂ) →
((𝐵 “
(ℤ≥‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0
((𝐵‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁))) |
| 86 | 3, 14, 85 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐵 “
(ℤ≥‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0
((𝐵‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁))) |
| 87 | 84, 86 | mpbid 232 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑘 ∈ ℕ0 ((𝐵‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁)) |
| 88 | 87 | r19.21bi 3237 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐵‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁)) |
| 89 | 88 | adantrr 717 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → ((𝐵‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁)) |
| 90 | 89 | necon1bd 2949 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → (¬ 𝑘 ≤ 𝑁 → (𝐵‘𝑘) = 0)) |
| 91 | 83, 90 | mpd 15 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → (𝐵‘𝑘) = 0) |
| 92 | 68, 91 | oveq12d 7431 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → ((𝐴‘𝑘) − (𝐵‘𝑘)) = (0 − 0)) |
| 93 | | 0m0e0 12368 |
. . . . . . . . . 10
⊢ (0
− 0) = 0 |
| 94 | 92, 93 | eqtrdi 2785 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → ((𝐴‘𝑘) − (𝐵‘𝑘)) = 0) |
| 95 | 36, 94 | eqtrd 2769 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ (𝑀 + 𝑁) < 𝑘)) → ((𝐴 ∘f − 𝐵)‘𝑘) = 0) |
| 96 | 95 | expr 456 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑀 + 𝑁) < 𝑘 → ((𝐴 ∘f − 𝐵)‘𝑘) = 0)) |
| 97 | 30, 96 | sylbird 260 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (¬
𝑘 ≤ (𝑀 + 𝑁) → ((𝐴 ∘f − 𝐵)‘𝑘) = 0)) |
| 98 | 97 | necon1ad 2948 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (((𝐴 ∘f −
𝐵)‘𝑘) ≠ 0 → 𝑘 ≤ (𝑀 + 𝑁))) |
| 99 | 98 | ralrimiva 3133 |
. . . 4
⊢ (𝜑 → ∀𝑘 ∈ ℕ0 (((𝐴 ∘f −
𝐵)‘𝑘) ≠ 0 → 𝑘 ≤ (𝑀 + 𝑁))) |
| 100 | | plyco0 26168 |
. . . . 5
⊢ (((𝑀 + 𝑁) ∈ ℕ0 ∧ (𝐴 ∘f −
𝐵):ℕ0⟶ℂ) →
(((𝐴 ∘f
− 𝐵) “
(ℤ≥‘((𝑀 + 𝑁) + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0
(((𝐴 ∘f
− 𝐵)‘𝑘) ≠ 0 → 𝑘 ≤ (𝑀 + 𝑁)))) |
| 101 | 4, 17, 100 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (((𝐴 ∘f − 𝐵) “
(ℤ≥‘((𝑀 + 𝑁) + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0
(((𝐴 ∘f
− 𝐵)‘𝑘) ≠ 0 → 𝑘 ≤ (𝑀 + 𝑁)))) |
| 102 | 99, 101 | mpbird 257 |
. . 3
⊢ (𝜑 → ((𝐴 ∘f − 𝐵) “
(ℤ≥‘((𝑀 + 𝑁) + 1))) = {0}) |
| 103 | | df-0p 25642 |
. . . . 5
⊢
0𝑝 = (ℂ × {0}) |
| 104 | | fconstmpt 5727 |
. . . . 5
⊢ (ℂ
× {0}) = (𝑧 ∈
ℂ ↦ 0) |
| 105 | 103, 104 | eqtri 2757 |
. . . 4
⊢
0𝑝 = (𝑧 ∈ ℂ ↦ 0) |
| 106 | | elfznn0 13642 |
. . . . . . . 8
⊢ (𝑘 ∈ (0...(𝑀 + 𝑁)) → 𝑘 ∈ ℕ0) |
| 107 | 35 | adantlr 715 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴 ∘f −
𝐵)‘𝑘) = ((𝐴‘𝑘) − (𝐵‘𝑘))) |
| 108 | 107 | oveq1d 7428 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (((𝐴 ∘f −
𝐵)‘𝑘) · (𝑧↑𝑘)) = (((𝐴‘𝑘) − (𝐵‘𝑘)) · (𝑧↑𝑘))) |
| 109 | 11 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝐴:ℕ0⟶ℂ) |
| 110 | 109 | ffvelcdmda 7084 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
| 111 | 14 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝐵:ℕ0⟶ℂ) |
| 112 | 111 | ffvelcdmda 7084 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐵‘𝑘) ∈ ℂ) |
| 113 | | expcl 14102 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝑧↑𝑘) ∈
ℂ) |
| 114 | 113 | adantll 714 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑧↑𝑘) ∈ ℂ) |
| 115 | 110, 112,
114 | subdird 11702 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (((𝐴‘𝑘) − (𝐵‘𝑘)) · (𝑧↑𝑘)) = (((𝐴‘𝑘) · (𝑧↑𝑘)) − ((𝐵‘𝑘) · (𝑧↑𝑘)))) |
| 116 | 108, 115 | eqtrd 2769 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (((𝐴 ∘f −
𝐵)‘𝑘) · (𝑧↑𝑘)) = (((𝐴‘𝑘) · (𝑧↑𝑘)) − ((𝐵‘𝑘) · (𝑧↑𝑘)))) |
| 117 | 106, 116 | sylan2 593 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑀 + 𝑁))) → (((𝐴 ∘f − 𝐵)‘𝑘) · (𝑧↑𝑘)) = (((𝐴‘𝑘) · (𝑧↑𝑘)) − ((𝐵‘𝑘) · (𝑧↑𝑘)))) |
| 118 | 117 | sumeq2dv 15721 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑀 + 𝑁))(((𝐴 ∘f − 𝐵)‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...(𝑀 + 𝑁))(((𝐴‘𝑘) · (𝑧↑𝑘)) − ((𝐵‘𝑘) · (𝑧↑𝑘)))) |
| 119 | | fzfid 13996 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (0...(𝑀 + 𝑁)) ∈ Fin) |
| 120 | 110, 114 | mulcld 11263 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
| 121 | 106, 120 | sylan2 593 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑀 + 𝑁))) → ((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
| 122 | 112, 114 | mulcld 11263 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐵‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
| 123 | 106, 122 | sylan2 593 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑀 + 𝑁))) → ((𝐵‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
| 124 | 119, 121,
123 | fsumsub 15807 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑀 + 𝑁))(((𝐴‘𝑘) · (𝑧↑𝑘)) − ((𝐵‘𝑘) · (𝑧↑𝑘))) = (Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐴‘𝑘) · (𝑧↑𝑘)) − Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐵‘𝑘) · (𝑧↑𝑘)))) |
| 125 | 119, 121 | fsumcl 15752 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
| 126 | | coeeu.8 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) |
| 127 | | coeeu.9 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) |
| 128 | 126, 127 | eqtr3d 2771 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) |
| 129 | 128 | fveq1d 6888 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))‘𝑧) = ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))‘𝑧)) |
| 130 | 129 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))‘𝑧) = ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))‘𝑧)) |
| 131 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ) |
| 132 | | sumex 15707 |
. . . . . . . . . 10
⊢
Σ𝑘 ∈
(0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ V |
| 133 | | eqid 2734 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘))) |
| 134 | 133 | fvmpt2 7007 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ ℂ ∧
Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ V) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))‘𝑧) = Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘))) |
| 135 | 131, 132,
134 | sylancl 586 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))‘𝑧) = Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘))) |
| 136 | | fzss2 13586 |
. . . . . . . . . . . 12
⊢ ((𝑀 + 𝑁) ∈ (ℤ≥‘𝑀) → (0...𝑀) ⊆ (0...(𝑀 + 𝑁))) |
| 137 | 53, 136 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (0...𝑀) ⊆ (0...(𝑀 + 𝑁))) |
| 138 | 137 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (0...𝑀) ⊆ (0...(𝑀 + 𝑁))) |
| 139 | 138 | sselda 3963 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → 𝑘 ∈ (0...(𝑀 + 𝑁))) |
| 140 | 139, 121 | syldan 591 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → ((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
| 141 | | eldifn 4112 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀)) → ¬ 𝑘 ∈ (0...𝑀)) |
| 142 | 141 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → ¬ 𝑘 ∈ (0...𝑀)) |
| 143 | | eldifi 4111 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀)) → 𝑘 ∈ (0...(𝑀 + 𝑁))) |
| 144 | 143, 106 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀)) → 𝑘 ∈ ℕ0) |
| 145 | | simpr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℕ0) |
| 146 | 145, 45 | eleqtrdi 2843 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
(ℤ≥‘0)) |
| 147 | 47 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑀 ∈
ℤ) |
| 148 | | elfz5 13538 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈
(ℤ≥‘0) ∧ 𝑀 ∈ ℤ) → (𝑘 ∈ (0...𝑀) ↔ 𝑘 ≤ 𝑀)) |
| 149 | 146, 147,
148 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ (0...𝑀) ↔ 𝑘 ≤ 𝑀)) |
| 150 | 65, 149 | sylibrd 259 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐴‘𝑘) ≠ 0 → 𝑘 ∈ (0...𝑀))) |
| 151 | 150 | adantlr 715 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴‘𝑘) ≠ 0 → 𝑘 ∈ (0...𝑀))) |
| 152 | 151 | necon1bd 2949 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (¬
𝑘 ∈ (0...𝑀) → (𝐴‘𝑘) = 0)) |
| 153 | 144, 152 | sylan2 593 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (¬ 𝑘 ∈ (0...𝑀) → (𝐴‘𝑘) = 0)) |
| 154 | 142, 153 | mpd 15 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (𝐴‘𝑘) = 0) |
| 155 | 154 | oveq1d 7428 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → ((𝐴‘𝑘) · (𝑧↑𝑘)) = (0 · (𝑧↑𝑘))) |
| 156 | 131, 144,
113 | syl2an 596 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (𝑧↑𝑘) ∈ ℂ) |
| 157 | 156 | mul02d 11441 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (0 · (𝑧↑𝑘)) = 0) |
| 158 | 155, 157 | eqtrd 2769 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → ((𝐴‘𝑘) · (𝑧↑𝑘)) = 0) |
| 159 | 138, 140,
158, 119 | fsumss 15744 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐴‘𝑘) · (𝑧↑𝑘))) |
| 160 | 135, 159 | eqtrd 2769 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))‘𝑧) = Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐴‘𝑘) · (𝑧↑𝑘))) |
| 161 | | sumex 15707 |
. . . . . . . . . 10
⊢
Σ𝑘 ∈
(0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)) ∈ V |
| 162 | | eqid 2734 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘))) |
| 163 | 162 | fvmpt2 7007 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ ℂ ∧
Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)) ∈ V) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))‘𝑧) = Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘))) |
| 164 | 131, 161,
163 | sylancl 586 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))‘𝑧) = Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘))) |
| 165 | | fzss2 13586 |
. . . . . . . . . . . 12
⊢ ((𝑀 + 𝑁) ∈ (ℤ≥‘𝑁) → (0...𝑁) ⊆ (0...(𝑀 + 𝑁))) |
| 166 | 77, 165 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (0...𝑁) ⊆ (0...(𝑀 + 𝑁))) |
| 167 | 166 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (0...𝑁) ⊆ (0...(𝑀 + 𝑁))) |
| 168 | 167 | sselda 3963 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ (0...(𝑀 + 𝑁))) |
| 169 | 168, 123 | syldan 591 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐵‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
| 170 | | eldifn 4112 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑁)) → ¬ 𝑘 ∈ (0...𝑁)) |
| 171 | 170 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑁))) → ¬ 𝑘 ∈ (0...𝑁)) |
| 172 | | eldifi 4111 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑁)) → 𝑘 ∈ (0...(𝑀 + 𝑁))) |
| 173 | 172, 106 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑁)) → 𝑘 ∈ ℕ0) |
| 174 | 72 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑁 ∈
ℤ) |
| 175 | | elfz5 13538 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈
(ℤ≥‘0) ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (0...𝑁) ↔ 𝑘 ≤ 𝑁)) |
| 176 | 146, 174,
175 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ (0...𝑁) ↔ 𝑘 ≤ 𝑁)) |
| 177 | 88, 176 | sylibrd 259 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐵‘𝑘) ≠ 0 → 𝑘 ∈ (0...𝑁))) |
| 178 | 177 | adantlr 715 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐵‘𝑘) ≠ 0 → 𝑘 ∈ (0...𝑁))) |
| 179 | 178 | necon1bd 2949 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (¬
𝑘 ∈ (0...𝑁) → (𝐵‘𝑘) = 0)) |
| 180 | 173, 179 | sylan2 593 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑁))) → (¬ 𝑘 ∈ (0...𝑁) → (𝐵‘𝑘) = 0)) |
| 181 | 171, 180 | mpd 15 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑁))) → (𝐵‘𝑘) = 0) |
| 182 | 181 | oveq1d 7428 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑁))) → ((𝐵‘𝑘) · (𝑧↑𝑘)) = (0 · (𝑧↑𝑘))) |
| 183 | 131, 173,
113 | syl2an 596 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑁))) → (𝑧↑𝑘) ∈ ℂ) |
| 184 | 183 | mul02d 11441 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑁))) → (0 · (𝑧↑𝑘)) = 0) |
| 185 | 182, 184 | eqtrd 2769 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑁))) → ((𝐵‘𝑘) · (𝑧↑𝑘)) = 0) |
| 186 | 167, 169,
185, 119 | fsumss 15744 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐵‘𝑘) · (𝑧↑𝑘))) |
| 187 | 164, 186 | eqtrd 2769 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))‘𝑧) = Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐵‘𝑘) · (𝑧↑𝑘))) |
| 188 | 130, 160,
187 | 3eqtr3d 2777 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐴‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐵‘𝑘) · (𝑧↑𝑘))) |
| 189 | 125, 188 | subeq0bd 11671 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐴‘𝑘) · (𝑧↑𝑘)) − Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐵‘𝑘) · (𝑧↑𝑘))) = 0) |
| 190 | 118, 124,
189 | 3eqtrrd 2774 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 0 = Σ𝑘 ∈ (0...(𝑀 + 𝑁))(((𝐴 ∘f − 𝐵)‘𝑘) · (𝑧↑𝑘))) |
| 191 | 190 | mpteq2dva 5222 |
. . . 4
⊢ (𝜑 → (𝑧 ∈ ℂ ↦ 0) = (𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...(𝑀 + 𝑁))(((𝐴 ∘f − 𝐵)‘𝑘) · (𝑧↑𝑘)))) |
| 192 | 105, 191 | eqtrid 2781 |
. . 3
⊢ (𝜑 → 0𝑝 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...(𝑀 + 𝑁))(((𝐴 ∘f − 𝐵)‘𝑘) · (𝑧↑𝑘)))) |
| 193 | 1, 4, 26, 102, 192 | plyeq0 26187 |
. 2
⊢ (𝜑 → (𝐴 ∘f − 𝐵) = (ℕ0 ×
{0})) |
| 194 | | ofsubeq0 12245 |
. . 3
⊢
((ℕ0 ∈ V ∧ 𝐴:ℕ0⟶ℂ ∧
𝐵:ℕ0⟶ℂ) →
((𝐴 ∘f
− 𝐵) =
(ℕ0 × {0}) ↔ 𝐴 = 𝐵)) |
| 195 | 9, 11, 14, 194 | mp3an2i 1467 |
. 2
⊢ (𝜑 → ((𝐴 ∘f − 𝐵) = (ℕ0 ×
{0}) ↔ 𝐴 = 𝐵)) |
| 196 | 193, 195 | mpbid 232 |
1
⊢ (𝜑 → 𝐴 = 𝐵) |