Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dgr0 | Structured version Visualization version GIF version |
Description: The degree of the zero polynomial is zero. Note: this differs from some other definitions of the degree of the zero polynomial, such as -1, -∞ or undefined. But it is convenient for us to define it this way, so that we have dgrcl 24934, dgreq0 24966 and coeid 24939 without having to special-case zero, although plydivalg 24999 is a little more complicated as a result. (Contributed by Mario Carneiro, 22-Jul-2014.) |
Ref | Expression |
---|---|
dgr0 | ⊢ (deg‘0𝑝) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-0p 24375 | . . 3 ⊢ 0𝑝 = (ℂ × {0}) | |
2 | 1 | fveq2i 6665 | . 2 ⊢ (deg‘0𝑝) = (deg‘(ℂ × {0})) |
3 | 0cn 10676 | . . 3 ⊢ 0 ∈ ℂ | |
4 | 0dgr 24946 | . . 3 ⊢ (0 ∈ ℂ → (deg‘(ℂ × {0})) = 0) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ (deg‘(ℂ × {0})) = 0 |
6 | 2, 5 | eqtri 2781 | 1 ⊢ (deg‘0𝑝) = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∈ wcel 2111 {csn 4525 × cxp 5525 ‘cfv 6339 ℂcc 10578 0cc0 10580 0𝑝c0p 24374 degcdgr 24888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-inf2 9142 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 ax-pre-sup 10658 ax-addf 10659 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-se 5487 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-isom 6348 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-of 7410 df-om 7585 df-1st 7698 df-2nd 7699 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-1o 8117 df-er 8304 df-map 8423 df-pm 8424 df-en 8533 df-dom 8534 df-sdom 8535 df-fin 8536 df-sup 8944 df-inf 8945 df-oi 9012 df-card 9406 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-div 11341 df-nn 11680 df-2 11742 df-3 11743 df-n0 11940 df-z 12026 df-uz 12288 df-rp 12436 df-fz 12945 df-fzo 13088 df-fl 13216 df-seq 13424 df-exp 13485 df-hash 13746 df-cj 14511 df-re 14512 df-im 14513 df-sqrt 14647 df-abs 14648 df-clim 14898 df-rlim 14899 df-sum 15096 df-0p 24375 df-ply 24889 df-coe 24891 df-dgr 24892 |
This theorem is referenced by: dgreq0 24966 dgrlt 24967 dgradd2 24969 dgrmulc 24972 dgrcolem1 24974 dgrcolem2 24975 plyrem 25005 facth 25006 fta1lem 25007 vieta1lem1 25010 vieta1lem2 25011 vieta1 25012 aalioulem2 25033 ftalem2 25763 ftalem4 25765 ftalem5 25766 basellem4 25773 dgrsub2 40480 mncn0 40484 aaitgo 40507 |
Copyright terms: Public domain | W3C validator |