MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quotcan Structured version   Visualization version   GIF version

Theorem quotcan 26247
Description: Exact division with a multiple. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypothesis
Ref Expression
quotcan.1 𝐻 = (𝐹f · 𝐺)
Assertion
Ref Expression
quotcan ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐻 quot 𝐺) = 𝐹)

Proof of Theorem quotcan
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyssc 26135 . . . . . . . . 9 (Poly‘𝑆) ⊆ (Poly‘ℂ)
2 simp2 1137 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐺 ∈ (Poly‘𝑆))
31, 2sselid 3928 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐺 ∈ (Poly‘ℂ))
4 simp1 1136 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐹 ∈ (Poly‘𝑆))
51, 4sselid 3928 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐹 ∈ (Poly‘ℂ))
6 quotcan.1 . . . . . . . . . . . 12 𝐻 = (𝐹f · 𝐺)
7 plymulcl 26156 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹f · 𝐺) ∈ (Poly‘ℂ))
86, 7eqeltrid 2837 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐻 ∈ (Poly‘ℂ))
983adant3 1132 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐻 ∈ (Poly‘ℂ))
10 simp3 1138 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐺 ≠ 0𝑝)
11 quotcl2 26240 . . . . . . . . . 10 ((𝐻 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝) → (𝐻 quot 𝐺) ∈ (Poly‘ℂ))
129, 3, 10, 11syl3anc 1373 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐻 quot 𝐺) ∈ (Poly‘ℂ))
13 plysubcl 26157 . . . . . . . . 9 ((𝐹 ∈ (Poly‘ℂ) ∧ (𝐻 quot 𝐺) ∈ (Poly‘ℂ)) → (𝐹f − (𝐻 quot 𝐺)) ∈ (Poly‘ℂ))
145, 12, 13syl2anc 584 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹f − (𝐻 quot 𝐺)) ∈ (Poly‘ℂ))
15 plymul0or 26218 . . . . . . . 8 ((𝐺 ∈ (Poly‘ℂ) ∧ (𝐹f − (𝐻 quot 𝐺)) ∈ (Poly‘ℂ)) → ((𝐺f · (𝐹f − (𝐻 quot 𝐺))) = 0𝑝 ↔ (𝐺 = 0𝑝 ∨ (𝐹f − (𝐻 quot 𝐺)) = 0𝑝)))
163, 14, 15syl2anc 584 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐺f · (𝐹f − (𝐻 quot 𝐺))) = 0𝑝 ↔ (𝐺 = 0𝑝 ∨ (𝐹f − (𝐻 quot 𝐺)) = 0𝑝)))
17 cnex 11096 . . . . . . . . . . . . 13 ℂ ∈ V
1817a1i 11 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ℂ ∈ V)
19 plyf 26133 . . . . . . . . . . . . 13 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
204, 19syl 17 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐹:ℂ⟶ℂ)
21 plyf 26133 . . . . . . . . . . . . 13 (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ)
222, 21syl 17 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐺:ℂ⟶ℂ)
23 mulcom 11101 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
2423adantl 481 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
2518, 20, 22, 24caofcom 7655 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹f · 𝐺) = (𝐺f · 𝐹))
266, 25eqtrid 2780 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐻 = (𝐺f · 𝐹))
2726oveq1d 7369 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐻f − (𝐺f · (𝐻 quot 𝐺))) = ((𝐺f · 𝐹) ∘f − (𝐺f · (𝐻 quot 𝐺))))
28 plyf 26133 . . . . . . . . . . 11 ((𝐻 quot 𝐺) ∈ (Poly‘ℂ) → (𝐻 quot 𝐺):ℂ⟶ℂ)
2912, 28syl 17 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐻 quot 𝐺):ℂ⟶ℂ)
30 subdi 11559 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 · (𝑦𝑧)) = ((𝑥 · 𝑦) − (𝑥 · 𝑧)))
3130adantl 481 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑥 · (𝑦𝑧)) = ((𝑥 · 𝑦) − (𝑥 · 𝑧)))
3218, 22, 20, 29, 31caofdi 7660 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐺f · (𝐹f − (𝐻 quot 𝐺))) = ((𝐺f · 𝐹) ∘f − (𝐺f · (𝐻 quot 𝐺))))
3327, 32eqtr4d 2771 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐻f − (𝐺f · (𝐻 quot 𝐺))) = (𝐺f · (𝐹f − (𝐻 quot 𝐺))))
3433eqeq1d 2735 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐻f − (𝐺f · (𝐻 quot 𝐺))) = 0𝑝 ↔ (𝐺f · (𝐹f − (𝐻 quot 𝐺))) = 0𝑝))
3510neneqd 2934 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ¬ 𝐺 = 0𝑝)
36 biorf 936 . . . . . . . 8 𝐺 = 0𝑝 → ((𝐹f − (𝐻 quot 𝐺)) = 0𝑝 ↔ (𝐺 = 0𝑝 ∨ (𝐹f − (𝐻 quot 𝐺)) = 0𝑝)))
3735, 36syl 17 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐹f − (𝐻 quot 𝐺)) = 0𝑝 ↔ (𝐺 = 0𝑝 ∨ (𝐹f − (𝐻 quot 𝐺)) = 0𝑝)))
3816, 34, 373bitr4d 311 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐻f − (𝐺f · (𝐻 quot 𝐺))) = 0𝑝 ↔ (𝐹f − (𝐻 quot 𝐺)) = 0𝑝))
3938biimpd 229 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐻f − (𝐺f · (𝐻 quot 𝐺))) = 0𝑝 → (𝐹f − (𝐻 quot 𝐺)) = 0𝑝))
40 eqid 2733 . . . . . . . . . . 11 (deg‘𝐺) = (deg‘𝐺)
41 eqid 2733 . . . . . . . . . . 11 (deg‘(𝐹f − (𝐻 quot 𝐺))) = (deg‘(𝐹f − (𝐻 quot 𝐺)))
4240, 41dgrmul 26206 . . . . . . . . . 10 (((𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝) ∧ ((𝐹f − (𝐻 quot 𝐺)) ∈ (Poly‘ℂ) ∧ (𝐹f − (𝐻 quot 𝐺)) ≠ 0𝑝)) → (deg‘(𝐺f · (𝐹f − (𝐻 quot 𝐺)))) = ((deg‘𝐺) + (deg‘(𝐹f − (𝐻 quot 𝐺)))))
4342expr 456 . . . . . . . . 9 (((𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝) ∧ (𝐹f − (𝐻 quot 𝐺)) ∈ (Poly‘ℂ)) → ((𝐹f − (𝐻 quot 𝐺)) ≠ 0𝑝 → (deg‘(𝐺f · (𝐹f − (𝐻 quot 𝐺)))) = ((deg‘𝐺) + (deg‘(𝐹f − (𝐻 quot 𝐺))))))
443, 10, 14, 43syl21anc 837 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐹f − (𝐻 quot 𝐺)) ≠ 0𝑝 → (deg‘(𝐺f · (𝐹f − (𝐻 quot 𝐺)))) = ((deg‘𝐺) + (deg‘(𝐹f − (𝐻 quot 𝐺))))))
45 dgrcl 26168 . . . . . . . . . . . 12 (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈ ℕ0)
462, 45syl 17 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (deg‘𝐺) ∈ ℕ0)
4746nn0red 12452 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (deg‘𝐺) ∈ ℝ)
48 dgrcl 26168 . . . . . . . . . . 11 ((𝐹f − (𝐻 quot 𝐺)) ∈ (Poly‘ℂ) → (deg‘(𝐹f − (𝐻 quot 𝐺))) ∈ ℕ0)
4914, 48syl 17 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (deg‘(𝐹f − (𝐻 quot 𝐺))) ∈ ℕ0)
50 nn0addge1 12436 . . . . . . . . . 10 (((deg‘𝐺) ∈ ℝ ∧ (deg‘(𝐹f − (𝐻 quot 𝐺))) ∈ ℕ0) → (deg‘𝐺) ≤ ((deg‘𝐺) + (deg‘(𝐹f − (𝐻 quot 𝐺)))))
5147, 49, 50syl2anc 584 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (deg‘𝐺) ≤ ((deg‘𝐺) + (deg‘(𝐹f − (𝐻 quot 𝐺)))))
52 breq2 5099 . . . . . . . . 9 ((deg‘(𝐺f · (𝐹f − (𝐻 quot 𝐺)))) = ((deg‘𝐺) + (deg‘(𝐹f − (𝐻 quot 𝐺)))) → ((deg‘𝐺) ≤ (deg‘(𝐺f · (𝐹f − (𝐻 quot 𝐺)))) ↔ (deg‘𝐺) ≤ ((deg‘𝐺) + (deg‘(𝐹f − (𝐻 quot 𝐺))))))
5351, 52syl5ibrcom 247 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((deg‘(𝐺f · (𝐹f − (𝐻 quot 𝐺)))) = ((deg‘𝐺) + (deg‘(𝐹f − (𝐻 quot 𝐺)))) → (deg‘𝐺) ≤ (deg‘(𝐺f · (𝐹f − (𝐻 quot 𝐺))))))
5444, 53syld 47 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐹f − (𝐻 quot 𝐺)) ≠ 0𝑝 → (deg‘𝐺) ≤ (deg‘(𝐺f · (𝐹f − (𝐻 quot 𝐺))))))
5533fveq2d 6834 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (deg‘(𝐻f − (𝐺f · (𝐻 quot 𝐺)))) = (deg‘(𝐺f · (𝐹f − (𝐻 quot 𝐺)))))
5655breq2d 5107 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((deg‘𝐺) ≤ (deg‘(𝐻f − (𝐺f · (𝐻 quot 𝐺)))) ↔ (deg‘𝐺) ≤ (deg‘(𝐺f · (𝐹f − (𝐻 quot 𝐺))))))
57 plymulcl 26156 . . . . . . . . . . . . 13 ((𝐺 ∈ (Poly‘ℂ) ∧ (𝐻 quot 𝐺) ∈ (Poly‘ℂ)) → (𝐺f · (𝐻 quot 𝐺)) ∈ (Poly‘ℂ))
583, 12, 57syl2anc 584 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐺f · (𝐻 quot 𝐺)) ∈ (Poly‘ℂ))
59 plysubcl 26157 . . . . . . . . . . . 12 ((𝐻 ∈ (Poly‘ℂ) ∧ (𝐺f · (𝐻 quot 𝐺)) ∈ (Poly‘ℂ)) → (𝐻f − (𝐺f · (𝐻 quot 𝐺))) ∈ (Poly‘ℂ))
609, 58, 59syl2anc 584 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐻f − (𝐺f · (𝐻 quot 𝐺))) ∈ (Poly‘ℂ))
61 dgrcl 26168 . . . . . . . . . . 11 ((𝐻f − (𝐺f · (𝐻 quot 𝐺))) ∈ (Poly‘ℂ) → (deg‘(𝐻f − (𝐺f · (𝐻 quot 𝐺)))) ∈ ℕ0)
6260, 61syl 17 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (deg‘(𝐻f − (𝐺f · (𝐻 quot 𝐺)))) ∈ ℕ0)
6362nn0red 12452 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (deg‘(𝐻f − (𝐺f · (𝐻 quot 𝐺)))) ∈ ℝ)
6447, 63lenltd 11268 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((deg‘𝐺) ≤ (deg‘(𝐻f − (𝐺f · (𝐻 quot 𝐺)))) ↔ ¬ (deg‘(𝐻f − (𝐺f · (𝐻 quot 𝐺)))) < (deg‘𝐺)))
6556, 64bitr3d 281 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((deg‘𝐺) ≤ (deg‘(𝐺f · (𝐹f − (𝐻 quot 𝐺)))) ↔ ¬ (deg‘(𝐻f − (𝐺f · (𝐻 quot 𝐺)))) < (deg‘𝐺)))
6654, 65sylibd 239 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐹f − (𝐻 quot 𝐺)) ≠ 0𝑝 → ¬ (deg‘(𝐻f − (𝐺f · (𝐻 quot 𝐺)))) < (deg‘𝐺)))
6766necon4ad 2948 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((deg‘(𝐻f − (𝐺f · (𝐻 quot 𝐺)))) < (deg‘𝐺) → (𝐹f − (𝐻 quot 𝐺)) = 0𝑝))
68 eqid 2733 . . . . . . 7 (𝐻f − (𝐺f · (𝐻 quot 𝐺))) = (𝐻f − (𝐺f · (𝐻 quot 𝐺)))
6968quotdgr 26241 . . . . . 6 ((𝐻 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝) → ((𝐻f − (𝐺f · (𝐻 quot 𝐺))) = 0𝑝 ∨ (deg‘(𝐻f − (𝐺f · (𝐻 quot 𝐺)))) < (deg‘𝐺)))
709, 3, 10, 69syl3anc 1373 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐻f − (𝐺f · (𝐻 quot 𝐺))) = 0𝑝 ∨ (deg‘(𝐻f − (𝐺f · (𝐻 quot 𝐺)))) < (deg‘𝐺)))
7139, 67, 70mpjaod 860 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹f − (𝐻 quot 𝐺)) = 0𝑝)
72 df-0p 25601 . . . 4 0𝑝 = (ℂ × {0})
7371, 72eqtrdi 2784 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹f − (𝐻 quot 𝐺)) = (ℂ × {0}))
74 ofsubeq0 12131 . . . 4 ((ℂ ∈ V ∧ 𝐹:ℂ⟶ℂ ∧ (𝐻 quot 𝐺):ℂ⟶ℂ) → ((𝐹f − (𝐻 quot 𝐺)) = (ℂ × {0}) ↔ 𝐹 = (𝐻 quot 𝐺)))
7518, 20, 29, 74syl3anc 1373 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐹f − (𝐻 quot 𝐺)) = (ℂ × {0}) ↔ 𝐹 = (𝐻 quot 𝐺)))
7673, 75mpbid 232 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐹 = (𝐻 quot 𝐺))
7776eqcomd 2739 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐻 quot 𝐺) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113  wne 2929  Vcvv 3437  {csn 4577   class class class wbr 5095   × cxp 5619  wf 6484  cfv 6488  (class class class)co 7354  f cof 7616  cc 11013  cr 11014  0cc0 11015   + caddc 11018   · cmul 11020   < clt 11155  cle 11156  cmin 11353  0cn0 12390  0𝑝c0p 25600  Polycply 26119  degcdgr 26122   quot cquot 26228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-inf2 9540  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-of 7618  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-er 8630  df-map 8760  df-pm 8761  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-sup 9335  df-inf 9336  df-oi 9405  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-n0 12391  df-z 12478  df-uz 12741  df-rp 12895  df-fz 13412  df-fzo 13559  df-fl 13700  df-seq 13913  df-exp 13973  df-hash 14242  df-cj 15010  df-re 15011  df-im 15012  df-sqrt 15146  df-abs 15147  df-clim 15399  df-rlim 15400  df-sum 15598  df-0p 25601  df-ply 26123  df-coe 26125  df-dgr 26126  df-quot 26229
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator