| Step | Hyp | Ref
| Expression |
| 1 | | plyssc 26239 |
. . . . . . . . 9
⊢
(Poly‘𝑆)
⊆ (Poly‘ℂ) |
| 2 | | simp2 1138 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐺 ∈ (Poly‘𝑆)) |
| 3 | 1, 2 | sselid 3981 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐺 ∈
(Poly‘ℂ)) |
| 4 | | simp1 1137 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐹 ∈ (Poly‘𝑆)) |
| 5 | 1, 4 | sselid 3981 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐹 ∈
(Poly‘ℂ)) |
| 6 | | quotcan.1 |
. . . . . . . . . . . 12
⊢ 𝐻 = (𝐹 ∘f · 𝐺) |
| 7 | | plymulcl 26260 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 ∘f · 𝐺) ∈
(Poly‘ℂ)) |
| 8 | 6, 7 | eqeltrid 2845 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐻 ∈
(Poly‘ℂ)) |
| 9 | 8 | 3adant3 1133 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐻 ∈
(Poly‘ℂ)) |
| 10 | | simp3 1139 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐺 ≠
0𝑝) |
| 11 | | quotcl2 26344 |
. . . . . . . . . 10
⊢ ((𝐻 ∈ (Poly‘ℂ)
∧ 𝐺 ∈
(Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝) → (𝐻 quot 𝐺) ∈
(Poly‘ℂ)) |
| 12 | 9, 3, 10, 11 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐻 quot 𝐺) ∈
(Poly‘ℂ)) |
| 13 | | plysubcl 26261 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (Poly‘ℂ)
∧ (𝐻 quot 𝐺) ∈ (Poly‘ℂ))
→ (𝐹
∘f − (𝐻 quot 𝐺)) ∈
(Poly‘ℂ)) |
| 14 | 5, 12, 13 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹 ∘f −
(𝐻 quot 𝐺)) ∈
(Poly‘ℂ)) |
| 15 | | plymul0or 26322 |
. . . . . . . 8
⊢ ((𝐺 ∈ (Poly‘ℂ)
∧ (𝐹
∘f − (𝐻 quot 𝐺)) ∈ (Poly‘ℂ)) →
((𝐺 ∘f
· (𝐹
∘f − (𝐻 quot 𝐺))) = 0𝑝 ↔ (𝐺 = 0𝑝 ∨
(𝐹 ∘f
− (𝐻 quot 𝐺)) =
0𝑝))) |
| 16 | 3, 14, 15 | syl2anc 584 |
. . . . . . 7
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐺 ∘f ·
(𝐹 ∘f
− (𝐻 quot 𝐺))) = 0𝑝
↔ (𝐺 =
0𝑝 ∨ (𝐹 ∘f − (𝐻 quot 𝐺)) =
0𝑝))) |
| 17 | | cnex 11236 |
. . . . . . . . . . . . 13
⊢ ℂ
∈ V |
| 18 | 17 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ℂ
∈ V) |
| 19 | | plyf 26237 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) |
| 20 | 4, 19 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐹:ℂ⟶ℂ) |
| 21 | | plyf 26237 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ) |
| 22 | 2, 21 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐺:ℂ⟶ℂ) |
| 23 | | mulcom 11241 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) = (𝑦 · 𝑥)) |
| 24 | 23 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) = (𝑦 · 𝑥)) |
| 25 | 18, 20, 22, 24 | caofcom 7734 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹 ∘f ·
𝐺) = (𝐺 ∘f · 𝐹)) |
| 26 | 6, 25 | eqtrid 2789 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐻 = (𝐺 ∘f · 𝐹)) |
| 27 | 26 | oveq1d 7446 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐻 ∘f −
(𝐺 ∘f
· (𝐻 quot 𝐺))) = ((𝐺 ∘f · 𝐹) ∘f −
(𝐺 ∘f
· (𝐻 quot 𝐺)))) |
| 28 | | plyf 26237 |
. . . . . . . . . . 11
⊢ ((𝐻 quot 𝐺) ∈ (Poly‘ℂ) → (𝐻 quot 𝐺):ℂ⟶ℂ) |
| 29 | 12, 28 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐻 quot 𝐺):ℂ⟶ℂ) |
| 30 | | subdi 11696 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 · (𝑦 − 𝑧)) = ((𝑥 · 𝑦) − (𝑥 · 𝑧))) |
| 31 | 30 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑥 · (𝑦 − 𝑧)) = ((𝑥 · 𝑦) − (𝑥 · 𝑧))) |
| 32 | 18, 22, 20, 29, 31 | caofdi 7739 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐺 ∘f ·
(𝐹 ∘f
− (𝐻 quot 𝐺))) = ((𝐺 ∘f · 𝐹) ∘f −
(𝐺 ∘f
· (𝐻 quot 𝐺)))) |
| 33 | 27, 32 | eqtr4d 2780 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐻 ∘f −
(𝐺 ∘f
· (𝐻 quot 𝐺))) = (𝐺 ∘f · (𝐹 ∘f −
(𝐻 quot 𝐺)))) |
| 34 | 33 | eqeq1d 2739 |
. . . . . . 7
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐻 ∘f −
(𝐺 ∘f
· (𝐻 quot 𝐺))) = 0𝑝
↔ (𝐺
∘f · (𝐹 ∘f − (𝐻 quot 𝐺))) =
0𝑝)) |
| 35 | 10 | neneqd 2945 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ¬
𝐺 =
0𝑝) |
| 36 | | biorf 937 |
. . . . . . . 8
⊢ (¬
𝐺 = 0𝑝
→ ((𝐹
∘f − (𝐻 quot 𝐺)) = 0𝑝 ↔ (𝐺 = 0𝑝 ∨
(𝐹 ∘f
− (𝐻 quot 𝐺)) =
0𝑝))) |
| 37 | 35, 36 | syl 17 |
. . . . . . 7
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐹 ∘f −
(𝐻 quot 𝐺)) = 0𝑝 ↔ (𝐺 = 0𝑝 ∨
(𝐹 ∘f
− (𝐻 quot 𝐺)) =
0𝑝))) |
| 38 | 16, 34, 37 | 3bitr4d 311 |
. . . . . 6
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐻 ∘f −
(𝐺 ∘f
· (𝐻 quot 𝐺))) = 0𝑝
↔ (𝐹
∘f − (𝐻 quot 𝐺)) =
0𝑝)) |
| 39 | 38 | biimpd 229 |
. . . . 5
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐻 ∘f −
(𝐺 ∘f
· (𝐻 quot 𝐺))) = 0𝑝
→ (𝐹
∘f − (𝐻 quot 𝐺)) =
0𝑝)) |
| 40 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(deg‘𝐺) =
(deg‘𝐺) |
| 41 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(deg‘(𝐹
∘f − (𝐻 quot 𝐺))) = (deg‘(𝐹 ∘f − (𝐻 quot 𝐺))) |
| 42 | 40, 41 | dgrmul 26310 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ (Poly‘ℂ)
∧ 𝐺 ≠
0𝑝) ∧ ((𝐹 ∘f − (𝐻 quot 𝐺)) ∈ (Poly‘ℂ) ∧ (𝐹 ∘f −
(𝐻 quot 𝐺)) ≠ 0𝑝)) →
(deg‘(𝐺
∘f · (𝐹 ∘f − (𝐻 quot 𝐺)))) = ((deg‘𝐺) + (deg‘(𝐹 ∘f − (𝐻 quot 𝐺))))) |
| 43 | 42 | expr 456 |
. . . . . . . . 9
⊢ (((𝐺 ∈ (Poly‘ℂ)
∧ 𝐺 ≠
0𝑝) ∧ (𝐹 ∘f − (𝐻 quot 𝐺)) ∈ (Poly‘ℂ)) →
((𝐹 ∘f
− (𝐻 quot 𝐺)) ≠ 0𝑝
→ (deg‘(𝐺
∘f · (𝐹 ∘f − (𝐻 quot 𝐺)))) = ((deg‘𝐺) + (deg‘(𝐹 ∘f − (𝐻 quot 𝐺)))))) |
| 44 | 3, 10, 14, 43 | syl21anc 838 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐹 ∘f −
(𝐻 quot 𝐺)) ≠ 0𝑝 →
(deg‘(𝐺
∘f · (𝐹 ∘f − (𝐻 quot 𝐺)))) = ((deg‘𝐺) + (deg‘(𝐹 ∘f − (𝐻 quot 𝐺)))))) |
| 45 | | dgrcl 26272 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈
ℕ0) |
| 46 | 2, 45 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) →
(deg‘𝐺) ∈
ℕ0) |
| 47 | 46 | nn0red 12588 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) →
(deg‘𝐺) ∈
ℝ) |
| 48 | | dgrcl 26272 |
. . . . . . . . . . 11
⊢ ((𝐹 ∘f −
(𝐻 quot 𝐺)) ∈ (Poly‘ℂ) →
(deg‘(𝐹
∘f − (𝐻 quot 𝐺))) ∈
ℕ0) |
| 49 | 14, 48 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) →
(deg‘(𝐹
∘f − (𝐻 quot 𝐺))) ∈
ℕ0) |
| 50 | | nn0addge1 12572 |
. . . . . . . . . 10
⊢
(((deg‘𝐺)
∈ ℝ ∧ (deg‘(𝐹 ∘f − (𝐻 quot 𝐺))) ∈ ℕ0) →
(deg‘𝐺) ≤
((deg‘𝐺) +
(deg‘(𝐹
∘f − (𝐻 quot 𝐺))))) |
| 51 | 47, 49, 50 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) →
(deg‘𝐺) ≤
((deg‘𝐺) +
(deg‘(𝐹
∘f − (𝐻 quot 𝐺))))) |
| 52 | | breq2 5147 |
. . . . . . . . 9
⊢
((deg‘(𝐺
∘f · (𝐹 ∘f − (𝐻 quot 𝐺)))) = ((deg‘𝐺) + (deg‘(𝐹 ∘f − (𝐻 quot 𝐺)))) → ((deg‘𝐺) ≤ (deg‘(𝐺 ∘f · (𝐹 ∘f −
(𝐻 quot 𝐺)))) ↔ (deg‘𝐺) ≤ ((deg‘𝐺) + (deg‘(𝐹 ∘f − (𝐻 quot 𝐺)))))) |
| 53 | 51, 52 | syl5ibrcom 247 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) →
((deg‘(𝐺
∘f · (𝐹 ∘f − (𝐻 quot 𝐺)))) = ((deg‘𝐺) + (deg‘(𝐹 ∘f − (𝐻 quot 𝐺)))) → (deg‘𝐺) ≤ (deg‘(𝐺 ∘f · (𝐹 ∘f −
(𝐻 quot 𝐺)))))) |
| 54 | 44, 53 | syld 47 |
. . . . . . 7
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐹 ∘f −
(𝐻 quot 𝐺)) ≠ 0𝑝 →
(deg‘𝐺) ≤
(deg‘(𝐺
∘f · (𝐹 ∘f − (𝐻 quot 𝐺)))))) |
| 55 | 33 | fveq2d 6910 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) →
(deg‘(𝐻
∘f − (𝐺 ∘f · (𝐻 quot 𝐺)))) = (deg‘(𝐺 ∘f · (𝐹 ∘f −
(𝐻 quot 𝐺))))) |
| 56 | 55 | breq2d 5155 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) →
((deg‘𝐺) ≤
(deg‘(𝐻
∘f − (𝐺 ∘f · (𝐻 quot 𝐺)))) ↔ (deg‘𝐺) ≤ (deg‘(𝐺 ∘f · (𝐹 ∘f −
(𝐻 quot 𝐺)))))) |
| 57 | | plymulcl 26260 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ (Poly‘ℂ)
∧ (𝐻 quot 𝐺) ∈ (Poly‘ℂ))
→ (𝐺
∘f · (𝐻 quot 𝐺)) ∈
(Poly‘ℂ)) |
| 58 | 3, 12, 57 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐺 ∘f ·
(𝐻 quot 𝐺)) ∈
(Poly‘ℂ)) |
| 59 | | plysubcl 26261 |
. . . . . . . . . . . 12
⊢ ((𝐻 ∈ (Poly‘ℂ)
∧ (𝐺
∘f · (𝐻 quot 𝐺)) ∈ (Poly‘ℂ)) →
(𝐻 ∘f
− (𝐺
∘f · (𝐻 quot 𝐺))) ∈
(Poly‘ℂ)) |
| 60 | 9, 58, 59 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐻 ∘f −
(𝐺 ∘f
· (𝐻 quot 𝐺))) ∈
(Poly‘ℂ)) |
| 61 | | dgrcl 26272 |
. . . . . . . . . . 11
⊢ ((𝐻 ∘f −
(𝐺 ∘f
· (𝐻 quot 𝐺))) ∈ (Poly‘ℂ)
→ (deg‘(𝐻
∘f − (𝐺 ∘f · (𝐻 quot 𝐺)))) ∈
ℕ0) |
| 62 | 60, 61 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) →
(deg‘(𝐻
∘f − (𝐺 ∘f · (𝐻 quot 𝐺)))) ∈
ℕ0) |
| 63 | 62 | nn0red 12588 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) →
(deg‘(𝐻
∘f − (𝐺 ∘f · (𝐻 quot 𝐺)))) ∈ ℝ) |
| 64 | 47, 63 | lenltd 11407 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) →
((deg‘𝐺) ≤
(deg‘(𝐻
∘f − (𝐺 ∘f · (𝐻 quot 𝐺)))) ↔ ¬ (deg‘(𝐻 ∘f −
(𝐺 ∘f
· (𝐻 quot 𝐺)))) < (deg‘𝐺))) |
| 65 | 56, 64 | bitr3d 281 |
. . . . . . 7
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) →
((deg‘𝐺) ≤
(deg‘(𝐺
∘f · (𝐹 ∘f − (𝐻 quot 𝐺)))) ↔ ¬ (deg‘(𝐻 ∘f −
(𝐺 ∘f
· (𝐻 quot 𝐺)))) < (deg‘𝐺))) |
| 66 | 54, 65 | sylibd 239 |
. . . . . 6
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐹 ∘f −
(𝐻 quot 𝐺)) ≠ 0𝑝 → ¬
(deg‘(𝐻
∘f − (𝐺 ∘f · (𝐻 quot 𝐺)))) < (deg‘𝐺))) |
| 67 | 66 | necon4ad 2959 |
. . . . 5
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) →
((deg‘(𝐻
∘f − (𝐺 ∘f · (𝐻 quot 𝐺)))) < (deg‘𝐺) → (𝐹 ∘f − (𝐻 quot 𝐺)) =
0𝑝)) |
| 68 | | eqid 2737 |
. . . . . . 7
⊢ (𝐻 ∘f −
(𝐺 ∘f
· (𝐻 quot 𝐺))) = (𝐻 ∘f − (𝐺 ∘f ·
(𝐻 quot 𝐺))) |
| 69 | 68 | quotdgr 26345 |
. . . . . 6
⊢ ((𝐻 ∈ (Poly‘ℂ)
∧ 𝐺 ∈
(Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝) → ((𝐻 ∘f −
(𝐺 ∘f
· (𝐻 quot 𝐺))) = 0𝑝 ∨
(deg‘(𝐻
∘f − (𝐺 ∘f · (𝐻 quot 𝐺)))) < (deg‘𝐺))) |
| 70 | 9, 3, 10, 69 | syl3anc 1373 |
. . . . 5
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐻 ∘f −
(𝐺 ∘f
· (𝐻 quot 𝐺))) = 0𝑝 ∨
(deg‘(𝐻
∘f − (𝐺 ∘f · (𝐻 quot 𝐺)))) < (deg‘𝐺))) |
| 71 | 39, 67, 70 | mpjaod 861 |
. . . 4
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹 ∘f −
(𝐻 quot 𝐺)) = 0𝑝) |
| 72 | | df-0p 25705 |
. . . 4
⊢
0𝑝 = (ℂ × {0}) |
| 73 | 71, 72 | eqtrdi 2793 |
. . 3
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹 ∘f −
(𝐻 quot 𝐺)) = (ℂ × {0})) |
| 74 | | ofsubeq0 12263 |
. . . 4
⊢ ((ℂ
∈ V ∧ 𝐹:ℂ⟶ℂ ∧ (𝐻 quot 𝐺):ℂ⟶ℂ) → ((𝐹 ∘f −
(𝐻 quot 𝐺)) = (ℂ × {0}) ↔ 𝐹 = (𝐻 quot 𝐺))) |
| 75 | 18, 20, 29, 74 | syl3anc 1373 |
. . 3
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐹 ∘f −
(𝐻 quot 𝐺)) = (ℂ × {0}) ↔ 𝐹 = (𝐻 quot 𝐺))) |
| 76 | 73, 75 | mpbid 232 |
. 2
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐹 = (𝐻 quot 𝐺)) |
| 77 | 76 | eqcomd 2743 |
1
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐻 quot 𝐺) = 𝐹) |