Step | Hyp | Ref
| Expression |
1 | | plyssc 25705 |
. . . . . . . . 9
β’
(Polyβπ)
β (Polyββ) |
2 | | simp2 1137 |
. . . . . . . . 9
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β πΊ β (Polyβπ)) |
3 | 1, 2 | sselid 3979 |
. . . . . . . 8
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β πΊ β
(Polyββ)) |
4 | | simp1 1136 |
. . . . . . . . . 10
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β πΉ β (Polyβπ)) |
5 | 1, 4 | sselid 3979 |
. . . . . . . . 9
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β πΉ β
(Polyββ)) |
6 | | quotcan.1 |
. . . . . . . . . . . 12
β’ π» = (πΉ βf Β· πΊ) |
7 | | plymulcl 25726 |
. . . . . . . . . . . 12
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ)) β (πΉ βf Β· πΊ) β
(Polyββ)) |
8 | 6, 7 | eqeltrid 2837 |
. . . . . . . . . . 11
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ)) β π» β
(Polyββ)) |
9 | 8 | 3adant3 1132 |
. . . . . . . . . 10
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β π» β
(Polyββ)) |
10 | | simp3 1138 |
. . . . . . . . . 10
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β πΊ β
0π) |
11 | | quotcl2 25806 |
. . . . . . . . . 10
β’ ((π» β (Polyββ)
β§ πΊ β
(Polyββ) β§ πΊ β 0π) β (π» quot πΊ) β
(Polyββ)) |
12 | 9, 3, 10, 11 | syl3anc 1371 |
. . . . . . . . 9
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β (π» quot πΊ) β
(Polyββ)) |
13 | | plysubcl 25727 |
. . . . . . . . 9
β’ ((πΉ β (Polyββ)
β§ (π» quot πΊ) β (Polyββ))
β (πΉ
βf β (π» quot πΊ)) β
(Polyββ)) |
14 | 5, 12, 13 | syl2anc 584 |
. . . . . . . 8
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β (πΉ βf β
(π» quot πΊ)) β
(Polyββ)) |
15 | | plymul0or 25785 |
. . . . . . . 8
β’ ((πΊ β (Polyββ)
β§ (πΉ
βf β (π» quot πΊ)) β (Polyββ)) β
((πΊ βf
Β· (πΉ
βf β (π» quot πΊ))) = 0π β (πΊ = 0π β¨
(πΉ βf
β (π» quot πΊ)) =
0π))) |
16 | 3, 14, 15 | syl2anc 584 |
. . . . . . 7
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β ((πΊ βf Β·
(πΉ βf
β (π» quot πΊ))) = 0π
β (πΊ =
0π β¨ (πΉ βf β (π» quot πΊ)) =
0π))) |
17 | | cnex 11187 |
. . . . . . . . . . . . 13
β’ β
β V |
18 | 17 | a1i 11 |
. . . . . . . . . . . 12
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β β
β V) |
19 | | plyf 25703 |
. . . . . . . . . . . . 13
β’ (πΉ β (Polyβπ) β πΉ:ββΆβ) |
20 | 4, 19 | syl 17 |
. . . . . . . . . . . 12
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β πΉ:ββΆβ) |
21 | | plyf 25703 |
. . . . . . . . . . . . 13
β’ (πΊ β (Polyβπ) β πΊ:ββΆβ) |
22 | 2, 21 | syl 17 |
. . . . . . . . . . . 12
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β πΊ:ββΆβ) |
23 | | mulcom 11192 |
. . . . . . . . . . . . 13
β’ ((π₯ β β β§ π¦ β β) β (π₯ Β· π¦) = (π¦ Β· π₯)) |
24 | 23 | adantl 482 |
. . . . . . . . . . . 12
β’ (((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β§ (π₯ β β β§ π¦ β β)) β (π₯ Β· π¦) = (π¦ Β· π₯)) |
25 | 18, 20, 22, 24 | caofcom 7701 |
. . . . . . . . . . 11
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β (πΉ βf Β·
πΊ) = (πΊ βf Β· πΉ)) |
26 | 6, 25 | eqtrid 2784 |
. . . . . . . . . 10
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β π» = (πΊ βf Β· πΉ)) |
27 | 26 | oveq1d 7420 |
. . . . . . . . 9
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β (π» βf β
(πΊ βf
Β· (π» quot πΊ))) = ((πΊ βf Β· πΉ) βf β
(πΊ βf
Β· (π» quot πΊ)))) |
28 | | plyf 25703 |
. . . . . . . . . . 11
β’ ((π» quot πΊ) β (Polyββ) β (π» quot πΊ):ββΆβ) |
29 | 12, 28 | syl 17 |
. . . . . . . . . 10
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β (π» quot πΊ):ββΆβ) |
30 | | subdi 11643 |
. . . . . . . . . . 11
β’ ((π₯ β β β§ π¦ β β β§ π§ β β) β (π₯ Β· (π¦ β π§)) = ((π₯ Β· π¦) β (π₯ Β· π§))) |
31 | 30 | adantl 482 |
. . . . . . . . . 10
β’ (((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β§ (π₯ β β β§ π¦ β β β§ π§ β β)) β (π₯ Β· (π¦ β π§)) = ((π₯ Β· π¦) β (π₯ Β· π§))) |
32 | 18, 22, 20, 29, 31 | caofdi 7705 |
. . . . . . . . 9
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β (πΊ βf Β·
(πΉ βf
β (π» quot πΊ))) = ((πΊ βf Β· πΉ) βf β
(πΊ βf
Β· (π» quot πΊ)))) |
33 | 27, 32 | eqtr4d 2775 |
. . . . . . . 8
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β (π» βf β
(πΊ βf
Β· (π» quot πΊ))) = (πΊ βf Β· (πΉ βf β
(π» quot πΊ)))) |
34 | 33 | eqeq1d 2734 |
. . . . . . 7
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β ((π» βf β
(πΊ βf
Β· (π» quot πΊ))) = 0π
β (πΊ
βf Β· (πΉ βf β (π» quot πΊ))) =
0π)) |
35 | 10 | neneqd 2945 |
. . . . . . . 8
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β Β¬
πΊ =
0π) |
36 | | biorf 935 |
. . . . . . . 8
β’ (Β¬
πΊ = 0π
β ((πΉ
βf β (π» quot πΊ)) = 0π β (πΊ = 0π β¨
(πΉ βf
β (π» quot πΊ)) =
0π))) |
37 | 35, 36 | syl 17 |
. . . . . . 7
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β ((πΉ βf β
(π» quot πΊ)) = 0π β (πΊ = 0π β¨
(πΉ βf
β (π» quot πΊ)) =
0π))) |
38 | 16, 34, 37 | 3bitr4d 310 |
. . . . . 6
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β ((π» βf β
(πΊ βf
Β· (π» quot πΊ))) = 0π
β (πΉ
βf β (π» quot πΊ)) =
0π)) |
39 | 38 | biimpd 228 |
. . . . 5
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β ((π» βf β
(πΊ βf
Β· (π» quot πΊ))) = 0π
β (πΉ
βf β (π» quot πΊ)) =
0π)) |
40 | | eqid 2732 |
. . . . . . . . . . 11
β’
(degβπΊ) =
(degβπΊ) |
41 | | eqid 2732 |
. . . . . . . . . . 11
β’
(degβ(πΉ
βf β (π» quot πΊ))) = (degβ(πΉ βf β (π» quot πΊ))) |
42 | 40, 41 | dgrmul 25775 |
. . . . . . . . . 10
β’ (((πΊ β (Polyββ)
β§ πΊ β
0π) β§ ((πΉ βf β (π» quot πΊ)) β (Polyββ) β§ (πΉ βf β
(π» quot πΊ)) β 0π)) β
(degβ(πΊ
βf Β· (πΉ βf β (π» quot πΊ)))) = ((degβπΊ) + (degβ(πΉ βf β (π» quot πΊ))))) |
43 | 42 | expr 457 |
. . . . . . . . 9
β’ (((πΊ β (Polyββ)
β§ πΊ β
0π) β§ (πΉ βf β (π» quot πΊ)) β (Polyββ)) β
((πΉ βf
β (π» quot πΊ)) β 0π
β (degβ(πΊ
βf Β· (πΉ βf β (π» quot πΊ)))) = ((degβπΊ) + (degβ(πΉ βf β (π» quot πΊ)))))) |
44 | 3, 10, 14, 43 | syl21anc 836 |
. . . . . . . 8
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β ((πΉ βf β
(π» quot πΊ)) β 0π β
(degβ(πΊ
βf Β· (πΉ βf β (π» quot πΊ)))) = ((degβπΊ) + (degβ(πΉ βf β (π» quot πΊ)))))) |
45 | | dgrcl 25738 |
. . . . . . . . . . . 12
β’ (πΊ β (Polyβπ) β (degβπΊ) β
β0) |
46 | 2, 45 | syl 17 |
. . . . . . . . . . 11
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β
(degβπΊ) β
β0) |
47 | 46 | nn0red 12529 |
. . . . . . . . . 10
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β
(degβπΊ) β
β) |
48 | | dgrcl 25738 |
. . . . . . . . . . 11
β’ ((πΉ βf β
(π» quot πΊ)) β (Polyββ) β
(degβ(πΉ
βf β (π» quot πΊ))) β
β0) |
49 | 14, 48 | syl 17 |
. . . . . . . . . 10
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β
(degβ(πΉ
βf β (π» quot πΊ))) β
β0) |
50 | | nn0addge1 12514 |
. . . . . . . . . 10
β’
(((degβπΊ)
β β β§ (degβ(πΉ βf β (π» quot πΊ))) β β0) β
(degβπΊ) β€
((degβπΊ) +
(degβ(πΉ
βf β (π» quot πΊ))))) |
51 | 47, 49, 50 | syl2anc 584 |
. . . . . . . . 9
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β
(degβπΊ) β€
((degβπΊ) +
(degβ(πΉ
βf β (π» quot πΊ))))) |
52 | | breq2 5151 |
. . . . . . . . 9
β’
((degβ(πΊ
βf Β· (πΉ βf β (π» quot πΊ)))) = ((degβπΊ) + (degβ(πΉ βf β (π» quot πΊ)))) β ((degβπΊ) β€ (degβ(πΊ βf Β· (πΉ βf β
(π» quot πΊ)))) β (degβπΊ) β€ ((degβπΊ) + (degβ(πΉ βf β (π» quot πΊ)))))) |
53 | 51, 52 | syl5ibrcom 246 |
. . . . . . . 8
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β
((degβ(πΊ
βf Β· (πΉ βf β (π» quot πΊ)))) = ((degβπΊ) + (degβ(πΉ βf β (π» quot πΊ)))) β (degβπΊ) β€ (degβ(πΊ βf Β· (πΉ βf β
(π» quot πΊ)))))) |
54 | 44, 53 | syld 47 |
. . . . . . 7
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β ((πΉ βf β
(π» quot πΊ)) β 0π β
(degβπΊ) β€
(degβ(πΊ
βf Β· (πΉ βf β (π» quot πΊ)))))) |
55 | 33 | fveq2d 6892 |
. . . . . . . . 9
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β
(degβ(π»
βf β (πΊ βf Β· (π» quot πΊ)))) = (degβ(πΊ βf Β· (πΉ βf β
(π» quot πΊ))))) |
56 | 55 | breq2d 5159 |
. . . . . . . 8
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β
((degβπΊ) β€
(degβ(π»
βf β (πΊ βf Β· (π» quot πΊ)))) β (degβπΊ) β€ (degβ(πΊ βf Β· (πΉ βf β
(π» quot πΊ)))))) |
57 | | plymulcl 25726 |
. . . . . . . . . . . . 13
β’ ((πΊ β (Polyββ)
β§ (π» quot πΊ) β (Polyββ))
β (πΊ
βf Β· (π» quot πΊ)) β
(Polyββ)) |
58 | 3, 12, 57 | syl2anc 584 |
. . . . . . . . . . . 12
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β (πΊ βf Β·
(π» quot πΊ)) β
(Polyββ)) |
59 | | plysubcl 25727 |
. . . . . . . . . . . 12
β’ ((π» β (Polyββ)
β§ (πΊ
βf Β· (π» quot πΊ)) β (Polyββ)) β
(π» βf
β (πΊ
βf Β· (π» quot πΊ))) β
(Polyββ)) |
60 | 9, 58, 59 | syl2anc 584 |
. . . . . . . . . . 11
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β (π» βf β
(πΊ βf
Β· (π» quot πΊ))) β
(Polyββ)) |
61 | | dgrcl 25738 |
. . . . . . . . . . 11
β’ ((π» βf β
(πΊ βf
Β· (π» quot πΊ))) β (Polyββ)
β (degβ(π»
βf β (πΊ βf Β· (π» quot πΊ)))) β
β0) |
62 | 60, 61 | syl 17 |
. . . . . . . . . 10
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β
(degβ(π»
βf β (πΊ βf Β· (π» quot πΊ)))) β
β0) |
63 | 62 | nn0red 12529 |
. . . . . . . . 9
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β
(degβ(π»
βf β (πΊ βf Β· (π» quot πΊ)))) β β) |
64 | 47, 63 | lenltd 11356 |
. . . . . . . 8
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β
((degβπΊ) β€
(degβ(π»
βf β (πΊ βf Β· (π» quot πΊ)))) β Β¬ (degβ(π» βf β
(πΊ βf
Β· (π» quot πΊ)))) < (degβπΊ))) |
65 | 56, 64 | bitr3d 280 |
. . . . . . 7
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β
((degβπΊ) β€
(degβ(πΊ
βf Β· (πΉ βf β (π» quot πΊ)))) β Β¬ (degβ(π» βf β
(πΊ βf
Β· (π» quot πΊ)))) < (degβπΊ))) |
66 | 54, 65 | sylibd 238 |
. . . . . 6
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β ((πΉ βf β
(π» quot πΊ)) β 0π β Β¬
(degβ(π»
βf β (πΊ βf Β· (π» quot πΊ)))) < (degβπΊ))) |
67 | 66 | necon4ad 2959 |
. . . . 5
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β
((degβ(π»
βf β (πΊ βf Β· (π» quot πΊ)))) < (degβπΊ) β (πΉ βf β (π» quot πΊ)) =
0π)) |
68 | | eqid 2732 |
. . . . . . 7
β’ (π» βf β
(πΊ βf
Β· (π» quot πΊ))) = (π» βf β (πΊ βf Β·
(π» quot πΊ))) |
69 | 68 | quotdgr 25807 |
. . . . . 6
β’ ((π» β (Polyββ)
β§ πΊ β
(Polyββ) β§ πΊ β 0π) β ((π» βf β
(πΊ βf
Β· (π» quot πΊ))) = 0π β¨
(degβ(π»
βf β (πΊ βf Β· (π» quot πΊ)))) < (degβπΊ))) |
70 | 9, 3, 10, 69 | syl3anc 1371 |
. . . . 5
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β ((π» βf β
(πΊ βf
Β· (π» quot πΊ))) = 0π β¨
(degβ(π»
βf β (πΊ βf Β· (π» quot πΊ)))) < (degβπΊ))) |
71 | 39, 67, 70 | mpjaod 858 |
. . . 4
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β (πΉ βf β
(π» quot πΊ)) = 0π) |
72 | | df-0p 25178 |
. . . 4
β’
0π = (β Γ {0}) |
73 | 71, 72 | eqtrdi 2788 |
. . 3
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β (πΉ βf β
(π» quot πΊ)) = (β Γ {0})) |
74 | | ofsubeq0 12205 |
. . . 4
β’ ((β
β V β§ πΉ:ββΆβ β§ (π» quot πΊ):ββΆβ) β ((πΉ βf β
(π» quot πΊ)) = (β Γ {0}) β πΉ = (π» quot πΊ))) |
75 | 18, 20, 29, 74 | syl3anc 1371 |
. . 3
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β ((πΉ βf β
(π» quot πΊ)) = (β Γ {0}) β πΉ = (π» quot πΊ))) |
76 | 73, 75 | mpbid 231 |
. 2
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β πΉ = (π» quot πΊ)) |
77 | 76 | eqcomd 2738 |
1
β’ ((πΉ β (Polyβπ) β§ πΊ β (Polyβπ) β§ πΊ β 0π) β (π» quot πΊ) = πΉ) |