MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quotcan Structured version   Visualization version   GIF version

Theorem quotcan 25156
Description: Exact division with a multiple. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypothesis
Ref Expression
quotcan.1 𝐻 = (𝐹f · 𝐺)
Assertion
Ref Expression
quotcan ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐻 quot 𝐺) = 𝐹)

Proof of Theorem quotcan
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyssc 25048 . . . . . . . . 9 (Poly‘𝑆) ⊆ (Poly‘ℂ)
2 simp2 1139 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐺 ∈ (Poly‘𝑆))
31, 2sseldi 3885 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐺 ∈ (Poly‘ℂ))
4 simp1 1138 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐹 ∈ (Poly‘𝑆))
51, 4sseldi 3885 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐹 ∈ (Poly‘ℂ))
6 quotcan.1 . . . . . . . . . . . 12 𝐻 = (𝐹f · 𝐺)
7 plymulcl 25069 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹f · 𝐺) ∈ (Poly‘ℂ))
86, 7eqeltrid 2835 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐻 ∈ (Poly‘ℂ))
983adant3 1134 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐻 ∈ (Poly‘ℂ))
10 simp3 1140 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐺 ≠ 0𝑝)
11 quotcl2 25149 . . . . . . . . . 10 ((𝐻 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝) → (𝐻 quot 𝐺) ∈ (Poly‘ℂ))
129, 3, 10, 11syl3anc 1373 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐻 quot 𝐺) ∈ (Poly‘ℂ))
13 plysubcl 25070 . . . . . . . . 9 ((𝐹 ∈ (Poly‘ℂ) ∧ (𝐻 quot 𝐺) ∈ (Poly‘ℂ)) → (𝐹f − (𝐻 quot 𝐺)) ∈ (Poly‘ℂ))
145, 12, 13syl2anc 587 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹f − (𝐻 quot 𝐺)) ∈ (Poly‘ℂ))
15 plymul0or 25128 . . . . . . . 8 ((𝐺 ∈ (Poly‘ℂ) ∧ (𝐹f − (𝐻 quot 𝐺)) ∈ (Poly‘ℂ)) → ((𝐺f · (𝐹f − (𝐻 quot 𝐺))) = 0𝑝 ↔ (𝐺 = 0𝑝 ∨ (𝐹f − (𝐻 quot 𝐺)) = 0𝑝)))
163, 14, 15syl2anc 587 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐺f · (𝐹f − (𝐻 quot 𝐺))) = 0𝑝 ↔ (𝐺 = 0𝑝 ∨ (𝐹f − (𝐻 quot 𝐺)) = 0𝑝)))
17 cnex 10775 . . . . . . . . . . . . 13 ℂ ∈ V
1817a1i 11 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ℂ ∈ V)
19 plyf 25046 . . . . . . . . . . . . 13 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
204, 19syl 17 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐹:ℂ⟶ℂ)
21 plyf 25046 . . . . . . . . . . . . 13 (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ)
222, 21syl 17 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐺:ℂ⟶ℂ)
23 mulcom 10780 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
2423adantl 485 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
2518, 20, 22, 24caofcom 7481 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹f · 𝐺) = (𝐺f · 𝐹))
266, 25syl5eq 2783 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐻 = (𝐺f · 𝐹))
2726oveq1d 7206 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐻f − (𝐺f · (𝐻 quot 𝐺))) = ((𝐺f · 𝐹) ∘f − (𝐺f · (𝐻 quot 𝐺))))
28 plyf 25046 . . . . . . . . . . 11 ((𝐻 quot 𝐺) ∈ (Poly‘ℂ) → (𝐻 quot 𝐺):ℂ⟶ℂ)
2912, 28syl 17 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐻 quot 𝐺):ℂ⟶ℂ)
30 subdi 11230 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 · (𝑦𝑧)) = ((𝑥 · 𝑦) − (𝑥 · 𝑧)))
3130adantl 485 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑥 · (𝑦𝑧)) = ((𝑥 · 𝑦) − (𝑥 · 𝑧)))
3218, 22, 20, 29, 31caofdi 7485 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐺f · (𝐹f − (𝐻 quot 𝐺))) = ((𝐺f · 𝐹) ∘f − (𝐺f · (𝐻 quot 𝐺))))
3327, 32eqtr4d 2774 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐻f − (𝐺f · (𝐻 quot 𝐺))) = (𝐺f · (𝐹f − (𝐻 quot 𝐺))))
3433eqeq1d 2738 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐻f − (𝐺f · (𝐻 quot 𝐺))) = 0𝑝 ↔ (𝐺f · (𝐹f − (𝐻 quot 𝐺))) = 0𝑝))
3510neneqd 2937 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ¬ 𝐺 = 0𝑝)
36 biorf 937 . . . . . . . 8 𝐺 = 0𝑝 → ((𝐹f − (𝐻 quot 𝐺)) = 0𝑝 ↔ (𝐺 = 0𝑝 ∨ (𝐹f − (𝐻 quot 𝐺)) = 0𝑝)))
3735, 36syl 17 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐹f − (𝐻 quot 𝐺)) = 0𝑝 ↔ (𝐺 = 0𝑝 ∨ (𝐹f − (𝐻 quot 𝐺)) = 0𝑝)))
3816, 34, 373bitr4d 314 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐻f − (𝐺f · (𝐻 quot 𝐺))) = 0𝑝 ↔ (𝐹f − (𝐻 quot 𝐺)) = 0𝑝))
3938biimpd 232 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐻f − (𝐺f · (𝐻 quot 𝐺))) = 0𝑝 → (𝐹f − (𝐻 quot 𝐺)) = 0𝑝))
40 eqid 2736 . . . . . . . . . . 11 (deg‘𝐺) = (deg‘𝐺)
41 eqid 2736 . . . . . . . . . . 11 (deg‘(𝐹f − (𝐻 quot 𝐺))) = (deg‘(𝐹f − (𝐻 quot 𝐺)))
4240, 41dgrmul 25118 . . . . . . . . . 10 (((𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝) ∧ ((𝐹f − (𝐻 quot 𝐺)) ∈ (Poly‘ℂ) ∧ (𝐹f − (𝐻 quot 𝐺)) ≠ 0𝑝)) → (deg‘(𝐺f · (𝐹f − (𝐻 quot 𝐺)))) = ((deg‘𝐺) + (deg‘(𝐹f − (𝐻 quot 𝐺)))))
4342expr 460 . . . . . . . . 9 (((𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝) ∧ (𝐹f − (𝐻 quot 𝐺)) ∈ (Poly‘ℂ)) → ((𝐹f − (𝐻 quot 𝐺)) ≠ 0𝑝 → (deg‘(𝐺f · (𝐹f − (𝐻 quot 𝐺)))) = ((deg‘𝐺) + (deg‘(𝐹f − (𝐻 quot 𝐺))))))
443, 10, 14, 43syl21anc 838 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐹f − (𝐻 quot 𝐺)) ≠ 0𝑝 → (deg‘(𝐺f · (𝐹f − (𝐻 quot 𝐺)))) = ((deg‘𝐺) + (deg‘(𝐹f − (𝐻 quot 𝐺))))))
45 dgrcl 25081 . . . . . . . . . . . 12 (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈ ℕ0)
462, 45syl 17 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (deg‘𝐺) ∈ ℕ0)
4746nn0red 12116 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (deg‘𝐺) ∈ ℝ)
48 dgrcl 25081 . . . . . . . . . . 11 ((𝐹f − (𝐻 quot 𝐺)) ∈ (Poly‘ℂ) → (deg‘(𝐹f − (𝐻 quot 𝐺))) ∈ ℕ0)
4914, 48syl 17 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (deg‘(𝐹f − (𝐻 quot 𝐺))) ∈ ℕ0)
50 nn0addge1 12101 . . . . . . . . . 10 (((deg‘𝐺) ∈ ℝ ∧ (deg‘(𝐹f − (𝐻 quot 𝐺))) ∈ ℕ0) → (deg‘𝐺) ≤ ((deg‘𝐺) + (deg‘(𝐹f − (𝐻 quot 𝐺)))))
5147, 49, 50syl2anc 587 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (deg‘𝐺) ≤ ((deg‘𝐺) + (deg‘(𝐹f − (𝐻 quot 𝐺)))))
52 breq2 5043 . . . . . . . . 9 ((deg‘(𝐺f · (𝐹f − (𝐻 quot 𝐺)))) = ((deg‘𝐺) + (deg‘(𝐹f − (𝐻 quot 𝐺)))) → ((deg‘𝐺) ≤ (deg‘(𝐺f · (𝐹f − (𝐻 quot 𝐺)))) ↔ (deg‘𝐺) ≤ ((deg‘𝐺) + (deg‘(𝐹f − (𝐻 quot 𝐺))))))
5351, 52syl5ibrcom 250 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((deg‘(𝐺f · (𝐹f − (𝐻 quot 𝐺)))) = ((deg‘𝐺) + (deg‘(𝐹f − (𝐻 quot 𝐺)))) → (deg‘𝐺) ≤ (deg‘(𝐺f · (𝐹f − (𝐻 quot 𝐺))))))
5444, 53syld 47 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐹f − (𝐻 quot 𝐺)) ≠ 0𝑝 → (deg‘𝐺) ≤ (deg‘(𝐺f · (𝐹f − (𝐻 quot 𝐺))))))
5533fveq2d 6699 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (deg‘(𝐻f − (𝐺f · (𝐻 quot 𝐺)))) = (deg‘(𝐺f · (𝐹f − (𝐻 quot 𝐺)))))
5655breq2d 5051 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((deg‘𝐺) ≤ (deg‘(𝐻f − (𝐺f · (𝐻 quot 𝐺)))) ↔ (deg‘𝐺) ≤ (deg‘(𝐺f · (𝐹f − (𝐻 quot 𝐺))))))
57 plymulcl 25069 . . . . . . . . . . . . 13 ((𝐺 ∈ (Poly‘ℂ) ∧ (𝐻 quot 𝐺) ∈ (Poly‘ℂ)) → (𝐺f · (𝐻 quot 𝐺)) ∈ (Poly‘ℂ))
583, 12, 57syl2anc 587 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐺f · (𝐻 quot 𝐺)) ∈ (Poly‘ℂ))
59 plysubcl 25070 . . . . . . . . . . . 12 ((𝐻 ∈ (Poly‘ℂ) ∧ (𝐺f · (𝐻 quot 𝐺)) ∈ (Poly‘ℂ)) → (𝐻f − (𝐺f · (𝐻 quot 𝐺))) ∈ (Poly‘ℂ))
609, 58, 59syl2anc 587 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐻f − (𝐺f · (𝐻 quot 𝐺))) ∈ (Poly‘ℂ))
61 dgrcl 25081 . . . . . . . . . . 11 ((𝐻f − (𝐺f · (𝐻 quot 𝐺))) ∈ (Poly‘ℂ) → (deg‘(𝐻f − (𝐺f · (𝐻 quot 𝐺)))) ∈ ℕ0)
6260, 61syl 17 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (deg‘(𝐻f − (𝐺f · (𝐻 quot 𝐺)))) ∈ ℕ0)
6362nn0red 12116 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (deg‘(𝐻f − (𝐺f · (𝐻 quot 𝐺)))) ∈ ℝ)
6447, 63lenltd 10943 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((deg‘𝐺) ≤ (deg‘(𝐻f − (𝐺f · (𝐻 quot 𝐺)))) ↔ ¬ (deg‘(𝐻f − (𝐺f · (𝐻 quot 𝐺)))) < (deg‘𝐺)))
6556, 64bitr3d 284 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((deg‘𝐺) ≤ (deg‘(𝐺f · (𝐹f − (𝐻 quot 𝐺)))) ↔ ¬ (deg‘(𝐻f − (𝐺f · (𝐻 quot 𝐺)))) < (deg‘𝐺)))
6654, 65sylibd 242 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐹f − (𝐻 quot 𝐺)) ≠ 0𝑝 → ¬ (deg‘(𝐻f − (𝐺f · (𝐻 quot 𝐺)))) < (deg‘𝐺)))
6766necon4ad 2951 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((deg‘(𝐻f − (𝐺f · (𝐻 quot 𝐺)))) < (deg‘𝐺) → (𝐹f − (𝐻 quot 𝐺)) = 0𝑝))
68 eqid 2736 . . . . . . 7 (𝐻f − (𝐺f · (𝐻 quot 𝐺))) = (𝐻f − (𝐺f · (𝐻 quot 𝐺)))
6968quotdgr 25150 . . . . . 6 ((𝐻 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝) → ((𝐻f − (𝐺f · (𝐻 quot 𝐺))) = 0𝑝 ∨ (deg‘(𝐻f − (𝐺f · (𝐻 quot 𝐺)))) < (deg‘𝐺)))
709, 3, 10, 69syl3anc 1373 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐻f − (𝐺f · (𝐻 quot 𝐺))) = 0𝑝 ∨ (deg‘(𝐻f − (𝐺f · (𝐻 quot 𝐺)))) < (deg‘𝐺)))
7139, 67, 70mpjaod 860 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹f − (𝐻 quot 𝐺)) = 0𝑝)
72 df-0p 24521 . . . 4 0𝑝 = (ℂ × {0})
7371, 72eqtrdi 2787 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹f − (𝐻 quot 𝐺)) = (ℂ × {0}))
74 ofsubeq0 11792 . . . 4 ((ℂ ∈ V ∧ 𝐹:ℂ⟶ℂ ∧ (𝐻 quot 𝐺):ℂ⟶ℂ) → ((𝐹f − (𝐻 quot 𝐺)) = (ℂ × {0}) ↔ 𝐹 = (𝐻 quot 𝐺)))
7518, 20, 29, 74syl3anc 1373 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐹f − (𝐻 quot 𝐺)) = (ℂ × {0}) ↔ 𝐹 = (𝐻 quot 𝐺)))
7673, 75mpbid 235 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐹 = (𝐻 quot 𝐺))
7776eqcomd 2742 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐻 quot 𝐺) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847  w3a 1089   = wceq 1543  wcel 2112  wne 2932  Vcvv 3398  {csn 4527   class class class wbr 5039   × cxp 5534  wf 6354  cfv 6358  (class class class)co 7191  f cof 7445  cc 10692  cr 10693  0cc0 10694   + caddc 10697   · cmul 10699   < clt 10832  cle 10833  cmin 11027  0cn0 12055  0𝑝c0p 24520  Polycply 25032  degcdgr 25035   quot cquot 25137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-inf2 9234  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-of 7447  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-map 8488  df-pm 8489  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-sup 9036  df-inf 9037  df-oi 9104  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-n0 12056  df-z 12142  df-uz 12404  df-rp 12552  df-fz 13061  df-fzo 13204  df-fl 13332  df-seq 13540  df-exp 13601  df-hash 13862  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-clim 15014  df-rlim 15015  df-sum 15215  df-0p 24521  df-ply 25036  df-coe 25038  df-dgr 25039  df-quot 25138
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator