MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quotcan Structured version   Visualization version   GIF version

Theorem quotcan 26217
Description: Exact division with a multiple. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypothesis
Ref Expression
quotcan.1 𝐻 = (𝐹f · 𝐺)
Assertion
Ref Expression
quotcan ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐻 quot 𝐺) = 𝐹)

Proof of Theorem quotcan
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyssc 26105 . . . . . . . . 9 (Poly‘𝑆) ⊆ (Poly‘ℂ)
2 simp2 1137 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐺 ∈ (Poly‘𝑆))
31, 2sselid 3944 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐺 ∈ (Poly‘ℂ))
4 simp1 1136 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐹 ∈ (Poly‘𝑆))
51, 4sselid 3944 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐹 ∈ (Poly‘ℂ))
6 quotcan.1 . . . . . . . . . . . 12 𝐻 = (𝐹f · 𝐺)
7 plymulcl 26126 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹f · 𝐺) ∈ (Poly‘ℂ))
86, 7eqeltrid 2832 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐻 ∈ (Poly‘ℂ))
983adant3 1132 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐻 ∈ (Poly‘ℂ))
10 simp3 1138 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐺 ≠ 0𝑝)
11 quotcl2 26210 . . . . . . . . . 10 ((𝐻 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝) → (𝐻 quot 𝐺) ∈ (Poly‘ℂ))
129, 3, 10, 11syl3anc 1373 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐻 quot 𝐺) ∈ (Poly‘ℂ))
13 plysubcl 26127 . . . . . . . . 9 ((𝐹 ∈ (Poly‘ℂ) ∧ (𝐻 quot 𝐺) ∈ (Poly‘ℂ)) → (𝐹f − (𝐻 quot 𝐺)) ∈ (Poly‘ℂ))
145, 12, 13syl2anc 584 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹f − (𝐻 quot 𝐺)) ∈ (Poly‘ℂ))
15 plymul0or 26188 . . . . . . . 8 ((𝐺 ∈ (Poly‘ℂ) ∧ (𝐹f − (𝐻 quot 𝐺)) ∈ (Poly‘ℂ)) → ((𝐺f · (𝐹f − (𝐻 quot 𝐺))) = 0𝑝 ↔ (𝐺 = 0𝑝 ∨ (𝐹f − (𝐻 quot 𝐺)) = 0𝑝)))
163, 14, 15syl2anc 584 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐺f · (𝐹f − (𝐻 quot 𝐺))) = 0𝑝 ↔ (𝐺 = 0𝑝 ∨ (𝐹f − (𝐻 quot 𝐺)) = 0𝑝)))
17 cnex 11149 . . . . . . . . . . . . 13 ℂ ∈ V
1817a1i 11 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ℂ ∈ V)
19 plyf 26103 . . . . . . . . . . . . 13 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
204, 19syl 17 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐹:ℂ⟶ℂ)
21 plyf 26103 . . . . . . . . . . . . 13 (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ)
222, 21syl 17 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐺:ℂ⟶ℂ)
23 mulcom 11154 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
2423adantl 481 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
2518, 20, 22, 24caofcom 7690 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹f · 𝐺) = (𝐺f · 𝐹))
266, 25eqtrid 2776 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐻 = (𝐺f · 𝐹))
2726oveq1d 7402 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐻f − (𝐺f · (𝐻 quot 𝐺))) = ((𝐺f · 𝐹) ∘f − (𝐺f · (𝐻 quot 𝐺))))
28 plyf 26103 . . . . . . . . . . 11 ((𝐻 quot 𝐺) ∈ (Poly‘ℂ) → (𝐻 quot 𝐺):ℂ⟶ℂ)
2912, 28syl 17 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐻 quot 𝐺):ℂ⟶ℂ)
30 subdi 11611 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 · (𝑦𝑧)) = ((𝑥 · 𝑦) − (𝑥 · 𝑧)))
3130adantl 481 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑥 · (𝑦𝑧)) = ((𝑥 · 𝑦) − (𝑥 · 𝑧)))
3218, 22, 20, 29, 31caofdi 7695 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐺f · (𝐹f − (𝐻 quot 𝐺))) = ((𝐺f · 𝐹) ∘f − (𝐺f · (𝐻 quot 𝐺))))
3327, 32eqtr4d 2767 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐻f − (𝐺f · (𝐻 quot 𝐺))) = (𝐺f · (𝐹f − (𝐻 quot 𝐺))))
3433eqeq1d 2731 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐻f − (𝐺f · (𝐻 quot 𝐺))) = 0𝑝 ↔ (𝐺f · (𝐹f − (𝐻 quot 𝐺))) = 0𝑝))
3510neneqd 2930 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ¬ 𝐺 = 0𝑝)
36 biorf 936 . . . . . . . 8 𝐺 = 0𝑝 → ((𝐹f − (𝐻 quot 𝐺)) = 0𝑝 ↔ (𝐺 = 0𝑝 ∨ (𝐹f − (𝐻 quot 𝐺)) = 0𝑝)))
3735, 36syl 17 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐹f − (𝐻 quot 𝐺)) = 0𝑝 ↔ (𝐺 = 0𝑝 ∨ (𝐹f − (𝐻 quot 𝐺)) = 0𝑝)))
3816, 34, 373bitr4d 311 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐻f − (𝐺f · (𝐻 quot 𝐺))) = 0𝑝 ↔ (𝐹f − (𝐻 quot 𝐺)) = 0𝑝))
3938biimpd 229 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐻f − (𝐺f · (𝐻 quot 𝐺))) = 0𝑝 → (𝐹f − (𝐻 quot 𝐺)) = 0𝑝))
40 eqid 2729 . . . . . . . . . . 11 (deg‘𝐺) = (deg‘𝐺)
41 eqid 2729 . . . . . . . . . . 11 (deg‘(𝐹f − (𝐻 quot 𝐺))) = (deg‘(𝐹f − (𝐻 quot 𝐺)))
4240, 41dgrmul 26176 . . . . . . . . . 10 (((𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝) ∧ ((𝐹f − (𝐻 quot 𝐺)) ∈ (Poly‘ℂ) ∧ (𝐹f − (𝐻 quot 𝐺)) ≠ 0𝑝)) → (deg‘(𝐺f · (𝐹f − (𝐻 quot 𝐺)))) = ((deg‘𝐺) + (deg‘(𝐹f − (𝐻 quot 𝐺)))))
4342expr 456 . . . . . . . . 9 (((𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝) ∧ (𝐹f − (𝐻 quot 𝐺)) ∈ (Poly‘ℂ)) → ((𝐹f − (𝐻 quot 𝐺)) ≠ 0𝑝 → (deg‘(𝐺f · (𝐹f − (𝐻 quot 𝐺)))) = ((deg‘𝐺) + (deg‘(𝐹f − (𝐻 quot 𝐺))))))
443, 10, 14, 43syl21anc 837 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐹f − (𝐻 quot 𝐺)) ≠ 0𝑝 → (deg‘(𝐺f · (𝐹f − (𝐻 quot 𝐺)))) = ((deg‘𝐺) + (deg‘(𝐹f − (𝐻 quot 𝐺))))))
45 dgrcl 26138 . . . . . . . . . . . 12 (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈ ℕ0)
462, 45syl 17 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (deg‘𝐺) ∈ ℕ0)
4746nn0red 12504 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (deg‘𝐺) ∈ ℝ)
48 dgrcl 26138 . . . . . . . . . . 11 ((𝐹f − (𝐻 quot 𝐺)) ∈ (Poly‘ℂ) → (deg‘(𝐹f − (𝐻 quot 𝐺))) ∈ ℕ0)
4914, 48syl 17 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (deg‘(𝐹f − (𝐻 quot 𝐺))) ∈ ℕ0)
50 nn0addge1 12488 . . . . . . . . . 10 (((deg‘𝐺) ∈ ℝ ∧ (deg‘(𝐹f − (𝐻 quot 𝐺))) ∈ ℕ0) → (deg‘𝐺) ≤ ((deg‘𝐺) + (deg‘(𝐹f − (𝐻 quot 𝐺)))))
5147, 49, 50syl2anc 584 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (deg‘𝐺) ≤ ((deg‘𝐺) + (deg‘(𝐹f − (𝐻 quot 𝐺)))))
52 breq2 5111 . . . . . . . . 9 ((deg‘(𝐺f · (𝐹f − (𝐻 quot 𝐺)))) = ((deg‘𝐺) + (deg‘(𝐹f − (𝐻 quot 𝐺)))) → ((deg‘𝐺) ≤ (deg‘(𝐺f · (𝐹f − (𝐻 quot 𝐺)))) ↔ (deg‘𝐺) ≤ ((deg‘𝐺) + (deg‘(𝐹f − (𝐻 quot 𝐺))))))
5351, 52syl5ibrcom 247 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((deg‘(𝐺f · (𝐹f − (𝐻 quot 𝐺)))) = ((deg‘𝐺) + (deg‘(𝐹f − (𝐻 quot 𝐺)))) → (deg‘𝐺) ≤ (deg‘(𝐺f · (𝐹f − (𝐻 quot 𝐺))))))
5444, 53syld 47 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐹f − (𝐻 quot 𝐺)) ≠ 0𝑝 → (deg‘𝐺) ≤ (deg‘(𝐺f · (𝐹f − (𝐻 quot 𝐺))))))
5533fveq2d 6862 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (deg‘(𝐻f − (𝐺f · (𝐻 quot 𝐺)))) = (deg‘(𝐺f · (𝐹f − (𝐻 quot 𝐺)))))
5655breq2d 5119 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((deg‘𝐺) ≤ (deg‘(𝐻f − (𝐺f · (𝐻 quot 𝐺)))) ↔ (deg‘𝐺) ≤ (deg‘(𝐺f · (𝐹f − (𝐻 quot 𝐺))))))
57 plymulcl 26126 . . . . . . . . . . . . 13 ((𝐺 ∈ (Poly‘ℂ) ∧ (𝐻 quot 𝐺) ∈ (Poly‘ℂ)) → (𝐺f · (𝐻 quot 𝐺)) ∈ (Poly‘ℂ))
583, 12, 57syl2anc 584 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐺f · (𝐻 quot 𝐺)) ∈ (Poly‘ℂ))
59 plysubcl 26127 . . . . . . . . . . . 12 ((𝐻 ∈ (Poly‘ℂ) ∧ (𝐺f · (𝐻 quot 𝐺)) ∈ (Poly‘ℂ)) → (𝐻f − (𝐺f · (𝐻 quot 𝐺))) ∈ (Poly‘ℂ))
609, 58, 59syl2anc 584 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐻f − (𝐺f · (𝐻 quot 𝐺))) ∈ (Poly‘ℂ))
61 dgrcl 26138 . . . . . . . . . . 11 ((𝐻f − (𝐺f · (𝐻 quot 𝐺))) ∈ (Poly‘ℂ) → (deg‘(𝐻f − (𝐺f · (𝐻 quot 𝐺)))) ∈ ℕ0)
6260, 61syl 17 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (deg‘(𝐻f − (𝐺f · (𝐻 quot 𝐺)))) ∈ ℕ0)
6362nn0red 12504 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (deg‘(𝐻f − (𝐺f · (𝐻 quot 𝐺)))) ∈ ℝ)
6447, 63lenltd 11320 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((deg‘𝐺) ≤ (deg‘(𝐻f − (𝐺f · (𝐻 quot 𝐺)))) ↔ ¬ (deg‘(𝐻f − (𝐺f · (𝐻 quot 𝐺)))) < (deg‘𝐺)))
6556, 64bitr3d 281 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((deg‘𝐺) ≤ (deg‘(𝐺f · (𝐹f − (𝐻 quot 𝐺)))) ↔ ¬ (deg‘(𝐻f − (𝐺f · (𝐻 quot 𝐺)))) < (deg‘𝐺)))
6654, 65sylibd 239 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐹f − (𝐻 quot 𝐺)) ≠ 0𝑝 → ¬ (deg‘(𝐻f − (𝐺f · (𝐻 quot 𝐺)))) < (deg‘𝐺)))
6766necon4ad 2944 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((deg‘(𝐻f − (𝐺f · (𝐻 quot 𝐺)))) < (deg‘𝐺) → (𝐹f − (𝐻 quot 𝐺)) = 0𝑝))
68 eqid 2729 . . . . . . 7 (𝐻f − (𝐺f · (𝐻 quot 𝐺))) = (𝐻f − (𝐺f · (𝐻 quot 𝐺)))
6968quotdgr 26211 . . . . . 6 ((𝐻 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝) → ((𝐻f − (𝐺f · (𝐻 quot 𝐺))) = 0𝑝 ∨ (deg‘(𝐻f − (𝐺f · (𝐻 quot 𝐺)))) < (deg‘𝐺)))
709, 3, 10, 69syl3anc 1373 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐻f − (𝐺f · (𝐻 quot 𝐺))) = 0𝑝 ∨ (deg‘(𝐻f − (𝐺f · (𝐻 quot 𝐺)))) < (deg‘𝐺)))
7139, 67, 70mpjaod 860 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹f − (𝐻 quot 𝐺)) = 0𝑝)
72 df-0p 25571 . . . 4 0𝑝 = (ℂ × {0})
7371, 72eqtrdi 2780 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹f − (𝐻 quot 𝐺)) = (ℂ × {0}))
74 ofsubeq0 12183 . . . 4 ((ℂ ∈ V ∧ 𝐹:ℂ⟶ℂ ∧ (𝐻 quot 𝐺):ℂ⟶ℂ) → ((𝐹f − (𝐻 quot 𝐺)) = (ℂ × {0}) ↔ 𝐹 = (𝐻 quot 𝐺)))
7518, 20, 29, 74syl3anc 1373 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((𝐹f − (𝐻 quot 𝐺)) = (ℂ × {0}) ↔ 𝐹 = (𝐻 quot 𝐺)))
7673, 75mpbid 232 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → 𝐹 = (𝐻 quot 𝐺))
7776eqcomd 2735 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐻 quot 𝐺) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  Vcvv 3447  {csn 4589   class class class wbr 5107   × cxp 5636  wf 6507  cfv 6511  (class class class)co 7387  f cof 7651  cc 11066  cr 11067  0cc0 11068   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cmin 11405  0cn0 12442  0𝑝c0p 25570  Polycply 26089  degcdgr 26092   quot cquot 26198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-0p 25571  df-ply 26093  df-coe 26095  df-dgr 26096  df-quot 26199
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator