| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0pledm | Structured version Visualization version GIF version | ||
| Description: Adjust the domain of the left argument to match the right, which works better in our theorems. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| Ref | Expression |
|---|---|
| 0pledm.1 | ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
| 0pledm.2 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| Ref | Expression |
|---|---|
| 0pledm | ⊢ (𝜑 → (0𝑝 ∘r ≤ 𝐹 ↔ (𝐴 × {0}) ∘r ≤ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0pledm.1 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ℂ) | |
| 2 | sseqin2 4174 | . . . 4 ⊢ (𝐴 ⊆ ℂ ↔ (ℂ ∩ 𝐴) = 𝐴) | |
| 3 | 1, 2 | sylib 218 | . . 3 ⊢ (𝜑 → (ℂ ∩ 𝐴) = 𝐴) |
| 4 | 3 | raleqdv 3289 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ (ℂ ∩ 𝐴)0 ≤ (𝐹‘𝑥) ↔ ∀𝑥 ∈ 𝐴 0 ≤ (𝐹‘𝑥))) |
| 5 | 0cn 11107 | . . . . . 6 ⊢ 0 ∈ ℂ | |
| 6 | fnconstg 6712 | . . . . . 6 ⊢ (0 ∈ ℂ → (ℂ × {0}) Fn ℂ) | |
| 7 | 5, 6 | ax-mp 5 | . . . . 5 ⊢ (ℂ × {0}) Fn ℂ |
| 8 | df-0p 25569 | . . . . . 6 ⊢ 0𝑝 = (ℂ × {0}) | |
| 9 | 8 | fneq1i 6579 | . . . . 5 ⊢ (0𝑝 Fn ℂ ↔ (ℂ × {0}) Fn ℂ) |
| 10 | 7, 9 | mpbir 231 | . . . 4 ⊢ 0𝑝 Fn ℂ |
| 11 | 10 | a1i 11 | . . 3 ⊢ (𝜑 → 0𝑝 Fn ℂ) |
| 12 | 0pledm.2 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 13 | cnex 11090 | . . . 4 ⊢ ℂ ∈ V | |
| 14 | 13 | a1i 11 | . . 3 ⊢ (𝜑 → ℂ ∈ V) |
| 15 | ssexg 5262 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ ℂ ∈ V) → 𝐴 ∈ V) | |
| 16 | 1, 13, 15 | sylancl 586 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) |
| 17 | eqid 2729 | . . 3 ⊢ (ℂ ∩ 𝐴) = (ℂ ∩ 𝐴) | |
| 18 | 0pval 25570 | . . . 4 ⊢ (𝑥 ∈ ℂ → (0𝑝‘𝑥) = 0) | |
| 19 | 18 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (0𝑝‘𝑥) = 0) |
| 20 | eqidd 2730 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
| 21 | 11, 12, 14, 16, 17, 19, 20 | ofrfval 7623 | . 2 ⊢ (𝜑 → (0𝑝 ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ (ℂ ∩ 𝐴)0 ≤ (𝐹‘𝑥))) |
| 22 | fnconstg 6712 | . . . . 5 ⊢ (0 ∈ ℂ → (𝐴 × {0}) Fn 𝐴) | |
| 23 | 5, 22 | ax-mp 5 | . . . 4 ⊢ (𝐴 × {0}) Fn 𝐴 |
| 24 | 23 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐴 × {0}) Fn 𝐴) |
| 25 | inidm 4178 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
| 26 | c0ex 11109 | . . . . 5 ⊢ 0 ∈ V | |
| 27 | 26 | fvconst2 7140 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((𝐴 × {0})‘𝑥) = 0) |
| 28 | 27 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {0})‘𝑥) = 0) |
| 29 | 24, 12, 16, 16, 25, 28, 20 | ofrfval 7623 | . 2 ⊢ (𝜑 → ((𝐴 × {0}) ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ 𝐴 0 ≤ (𝐹‘𝑥))) |
| 30 | 4, 21, 29 | 3bitr4d 311 | 1 ⊢ (𝜑 → (0𝑝 ∘r ≤ 𝐹 ↔ (𝐴 × {0}) ∘r ≤ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3436 ∩ cin 3902 ⊆ wss 3903 {csn 4577 class class class wbr 5092 × cxp 5617 Fn wfn 6477 ‘cfv 6482 ∘r cofr 7612 ℂcc 11007 0cc0 11009 ≤ cle 11150 0𝑝c0p 25568 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-cnex 11065 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-mulcl 11071 ax-i2m1 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ofr 7614 df-0p 25569 |
| This theorem is referenced by: xrge0f 25630 itg20 25636 itg2const 25639 i1fibl 25707 itgitg1 25708 ftc1anclem5 37681 ftc1anclem7 37683 |
| Copyright terms: Public domain | W3C validator |