MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0pledm Structured version   Visualization version   GIF version

Theorem 0pledm 24281
Description: Adjust the domain of the left argument to match the right, which works better in our theorems. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
0pledm.1 (𝜑𝐴 ⊆ ℂ)
0pledm.2 (𝜑𝐹 Fn 𝐴)
Assertion
Ref Expression
0pledm (𝜑 → (0𝑝r𝐹 ↔ (𝐴 × {0}) ∘r𝐹))

Proof of Theorem 0pledm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0pledm.1 . . . 4 (𝜑𝐴 ⊆ ℂ)
2 sseqin2 4145 . . . 4 (𝐴 ⊆ ℂ ↔ (ℂ ∩ 𝐴) = 𝐴)
31, 2sylib 221 . . 3 (𝜑 → (ℂ ∩ 𝐴) = 𝐴)
43raleqdv 3367 . 2 (𝜑 → (∀𝑥 ∈ (ℂ ∩ 𝐴)0 ≤ (𝐹𝑥) ↔ ∀𝑥𝐴 0 ≤ (𝐹𝑥)))
5 0cn 10626 . . . . . 6 0 ∈ ℂ
6 fnconstg 6545 . . . . . 6 (0 ∈ ℂ → (ℂ × {0}) Fn ℂ)
75, 6ax-mp 5 . . . . 5 (ℂ × {0}) Fn ℂ
8 df-0p 24278 . . . . . 6 0𝑝 = (ℂ × {0})
98fneq1i 6424 . . . . 5 (0𝑝 Fn ℂ ↔ (ℂ × {0}) Fn ℂ)
107, 9mpbir 234 . . . 4 0𝑝 Fn ℂ
1110a1i 11 . . 3 (𝜑 → 0𝑝 Fn ℂ)
12 0pledm.2 . . 3 (𝜑𝐹 Fn 𝐴)
13 cnex 10611 . . . 4 ℂ ∈ V
1413a1i 11 . . 3 (𝜑 → ℂ ∈ V)
15 ssexg 5194 . . . 4 ((𝐴 ⊆ ℂ ∧ ℂ ∈ V) → 𝐴 ∈ V)
161, 13, 15sylancl 589 . . 3 (𝜑𝐴 ∈ V)
17 eqid 2801 . . 3 (ℂ ∩ 𝐴) = (ℂ ∩ 𝐴)
18 0pval 24279 . . . 4 (𝑥 ∈ ℂ → (0𝑝𝑥) = 0)
1918adantl 485 . . 3 ((𝜑𝑥 ∈ ℂ) → (0𝑝𝑥) = 0)
20 eqidd 2802 . . 3 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
2111, 12, 14, 16, 17, 19, 20ofrfval 7401 . 2 (𝜑 → (0𝑝r𝐹 ↔ ∀𝑥 ∈ (ℂ ∩ 𝐴)0 ≤ (𝐹𝑥)))
22 fnconstg 6545 . . . . 5 (0 ∈ ℂ → (𝐴 × {0}) Fn 𝐴)
235, 22ax-mp 5 . . . 4 (𝐴 × {0}) Fn 𝐴
2423a1i 11 . . 3 (𝜑 → (𝐴 × {0}) Fn 𝐴)
25 inidm 4148 . . 3 (𝐴𝐴) = 𝐴
26 c0ex 10628 . . . . 5 0 ∈ V
2726fvconst2 6947 . . . 4 (𝑥𝐴 → ((𝐴 × {0})‘𝑥) = 0)
2827adantl 485 . . 3 ((𝜑𝑥𝐴) → ((𝐴 × {0})‘𝑥) = 0)
2924, 12, 16, 16, 25, 28, 20ofrfval 7401 . 2 (𝜑 → ((𝐴 × {0}) ∘r𝐹 ↔ ∀𝑥𝐴 0 ≤ (𝐹𝑥)))
304, 21, 293bitr4d 314 1 (𝜑 → (0𝑝r𝐹 ↔ (𝐴 × {0}) ∘r𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2112  wral 3109  Vcvv 3444  cin 3883  wss 3884  {csn 4528   class class class wbr 5033   × cxp 5521   Fn wfn 6323  cfv 6328  r cofr 7392  cc 10528  0cc0 10530  cle 10669  0𝑝c0p 24277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pr 5298  ax-cnex 10586  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-mulcl 10592  ax-i2m1 10598
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ofr 7394  df-0p 24278
This theorem is referenced by:  xrge0f  24339  itg20  24345  itg2const  24348  i1fibl  24415  itgitg1  24416  ftc1anclem5  35133  ftc1anclem7  35135
  Copyright terms: Public domain W3C validator