![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0pledm | Structured version Visualization version GIF version |
Description: Adjust the domain of the left argument to match the right, which works better in our theorems. (Contributed by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
0pledm.1 | ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
0pledm.2 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
Ref | Expression |
---|---|
0pledm | ⊢ (𝜑 → (0𝑝 ∘r ≤ 𝐹 ↔ (𝐴 × {0}) ∘r ≤ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0pledm.1 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ℂ) | |
2 | sseqin2 4244 | . . . 4 ⊢ (𝐴 ⊆ ℂ ↔ (ℂ ∩ 𝐴) = 𝐴) | |
3 | 1, 2 | sylib 218 | . . 3 ⊢ (𝜑 → (ℂ ∩ 𝐴) = 𝐴) |
4 | 3 | raleqdv 3334 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ (ℂ ∩ 𝐴)0 ≤ (𝐹‘𝑥) ↔ ∀𝑥 ∈ 𝐴 0 ≤ (𝐹‘𝑥))) |
5 | 0cn 11282 | . . . . . 6 ⊢ 0 ∈ ℂ | |
6 | fnconstg 6809 | . . . . . 6 ⊢ (0 ∈ ℂ → (ℂ × {0}) Fn ℂ) | |
7 | 5, 6 | ax-mp 5 | . . . . 5 ⊢ (ℂ × {0}) Fn ℂ |
8 | df-0p 25724 | . . . . . 6 ⊢ 0𝑝 = (ℂ × {0}) | |
9 | 8 | fneq1i 6676 | . . . . 5 ⊢ (0𝑝 Fn ℂ ↔ (ℂ × {0}) Fn ℂ) |
10 | 7, 9 | mpbir 231 | . . . 4 ⊢ 0𝑝 Fn ℂ |
11 | 10 | a1i 11 | . . 3 ⊢ (𝜑 → 0𝑝 Fn ℂ) |
12 | 0pledm.2 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
13 | cnex 11265 | . . . 4 ⊢ ℂ ∈ V | |
14 | 13 | a1i 11 | . . 3 ⊢ (𝜑 → ℂ ∈ V) |
15 | ssexg 5341 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ ℂ ∈ V) → 𝐴 ∈ V) | |
16 | 1, 13, 15 | sylancl 585 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) |
17 | eqid 2740 | . . 3 ⊢ (ℂ ∩ 𝐴) = (ℂ ∩ 𝐴) | |
18 | 0pval 25725 | . . . 4 ⊢ (𝑥 ∈ ℂ → (0𝑝‘𝑥) = 0) | |
19 | 18 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (0𝑝‘𝑥) = 0) |
20 | eqidd 2741 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
21 | 11, 12, 14, 16, 17, 19, 20 | ofrfval 7724 | . 2 ⊢ (𝜑 → (0𝑝 ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ (ℂ ∩ 𝐴)0 ≤ (𝐹‘𝑥))) |
22 | fnconstg 6809 | . . . . 5 ⊢ (0 ∈ ℂ → (𝐴 × {0}) Fn 𝐴) | |
23 | 5, 22 | ax-mp 5 | . . . 4 ⊢ (𝐴 × {0}) Fn 𝐴 |
24 | 23 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐴 × {0}) Fn 𝐴) |
25 | inidm 4248 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
26 | c0ex 11284 | . . . . 5 ⊢ 0 ∈ V | |
27 | 26 | fvconst2 7241 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((𝐴 × {0})‘𝑥) = 0) |
28 | 27 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {0})‘𝑥) = 0) |
29 | 24, 12, 16, 16, 25, 28, 20 | ofrfval 7724 | . 2 ⊢ (𝜑 → ((𝐴 × {0}) ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ 𝐴 0 ≤ (𝐹‘𝑥))) |
30 | 4, 21, 29 | 3bitr4d 311 | 1 ⊢ (𝜑 → (0𝑝 ∘r ≤ 𝐹 ↔ (𝐴 × {0}) ∘r ≤ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 {csn 4648 class class class wbr 5166 × cxp 5698 Fn wfn 6568 ‘cfv 6573 ∘r cofr 7713 ℂcc 11182 0cc0 11184 ≤ cle 11325 0𝑝c0p 25723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-cnex 11240 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-mulcl 11246 ax-i2m1 11252 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ofr 7715 df-0p 25724 |
This theorem is referenced by: xrge0f 25786 itg20 25792 itg2const 25795 i1fibl 25863 itgitg1 25864 ftc1anclem5 37657 ftc1anclem7 37659 |
Copyright terms: Public domain | W3C validator |