| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0pledm | Structured version Visualization version GIF version | ||
| Description: Adjust the domain of the left argument to match the right, which works better in our theorems. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| Ref | Expression |
|---|---|
| 0pledm.1 | ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
| 0pledm.2 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| Ref | Expression |
|---|---|
| 0pledm | ⊢ (𝜑 → (0𝑝 ∘r ≤ 𝐹 ↔ (𝐴 × {0}) ∘r ≤ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0pledm.1 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ℂ) | |
| 2 | sseqin2 4203 | . . . 4 ⊢ (𝐴 ⊆ ℂ ↔ (ℂ ∩ 𝐴) = 𝐴) | |
| 3 | 1, 2 | sylib 218 | . . 3 ⊢ (𝜑 → (ℂ ∩ 𝐴) = 𝐴) |
| 4 | 3 | raleqdv 3309 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ (ℂ ∩ 𝐴)0 ≤ (𝐹‘𝑥) ↔ ∀𝑥 ∈ 𝐴 0 ≤ (𝐹‘𝑥))) |
| 5 | 0cn 11232 | . . . . . 6 ⊢ 0 ∈ ℂ | |
| 6 | fnconstg 6771 | . . . . . 6 ⊢ (0 ∈ ℂ → (ℂ × {0}) Fn ℂ) | |
| 7 | 5, 6 | ax-mp 5 | . . . . 5 ⊢ (ℂ × {0}) Fn ℂ |
| 8 | df-0p 25628 | . . . . . 6 ⊢ 0𝑝 = (ℂ × {0}) | |
| 9 | 8 | fneq1i 6640 | . . . . 5 ⊢ (0𝑝 Fn ℂ ↔ (ℂ × {0}) Fn ℂ) |
| 10 | 7, 9 | mpbir 231 | . . . 4 ⊢ 0𝑝 Fn ℂ |
| 11 | 10 | a1i 11 | . . 3 ⊢ (𝜑 → 0𝑝 Fn ℂ) |
| 12 | 0pledm.2 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 13 | cnex 11215 | . . . 4 ⊢ ℂ ∈ V | |
| 14 | 13 | a1i 11 | . . 3 ⊢ (𝜑 → ℂ ∈ V) |
| 15 | ssexg 5298 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ ℂ ∈ V) → 𝐴 ∈ V) | |
| 16 | 1, 13, 15 | sylancl 586 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) |
| 17 | eqid 2736 | . . 3 ⊢ (ℂ ∩ 𝐴) = (ℂ ∩ 𝐴) | |
| 18 | 0pval 25629 | . . . 4 ⊢ (𝑥 ∈ ℂ → (0𝑝‘𝑥) = 0) | |
| 19 | 18 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (0𝑝‘𝑥) = 0) |
| 20 | eqidd 2737 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
| 21 | 11, 12, 14, 16, 17, 19, 20 | ofrfval 7686 | . 2 ⊢ (𝜑 → (0𝑝 ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ (ℂ ∩ 𝐴)0 ≤ (𝐹‘𝑥))) |
| 22 | fnconstg 6771 | . . . . 5 ⊢ (0 ∈ ℂ → (𝐴 × {0}) Fn 𝐴) | |
| 23 | 5, 22 | ax-mp 5 | . . . 4 ⊢ (𝐴 × {0}) Fn 𝐴 |
| 24 | 23 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐴 × {0}) Fn 𝐴) |
| 25 | inidm 4207 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
| 26 | c0ex 11234 | . . . . 5 ⊢ 0 ∈ V | |
| 27 | 26 | fvconst2 7201 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((𝐴 × {0})‘𝑥) = 0) |
| 28 | 27 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {0})‘𝑥) = 0) |
| 29 | 24, 12, 16, 16, 25, 28, 20 | ofrfval 7686 | . 2 ⊢ (𝜑 → ((𝐴 × {0}) ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ 𝐴 0 ≤ (𝐹‘𝑥))) |
| 30 | 4, 21, 29 | 3bitr4d 311 | 1 ⊢ (𝜑 → (0𝑝 ∘r ≤ 𝐹 ↔ (𝐴 × {0}) ∘r ≤ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 Vcvv 3464 ∩ cin 3930 ⊆ wss 3931 {csn 4606 class class class wbr 5124 × cxp 5657 Fn wfn 6531 ‘cfv 6536 ∘r cofr 7675 ℂcc 11132 0cc0 11134 ≤ cle 11275 0𝑝c0p 25627 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-cnex 11190 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-mulcl 11196 ax-i2m1 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ofr 7677 df-0p 25628 |
| This theorem is referenced by: xrge0f 25689 itg20 25695 itg2const 25698 i1fibl 25766 itgitg1 25767 ftc1anclem5 37726 ftc1anclem7 37728 |
| Copyright terms: Public domain | W3C validator |