| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0pledm | Structured version Visualization version GIF version | ||
| Description: Adjust the domain of the left argument to match the right, which works better in our theorems. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| Ref | Expression |
|---|---|
| 0pledm.1 | ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
| 0pledm.2 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| Ref | Expression |
|---|---|
| 0pledm | ⊢ (𝜑 → (0𝑝 ∘r ≤ 𝐹 ↔ (𝐴 × {0}) ∘r ≤ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0pledm.1 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ℂ) | |
| 2 | sseqin2 4170 | . . . 4 ⊢ (𝐴 ⊆ ℂ ↔ (ℂ ∩ 𝐴) = 𝐴) | |
| 3 | 1, 2 | sylib 218 | . . 3 ⊢ (𝜑 → (ℂ ∩ 𝐴) = 𝐴) |
| 4 | 3 | raleqdv 3292 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ (ℂ ∩ 𝐴)0 ≤ (𝐹‘𝑥) ↔ ∀𝑥 ∈ 𝐴 0 ≤ (𝐹‘𝑥))) |
| 5 | 0cn 11104 | . . . . . 6 ⊢ 0 ∈ ℂ | |
| 6 | fnconstg 6711 | . . . . . 6 ⊢ (0 ∈ ℂ → (ℂ × {0}) Fn ℂ) | |
| 7 | 5, 6 | ax-mp 5 | . . . . 5 ⊢ (ℂ × {0}) Fn ℂ |
| 8 | df-0p 25598 | . . . . . 6 ⊢ 0𝑝 = (ℂ × {0}) | |
| 9 | 8 | fneq1i 6578 | . . . . 5 ⊢ (0𝑝 Fn ℂ ↔ (ℂ × {0}) Fn ℂ) |
| 10 | 7, 9 | mpbir 231 | . . . 4 ⊢ 0𝑝 Fn ℂ |
| 11 | 10 | a1i 11 | . . 3 ⊢ (𝜑 → 0𝑝 Fn ℂ) |
| 12 | 0pledm.2 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 13 | cnex 11087 | . . . 4 ⊢ ℂ ∈ V | |
| 14 | 13 | a1i 11 | . . 3 ⊢ (𝜑 → ℂ ∈ V) |
| 15 | ssexg 5259 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ ℂ ∈ V) → 𝐴 ∈ V) | |
| 16 | 1, 13, 15 | sylancl 586 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) |
| 17 | eqid 2731 | . . 3 ⊢ (ℂ ∩ 𝐴) = (ℂ ∩ 𝐴) | |
| 18 | 0pval 25599 | . . . 4 ⊢ (𝑥 ∈ ℂ → (0𝑝‘𝑥) = 0) | |
| 19 | 18 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (0𝑝‘𝑥) = 0) |
| 20 | eqidd 2732 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
| 21 | 11, 12, 14, 16, 17, 19, 20 | ofrfval 7620 | . 2 ⊢ (𝜑 → (0𝑝 ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ (ℂ ∩ 𝐴)0 ≤ (𝐹‘𝑥))) |
| 22 | fnconstg 6711 | . . . . 5 ⊢ (0 ∈ ℂ → (𝐴 × {0}) Fn 𝐴) | |
| 23 | 5, 22 | ax-mp 5 | . . . 4 ⊢ (𝐴 × {0}) Fn 𝐴 |
| 24 | 23 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐴 × {0}) Fn 𝐴) |
| 25 | inidm 4174 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
| 26 | c0ex 11106 | . . . . 5 ⊢ 0 ∈ V | |
| 27 | 26 | fvconst2 7138 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((𝐴 × {0})‘𝑥) = 0) |
| 28 | 27 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {0})‘𝑥) = 0) |
| 29 | 24, 12, 16, 16, 25, 28, 20 | ofrfval 7620 | . 2 ⊢ (𝜑 → ((𝐴 × {0}) ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ 𝐴 0 ≤ (𝐹‘𝑥))) |
| 30 | 4, 21, 29 | 3bitr4d 311 | 1 ⊢ (𝜑 → (0𝑝 ∘r ≤ 𝐹 ↔ (𝐴 × {0}) ∘r ≤ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ∩ cin 3896 ⊆ wss 3897 {csn 4573 class class class wbr 5089 × cxp 5612 Fn wfn 6476 ‘cfv 6481 ∘r cofr 7609 ℂcc 11004 0cc0 11006 ≤ cle 11147 0𝑝c0p 25597 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-cnex 11062 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-mulcl 11068 ax-i2m1 11074 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ofr 7611 df-0p 25598 |
| This theorem is referenced by: xrge0f 25659 itg20 25665 itg2const 25668 i1fibl 25736 itgitg1 25737 ftc1anclem5 37747 ftc1anclem7 37749 |
| Copyright terms: Public domain | W3C validator |