MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0pledm Structured version   Visualization version   GIF version

Theorem 0pledm 23731
Description: Adjust the domain of the left argument to match the right, which works better in our theorems. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
0pledm.1 (𝜑𝐴 ⊆ ℂ)
0pledm.2 (𝜑𝐹 Fn 𝐴)
Assertion
Ref Expression
0pledm (𝜑 → (0𝑝𝑟𝐹 ↔ (𝐴 × {0}) ∘𝑟𝐹))

Proof of Theorem 0pledm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0pledm.1 . . . 4 (𝜑𝐴 ⊆ ℂ)
2 sseqin2 3979 . . . 4 (𝐴 ⊆ ℂ ↔ (ℂ ∩ 𝐴) = 𝐴)
31, 2sylib 209 . . 3 (𝜑 → (ℂ ∩ 𝐴) = 𝐴)
43raleqdv 3292 . 2 (𝜑 → (∀𝑥 ∈ (ℂ ∩ 𝐴)0 ≤ (𝐹𝑥) ↔ ∀𝑥𝐴 0 ≤ (𝐹𝑥)))
5 0cn 10285 . . . . . 6 0 ∈ ℂ
6 fnconstg 6275 . . . . . 6 (0 ∈ ℂ → (ℂ × {0}) Fn ℂ)
75, 6ax-mp 5 . . . . 5 (ℂ × {0}) Fn ℂ
8 df-0p 23728 . . . . . 6 0𝑝 = (ℂ × {0})
98fneq1i 6163 . . . . 5 (0𝑝 Fn ℂ ↔ (ℂ × {0}) Fn ℂ)
107, 9mpbir 222 . . . 4 0𝑝 Fn ℂ
1110a1i 11 . . 3 (𝜑 → 0𝑝 Fn ℂ)
12 0pledm.2 . . 3 (𝜑𝐹 Fn 𝐴)
13 cnex 10270 . . . 4 ℂ ∈ V
1413a1i 11 . . 3 (𝜑 → ℂ ∈ V)
15 ssexg 4965 . . . 4 ((𝐴 ⊆ ℂ ∧ ℂ ∈ V) → 𝐴 ∈ V)
161, 13, 15sylancl 580 . . 3 (𝜑𝐴 ∈ V)
17 eqid 2765 . . 3 (ℂ ∩ 𝐴) = (ℂ ∩ 𝐴)
18 0pval 23729 . . . 4 (𝑥 ∈ ℂ → (0𝑝𝑥) = 0)
1918adantl 473 . . 3 ((𝜑𝑥 ∈ ℂ) → (0𝑝𝑥) = 0)
20 eqidd 2766 . . 3 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
2111, 12, 14, 16, 17, 19, 20ofrfval 7103 . 2 (𝜑 → (0𝑝𝑟𝐹 ↔ ∀𝑥 ∈ (ℂ ∩ 𝐴)0 ≤ (𝐹𝑥)))
22 fnconstg 6275 . . . . 5 (0 ∈ ℂ → (𝐴 × {0}) Fn 𝐴)
235, 22ax-mp 5 . . . 4 (𝐴 × {0}) Fn 𝐴
2423a1i 11 . . 3 (𝜑 → (𝐴 × {0}) Fn 𝐴)
25 inidm 3982 . . 3 (𝐴𝐴) = 𝐴
26 c0ex 10287 . . . . 5 0 ∈ V
2726fvconst2 6662 . . . 4 (𝑥𝐴 → ((𝐴 × {0})‘𝑥) = 0)
2827adantl 473 . . 3 ((𝜑𝑥𝐴) → ((𝐴 × {0})‘𝑥) = 0)
2924, 12, 16, 16, 25, 28, 20ofrfval 7103 . 2 (𝜑 → ((𝐴 × {0}) ∘𝑟𝐹 ↔ ∀𝑥𝐴 0 ≤ (𝐹𝑥)))
304, 21, 293bitr4d 302 1 (𝜑 → (0𝑝𝑟𝐹 ↔ (𝐴 × {0}) ∘𝑟𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wral 3055  Vcvv 3350  cin 3731  wss 3732  {csn 4334   class class class wbr 4809   × cxp 5275   Fn wfn 6063  cfv 6068  𝑟 cofr 7094  cc 10187  0cc0 10189  cle 10329  0𝑝c0p 23727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pr 5062  ax-cnex 10245  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-mulcl 10251  ax-i2m1 10257
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-ofr 7096  df-0p 23728
This theorem is referenced by:  xrge0f  23789  itg20  23795  itg2const  23798  i1fibl  23865  itgitg1  23866  ftc1anclem5  33844  ftc1anclem7  33846
  Copyright terms: Public domain W3C validator