![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0pledm | Structured version Visualization version GIF version |
Description: Adjust the domain of the left argument to match the right, which works better in our theorems. (Contributed by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
0pledm.1 | ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
0pledm.2 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
Ref | Expression |
---|---|
0pledm | ⊢ (𝜑 → (0𝑝 ∘r ≤ 𝐹 ↔ (𝐴 × {0}) ∘r ≤ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0pledm.1 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ℂ) | |
2 | sseqin2 4215 | . . . 4 ⊢ (𝐴 ⊆ ℂ ↔ (ℂ ∩ 𝐴) = 𝐴) | |
3 | 1, 2 | sylib 217 | . . 3 ⊢ (𝜑 → (ℂ ∩ 𝐴) = 𝐴) |
4 | 3 | raleqdv 3326 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ (ℂ ∩ 𝐴)0 ≤ (𝐹‘𝑥) ↔ ∀𝑥 ∈ 𝐴 0 ≤ (𝐹‘𝑥))) |
5 | 0cn 11203 | . . . . . 6 ⊢ 0 ∈ ℂ | |
6 | fnconstg 6777 | . . . . . 6 ⊢ (0 ∈ ℂ → (ℂ × {0}) Fn ℂ) | |
7 | 5, 6 | ax-mp 5 | . . . . 5 ⊢ (ℂ × {0}) Fn ℂ |
8 | df-0p 25179 | . . . . . 6 ⊢ 0𝑝 = (ℂ × {0}) | |
9 | 8 | fneq1i 6644 | . . . . 5 ⊢ (0𝑝 Fn ℂ ↔ (ℂ × {0}) Fn ℂ) |
10 | 7, 9 | mpbir 230 | . . . 4 ⊢ 0𝑝 Fn ℂ |
11 | 10 | a1i 11 | . . 3 ⊢ (𝜑 → 0𝑝 Fn ℂ) |
12 | 0pledm.2 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
13 | cnex 11188 | . . . 4 ⊢ ℂ ∈ V | |
14 | 13 | a1i 11 | . . 3 ⊢ (𝜑 → ℂ ∈ V) |
15 | ssexg 5323 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ ℂ ∈ V) → 𝐴 ∈ V) | |
16 | 1, 13, 15 | sylancl 587 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) |
17 | eqid 2733 | . . 3 ⊢ (ℂ ∩ 𝐴) = (ℂ ∩ 𝐴) | |
18 | 0pval 25180 | . . . 4 ⊢ (𝑥 ∈ ℂ → (0𝑝‘𝑥) = 0) | |
19 | 18 | adantl 483 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (0𝑝‘𝑥) = 0) |
20 | eqidd 2734 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
21 | 11, 12, 14, 16, 17, 19, 20 | ofrfval 7677 | . 2 ⊢ (𝜑 → (0𝑝 ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ (ℂ ∩ 𝐴)0 ≤ (𝐹‘𝑥))) |
22 | fnconstg 6777 | . . . . 5 ⊢ (0 ∈ ℂ → (𝐴 × {0}) Fn 𝐴) | |
23 | 5, 22 | ax-mp 5 | . . . 4 ⊢ (𝐴 × {0}) Fn 𝐴 |
24 | 23 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐴 × {0}) Fn 𝐴) |
25 | inidm 4218 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
26 | c0ex 11205 | . . . . 5 ⊢ 0 ∈ V | |
27 | 26 | fvconst2 7202 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((𝐴 × {0})‘𝑥) = 0) |
28 | 27 | adantl 483 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {0})‘𝑥) = 0) |
29 | 24, 12, 16, 16, 25, 28, 20 | ofrfval 7677 | . 2 ⊢ (𝜑 → ((𝐴 × {0}) ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ 𝐴 0 ≤ (𝐹‘𝑥))) |
30 | 4, 21, 29 | 3bitr4d 311 | 1 ⊢ (𝜑 → (0𝑝 ∘r ≤ 𝐹 ↔ (𝐴 × {0}) ∘r ≤ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3062 Vcvv 3475 ∩ cin 3947 ⊆ wss 3948 {csn 4628 class class class wbr 5148 × cxp 5674 Fn wfn 6536 ‘cfv 6541 ∘r cofr 7666 ℂcc 11105 0cc0 11107 ≤ cle 11246 0𝑝c0p 25178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-cnex 11163 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-mulcl 11169 ax-i2m1 11175 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ofr 7668 df-0p 25179 |
This theorem is referenced by: xrge0f 25241 itg20 25247 itg2const 25250 i1fibl 25317 itgitg1 25318 ftc1anclem5 36554 ftc1anclem7 36556 |
Copyright terms: Public domain | W3C validator |