Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0pledm | Structured version Visualization version GIF version |
Description: Adjust the domain of the left argument to match the right, which works better in our theorems. (Contributed by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
0pledm.1 | ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
0pledm.2 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
Ref | Expression |
---|---|
0pledm | ⊢ (𝜑 → (0𝑝 ∘r ≤ 𝐹 ↔ (𝐴 × {0}) ∘r ≤ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0pledm.1 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ℂ) | |
2 | sseqin2 4162 | . . . 4 ⊢ (𝐴 ⊆ ℂ ↔ (ℂ ∩ 𝐴) = 𝐴) | |
3 | 1, 2 | sylib 217 | . . 3 ⊢ (𝜑 → (ℂ ∩ 𝐴) = 𝐴) |
4 | 3 | raleqdv 3309 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ (ℂ ∩ 𝐴)0 ≤ (𝐹‘𝑥) ↔ ∀𝑥 ∈ 𝐴 0 ≤ (𝐹‘𝑥))) |
5 | 0cn 11068 | . . . . . 6 ⊢ 0 ∈ ℂ | |
6 | fnconstg 6713 | . . . . . 6 ⊢ (0 ∈ ℂ → (ℂ × {0}) Fn ℂ) | |
7 | 5, 6 | ax-mp 5 | . . . . 5 ⊢ (ℂ × {0}) Fn ℂ |
8 | df-0p 24940 | . . . . . 6 ⊢ 0𝑝 = (ℂ × {0}) | |
9 | 8 | fneq1i 6582 | . . . . 5 ⊢ (0𝑝 Fn ℂ ↔ (ℂ × {0}) Fn ℂ) |
10 | 7, 9 | mpbir 230 | . . . 4 ⊢ 0𝑝 Fn ℂ |
11 | 10 | a1i 11 | . . 3 ⊢ (𝜑 → 0𝑝 Fn ℂ) |
12 | 0pledm.2 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
13 | cnex 11053 | . . . 4 ⊢ ℂ ∈ V | |
14 | 13 | a1i 11 | . . 3 ⊢ (𝜑 → ℂ ∈ V) |
15 | ssexg 5267 | . . . 4 ⊢ ((𝐴 ⊆ ℂ ∧ ℂ ∈ V) → 𝐴 ∈ V) | |
16 | 1, 13, 15 | sylancl 586 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) |
17 | eqid 2736 | . . 3 ⊢ (ℂ ∩ 𝐴) = (ℂ ∩ 𝐴) | |
18 | 0pval 24941 | . . . 4 ⊢ (𝑥 ∈ ℂ → (0𝑝‘𝑥) = 0) | |
19 | 18 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (0𝑝‘𝑥) = 0) |
20 | eqidd 2737 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
21 | 11, 12, 14, 16, 17, 19, 20 | ofrfval 7605 | . 2 ⊢ (𝜑 → (0𝑝 ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ (ℂ ∩ 𝐴)0 ≤ (𝐹‘𝑥))) |
22 | fnconstg 6713 | . . . . 5 ⊢ (0 ∈ ℂ → (𝐴 × {0}) Fn 𝐴) | |
23 | 5, 22 | ax-mp 5 | . . . 4 ⊢ (𝐴 × {0}) Fn 𝐴 |
24 | 23 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐴 × {0}) Fn 𝐴) |
25 | inidm 4165 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
26 | c0ex 11070 | . . . . 5 ⊢ 0 ∈ V | |
27 | 26 | fvconst2 7135 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((𝐴 × {0})‘𝑥) = 0) |
28 | 27 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {0})‘𝑥) = 0) |
29 | 24, 12, 16, 16, 25, 28, 20 | ofrfval 7605 | . 2 ⊢ (𝜑 → ((𝐴 × {0}) ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ 𝐴 0 ≤ (𝐹‘𝑥))) |
30 | 4, 21, 29 | 3bitr4d 310 | 1 ⊢ (𝜑 → (0𝑝 ∘r ≤ 𝐹 ↔ (𝐴 × {0}) ∘r ≤ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3061 Vcvv 3441 ∩ cin 3897 ⊆ wss 3898 {csn 4573 class class class wbr 5092 × cxp 5618 Fn wfn 6474 ‘cfv 6479 ∘r cofr 7594 ℂcc 10970 0cc0 10972 ≤ cle 11111 0𝑝c0p 24939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pr 5372 ax-cnex 11028 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-mulcl 11034 ax-i2m1 11040 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-ofr 7596 df-0p 24940 |
This theorem is referenced by: xrge0f 25002 itg20 25008 itg2const 25011 i1fibl 25078 itgitg1 25079 ftc1anclem5 35959 ftc1anclem7 35961 |
Copyright terms: Public domain | W3C validator |