MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0pval Structured version   Visualization version   GIF version

Theorem 0pval 25187
Description: The zero function evaluates to zero at every point. (Contributed by Mario Carneiro, 23-Jul-2014.)
Assertion
Ref Expression
0pval (𝐴 ∈ ℂ → (0𝑝𝐴) = 0)

Proof of Theorem 0pval
StepHypRef Expression
1 df-0p 25186 . . 3 0𝑝 = (ℂ × {0})
21fveq1i 6892 . 2 (0𝑝𝐴) = ((ℂ × {0})‘𝐴)
3 c0ex 11207 . . 3 0 ∈ V
43fvconst2 7204 . 2 (𝐴 ∈ ℂ → ((ℂ × {0})‘𝐴) = 0)
52, 4eqtrid 2784 1 (𝐴 ∈ ℂ → (0𝑝𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  {csn 4628   × cxp 5674  cfv 6543  cc 11107  0cc0 11109  0𝑝c0p 25185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-mulcl 11171  ax-i2m1 11177
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-0p 25186
This theorem is referenced by:  0plef  25188  0pledm  25189  itg1ge0  25202  mbfi1fseqlem5  25236  itg2addlem  25275  ne0p  25720  plyeq0lem  25723  plydivlem3  25807  plymul02  33552  dgraa0p  41881
  Copyright terms: Public domain W3C validator