MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0pval Structured version   Visualization version   GIF version

Theorem 0pval 25605
Description: The zero function evaluates to zero at every point. (Contributed by Mario Carneiro, 23-Jul-2014.)
Assertion
Ref Expression
0pval (𝐴 ∈ ℂ → (0𝑝𝐴) = 0)

Proof of Theorem 0pval
StepHypRef Expression
1 df-0p 25604 . . 3 0𝑝 = (ℂ × {0})
21fveq1i 6841 . 2 (0𝑝𝐴) = ((ℂ × {0})‘𝐴)
3 c0ex 11144 . . 3 0 ∈ V
43fvconst2 7160 . 2 (𝐴 ∈ ℂ → ((ℂ × {0})‘𝐴) = 0)
52, 4eqtrid 2776 1 (𝐴 ∈ ℂ → (0𝑝𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {csn 4585   × cxp 5629  cfv 6499  cc 11042  0cc0 11044  0𝑝c0p 25603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-mulcl 11106  ax-i2m1 11112
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-0p 25604
This theorem is referenced by:  0plef  25606  0pledm  25607  itg1ge0  25620  mbfi1fseqlem5  25653  itg2addlem  25692  ne0p  26145  plyeq0lem  26148  plydivlem3  26236  plymul02  34530  dgraa0p  43131
  Copyright terms: Public domain W3C validator