![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0pval | Structured version Visualization version GIF version |
Description: The zero function evaluates to zero at every point. (Contributed by Mario Carneiro, 23-Jul-2014.) |
Ref | Expression |
---|---|
0pval | ⊢ (𝐴 ∈ ℂ → (0𝑝‘𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-0p 25724 | . . 3 ⊢ 0𝑝 = (ℂ × {0}) | |
2 | 1 | fveq1i 6921 | . 2 ⊢ (0𝑝‘𝐴) = ((ℂ × {0})‘𝐴) |
3 | c0ex 11284 | . . 3 ⊢ 0 ∈ V | |
4 | 3 | fvconst2 7241 | . 2 ⊢ (𝐴 ∈ ℂ → ((ℂ × {0})‘𝐴) = 0) |
5 | 2, 4 | eqtrid 2792 | 1 ⊢ (𝐴 ∈ ℂ → (0𝑝‘𝐴) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {csn 4648 × cxp 5698 ‘cfv 6573 ℂcc 11182 0cc0 11184 0𝑝c0p 25723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-mulcl 11246 ax-i2m1 11252 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-0p 25724 |
This theorem is referenced by: 0plef 25726 0pledm 25727 itg1ge0 25740 mbfi1fseqlem5 25774 itg2addlem 25813 ne0p 26266 plyeq0lem 26269 plydivlem3 26355 plymul02 34523 dgraa0p 43106 |
Copyright terms: Public domain | W3C validator |