| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0pval | Structured version Visualization version GIF version | ||
| Description: The zero function evaluates to zero at every point. (Contributed by Mario Carneiro, 23-Jul-2014.) |
| Ref | Expression |
|---|---|
| 0pval | ⊢ (𝐴 ∈ ℂ → (0𝑝‘𝐴) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-0p 25598 | . . 3 ⊢ 0𝑝 = (ℂ × {0}) | |
| 2 | 1 | fveq1i 6823 | . 2 ⊢ (0𝑝‘𝐴) = ((ℂ × {0})‘𝐴) |
| 3 | c0ex 11106 | . . 3 ⊢ 0 ∈ V | |
| 4 | 3 | fvconst2 7138 | . 2 ⊢ (𝐴 ∈ ℂ → ((ℂ × {0})‘𝐴) = 0) |
| 5 | 2, 4 | eqtrid 2778 | 1 ⊢ (𝐴 ∈ ℂ → (0𝑝‘𝐴) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {csn 4573 × cxp 5612 ‘cfv 6481 ℂcc 11004 0cc0 11006 0𝑝c0p 25597 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-mulcl 11068 ax-i2m1 11074 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-0p 25598 |
| This theorem is referenced by: 0plef 25600 0pledm 25601 itg1ge0 25614 mbfi1fseqlem5 25647 itg2addlem 25686 ne0p 26139 plyeq0lem 26142 plydivlem3 26230 plymul02 34559 dgraa0p 43252 |
| Copyright terms: Public domain | W3C validator |