MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0pval Structured version   Visualization version   GIF version

Theorem 0pval 24942
Description: The zero function evaluates to zero at every point. (Contributed by Mario Carneiro, 23-Jul-2014.)
Assertion
Ref Expression
0pval (𝐴 ∈ ℂ → (0𝑝𝐴) = 0)

Proof of Theorem 0pval
StepHypRef Expression
1 df-0p 24941 . . 3 0𝑝 = (ℂ × {0})
21fveq1i 6827 . 2 (0𝑝𝐴) = ((ℂ × {0})‘𝐴)
3 c0ex 11071 . . 3 0 ∈ V
43fvconst2 7136 . 2 (𝐴 ∈ ℂ → ((ℂ × {0})‘𝐴) = 0)
52, 4eqtrid 2788 1 (𝐴 ∈ ℂ → (0𝑝𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  {csn 4574   × cxp 5619  cfv 6480  cc 10971  0cc0 10973  0𝑝c0p 24940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5244  ax-nul 5251  ax-pr 5373  ax-1cn 11031  ax-icn 11032  ax-addcl 11033  ax-mulcl 11035  ax-i2m1 11041
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4271  df-if 4475  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-br 5094  df-opab 5156  df-mpt 5177  df-id 5519  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-iota 6432  df-fun 6482  df-fn 6483  df-f 6484  df-fv 6488  df-0p 24941
This theorem is referenced by:  0plef  24943  0pledm  24944  itg1ge0  24957  mbfi1fseqlem5  24991  itg2addlem  25030  ne0p  25475  plyeq0lem  25478  plydivlem3  25562  plymul02  32825  dgraa0p  41288
  Copyright terms: Public domain W3C validator