| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0pval | Structured version Visualization version GIF version | ||
| Description: The zero function evaluates to zero at every point. (Contributed by Mario Carneiro, 23-Jul-2014.) |
| Ref | Expression |
|---|---|
| 0pval | ⊢ (𝐴 ∈ ℂ → (0𝑝‘𝐴) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-0p 25628 | . . 3 ⊢ 0𝑝 = (ℂ × {0}) | |
| 2 | 1 | fveq1i 6882 | . 2 ⊢ (0𝑝‘𝐴) = ((ℂ × {0})‘𝐴) |
| 3 | c0ex 11234 | . . 3 ⊢ 0 ∈ V | |
| 4 | 3 | fvconst2 7201 | . 2 ⊢ (𝐴 ∈ ℂ → ((ℂ × {0})‘𝐴) = 0) |
| 5 | 2, 4 | eqtrid 2783 | 1 ⊢ (𝐴 ∈ ℂ → (0𝑝‘𝐴) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {csn 4606 × cxp 5657 ‘cfv 6536 ℂcc 11132 0cc0 11134 0𝑝c0p 25627 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-mulcl 11196 ax-i2m1 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-0p 25628 |
| This theorem is referenced by: 0plef 25630 0pledm 25631 itg1ge0 25644 mbfi1fseqlem5 25677 itg2addlem 25716 ne0p 26169 plyeq0lem 26172 plydivlem3 26260 plymul02 34583 dgraa0p 43140 |
| Copyright terms: Public domain | W3C validator |