| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0pval | Structured version Visualization version GIF version | ||
| Description: The zero function evaluates to zero at every point. (Contributed by Mario Carneiro, 23-Jul-2014.) |
| Ref | Expression |
|---|---|
| 0pval | ⊢ (𝐴 ∈ ℂ → (0𝑝‘𝐴) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-0p 25569 | . . 3 ⊢ 0𝑝 = (ℂ × {0}) | |
| 2 | 1 | fveq1i 6823 | . 2 ⊢ (0𝑝‘𝐴) = ((ℂ × {0})‘𝐴) |
| 3 | c0ex 11109 | . . 3 ⊢ 0 ∈ V | |
| 4 | 3 | fvconst2 7140 | . 2 ⊢ (𝐴 ∈ ℂ → ((ℂ × {0})‘𝐴) = 0) |
| 5 | 2, 4 | eqtrid 2776 | 1 ⊢ (𝐴 ∈ ℂ → (0𝑝‘𝐴) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {csn 4577 × cxp 5617 ‘cfv 6482 ℂcc 11007 0cc0 11009 0𝑝c0p 25568 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-mulcl 11071 ax-i2m1 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-0p 25569 |
| This theorem is referenced by: 0plef 25571 0pledm 25572 itg1ge0 25585 mbfi1fseqlem5 25618 itg2addlem 25657 ne0p 26110 plyeq0lem 26113 plydivlem3 26201 plymul02 34520 dgraa0p 43132 |
| Copyright terms: Public domain | W3C validator |