Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0pval | Structured version Visualization version GIF version |
Description: The zero function evaluates to zero at every point. (Contributed by Mario Carneiro, 23-Jul-2014.) |
Ref | Expression |
---|---|
0pval | ⊢ (𝐴 ∈ ℂ → (0𝑝‘𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-0p 24941 | . . 3 ⊢ 0𝑝 = (ℂ × {0}) | |
2 | 1 | fveq1i 6827 | . 2 ⊢ (0𝑝‘𝐴) = ((ℂ × {0})‘𝐴) |
3 | c0ex 11071 | . . 3 ⊢ 0 ∈ V | |
4 | 3 | fvconst2 7136 | . 2 ⊢ (𝐴 ∈ ℂ → ((ℂ × {0})‘𝐴) = 0) |
5 | 2, 4 | eqtrid 2788 | 1 ⊢ (𝐴 ∈ ℂ → (0𝑝‘𝐴) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 {csn 4574 × cxp 5619 ‘cfv 6480 ℂcc 10971 0cc0 10973 0𝑝c0p 24940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pr 5373 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-mulcl 11035 ax-i2m1 11041 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-br 5094 df-opab 5156 df-mpt 5177 df-id 5519 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-fv 6488 df-0p 24941 |
This theorem is referenced by: 0plef 24943 0pledm 24944 itg1ge0 24957 mbfi1fseqlem5 24991 itg2addlem 25030 ne0p 25475 plyeq0lem 25478 plydivlem3 25562 plymul02 32825 dgraa0p 41288 |
Copyright terms: Public domain | W3C validator |