MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgreq0 Structured version   Visualization version   GIF version

Theorem dgreq0 26199
Description: The leading coefficient of a polynomial is nonzero, unless the entire polynomial is zero. (Contributed by Mario Carneiro, 22-Jul-2014.) (Proof shortened by Fan Zheng, 21-Jun-2016.)
Hypotheses
Ref Expression
dgreq0.1 𝑁 = (deg‘𝐹)
dgreq0.2 𝐴 = (coeff‘𝐹)
Assertion
Ref Expression
dgreq0 (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))

Proof of Theorem dgreq0
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 dgreq0.2 . . . . . 6 𝐴 = (coeff‘𝐹)
2 fveq2 6822 . . . . . 6 (𝐹 = 0𝑝 → (coeff‘𝐹) = (coeff‘0𝑝))
31, 2eqtrid 2778 . . . . 5 (𝐹 = 0𝑝𝐴 = (coeff‘0𝑝))
4 coe0 26189 . . . . 5 (coeff‘0𝑝) = (ℕ0 × {0})
53, 4eqtrdi 2782 . . . 4 (𝐹 = 0𝑝𝐴 = (ℕ0 × {0}))
6 dgreq0.1 . . . . . 6 𝑁 = (deg‘𝐹)
7 fveq2 6822 . . . . . 6 (𝐹 = 0𝑝 → (deg‘𝐹) = (deg‘0𝑝))
86, 7eqtrid 2778 . . . . 5 (𝐹 = 0𝑝𝑁 = (deg‘0𝑝))
9 dgr0 26196 . . . . 5 (deg‘0𝑝) = 0
108, 9eqtrdi 2782 . . . 4 (𝐹 = 0𝑝𝑁 = 0)
115, 10fveq12d 6829 . . 3 (𝐹 = 0𝑝 → (𝐴𝑁) = ((ℕ0 × {0})‘0))
12 0nn0 12396 . . . 4 0 ∈ ℕ0
13 fvconst2g 7136 . . . 4 ((0 ∈ ℕ0 ∧ 0 ∈ ℕ0) → ((ℕ0 × {0})‘0) = 0)
1412, 12, 13mp2an 692 . . 3 ((ℕ0 × {0})‘0) = 0
1511, 14eqtrdi 2782 . 2 (𝐹 = 0𝑝 → (𝐴𝑁) = 0)
161coefv0 26181 . . . . . . . 8 (𝐹 ∈ (Poly‘𝑆) → (𝐹‘0) = (𝐴‘0))
1716adantr 480 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → (𝐹‘0) = (𝐴‘0))
18 simpr 484 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
1918nnred 12140 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
2019ltm1d 12054 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) < 𝑁)
21 nnre 12132 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
2221adantl 481 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
23 peano2rem 11428 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
2422, 23syl 17 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) ∈ ℝ)
25 simpll 766 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → 𝐹 ∈ (Poly‘𝑆))
26 nnm1nn0 12422 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
2726adantl 481 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) ∈ ℕ0)
281, 6dgrub 26167 . . . . . . . . . . . . . . . . . . 19 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0) → 𝑘𝑁)
29283expia 1121 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) ≠ 0 → 𝑘𝑁))
3029ad2ant2rl 749 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → ((𝐴𝑘) ≠ 0 → 𝑘𝑁))
31 simplr 768 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → (𝐴𝑁) = 0)
32 fveqeq2 6831 . . . . . . . . . . . . . . . . . . 19 (𝑁 = 𝑘 → ((𝐴𝑁) = 0 ↔ (𝐴𝑘) = 0))
3331, 32syl5ibcom 245 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → (𝑁 = 𝑘 → (𝐴𝑘) = 0))
3433necon3d 2949 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → ((𝐴𝑘) ≠ 0 → 𝑁𝑘))
3530, 34jcad 512 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → ((𝐴𝑘) ≠ 0 → (𝑘𝑁𝑁𝑘)))
36 nn0re 12390 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
3736ad2antll 729 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → 𝑘 ∈ ℝ)
3821ad2antrl 728 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → 𝑁 ∈ ℝ)
3937, 38ltlend 11258 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → (𝑘 < 𝑁 ↔ (𝑘𝑁𝑁𝑘)))
40 nn0z 12493 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
4140ad2antll 729 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → 𝑘 ∈ ℤ)
42 nnz 12489 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
4342ad2antrl 728 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → 𝑁 ∈ ℤ)
44 zltlem1 12525 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 < 𝑁𝑘 ≤ (𝑁 − 1)))
4541, 43, 44syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → (𝑘 < 𝑁𝑘 ≤ (𝑁 − 1)))
4639, 45bitr3d 281 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → ((𝑘𝑁𝑁𝑘) ↔ 𝑘 ≤ (𝑁 − 1)))
4735, 46sylibd 239 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → ((𝐴𝑘) ≠ 0 → 𝑘 ≤ (𝑁 − 1)))
4847expr 456 . . . . . . . . . . . . . 14 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → (𝑘 ∈ ℕ0 → ((𝐴𝑘) ≠ 0 → 𝑘 ≤ (𝑁 − 1))))
4948ralrimiv 3123 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘 ≤ (𝑁 − 1)))
501coef3 26165 . . . . . . . . . . . . . . 15 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
5150ad2antrr 726 . . . . . . . . . . . . . 14 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → 𝐴:ℕ0⟶ℂ)
52 plyco0 26125 . . . . . . . . . . . . . 14 (((𝑁 − 1) ∈ ℕ0𝐴:ℕ0⟶ℂ) → ((𝐴 “ (ℤ‘((𝑁 − 1) + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘 ≤ (𝑁 − 1))))
5327, 51, 52syl2anc 584 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → ((𝐴 “ (ℤ‘((𝑁 − 1) + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘 ≤ (𝑁 − 1))))
5449, 53mpbird 257 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → (𝐴 “ (ℤ‘((𝑁 − 1) + 1))) = {0})
551, 6dgrlb 26169 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑁 − 1) ∈ ℕ0 ∧ (𝐴 “ (ℤ‘((𝑁 − 1) + 1))) = {0}) → 𝑁 ≤ (𝑁 − 1))
5625, 27, 54, 55syl3anc 1373 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → 𝑁 ≤ (𝑁 − 1))
5722, 24, 56lensymd 11264 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → ¬ (𝑁 − 1) < 𝑁)
5820, 57pm2.65da 816 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → ¬ 𝑁 ∈ ℕ)
59 dgrcl 26166 . . . . . . . . . . . . 13 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
606, 59eqeltrid 2835 . . . . . . . . . . . 12 (𝐹 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0)
6160adantr 480 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → 𝑁 ∈ ℕ0)
62 elnn0 12383 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
6361, 62sylib 218 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
6463ord 864 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → (¬ 𝑁 ∈ ℕ → 𝑁 = 0))
6558, 64mpd 15 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → 𝑁 = 0)
6665fveq2d 6826 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → (𝐴𝑁) = (𝐴‘0))
67 simpr 484 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → (𝐴𝑁) = 0)
6817, 66, 673eqtr2d 2772 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → (𝐹‘0) = 0)
6968sneqd 4588 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → {(𝐹‘0)} = {0})
7069xpeq2d 5646 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → (ℂ × {(𝐹‘0)}) = (ℂ × {0}))
716, 65eqtr3id 2780 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → (deg‘𝐹) = 0)
72 0dgrb 26179 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → ((deg‘𝐹) = 0 ↔ 𝐹 = (ℂ × {(𝐹‘0)})))
7372adantr 480 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → ((deg‘𝐹) = 0 ↔ 𝐹 = (ℂ × {(𝐹‘0)})))
7471, 73mpbid 232 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → 𝐹 = (ℂ × {(𝐹‘0)}))
75 df-0p 25599 . . . . 5 0𝑝 = (ℂ × {0})
7675a1i 11 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → 0𝑝 = (ℂ × {0}))
7770, 74, 763eqtr4d 2776 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → 𝐹 = 0𝑝)
7877ex 412 . 2 (𝐹 ∈ (Poly‘𝑆) → ((𝐴𝑁) = 0 → 𝐹 = 0𝑝))
7915, 78impbid2 226 1 (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928  wral 3047  {csn 4576   class class class wbr 5091   × cxp 5614  cima 5619  wf 6477  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   < clt 11146  cle 11147  cmin 11344  cn 12125  0cn0 12381  cz 12468  cuz 12732  0𝑝c0p 25598  Polycply 26117  coeffccoe 26119  degcdgr 26120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-0p 25599  df-ply 26121  df-coe 26123  df-dgr 26124
This theorem is referenced by:  dgrlt  26200  dgradd2  26202  dgrmul  26204  dgrcolem2  26208  plymul0or  26216  plydivlem4  26232  plydiveu  26234  vieta1lem2  26247  vieta1  26248  aareccl  26262  ftalem2  27012  ftalem4  27014  ftalem5  27015  signsply0  34562  mpaaeu  43189  elaa2lem  46277
  Copyright terms: Public domain W3C validator