MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgreq0 Structured version   Visualization version   GIF version

Theorem dgreq0 26306
Description: The leading coefficient of a polynomial is nonzero, unless the entire polynomial is zero. (Contributed by Mario Carneiro, 22-Jul-2014.) (Proof shortened by Fan Zheng, 21-Jun-2016.)
Hypotheses
Ref Expression
dgreq0.1 𝑁 = (deg‘𝐹)
dgreq0.2 𝐴 = (coeff‘𝐹)
Assertion
Ref Expression
dgreq0 (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))

Proof of Theorem dgreq0
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 dgreq0.2 . . . . . 6 𝐴 = (coeff‘𝐹)
2 fveq2 6905 . . . . . 6 (𝐹 = 0𝑝 → (coeff‘𝐹) = (coeff‘0𝑝))
31, 2eqtrid 2788 . . . . 5 (𝐹 = 0𝑝𝐴 = (coeff‘0𝑝))
4 coe0 26296 . . . . 5 (coeff‘0𝑝) = (ℕ0 × {0})
53, 4eqtrdi 2792 . . . 4 (𝐹 = 0𝑝𝐴 = (ℕ0 × {0}))
6 dgreq0.1 . . . . . 6 𝑁 = (deg‘𝐹)
7 fveq2 6905 . . . . . 6 (𝐹 = 0𝑝 → (deg‘𝐹) = (deg‘0𝑝))
86, 7eqtrid 2788 . . . . 5 (𝐹 = 0𝑝𝑁 = (deg‘0𝑝))
9 dgr0 26303 . . . . 5 (deg‘0𝑝) = 0
108, 9eqtrdi 2792 . . . 4 (𝐹 = 0𝑝𝑁 = 0)
115, 10fveq12d 6912 . . 3 (𝐹 = 0𝑝 → (𝐴𝑁) = ((ℕ0 × {0})‘0))
12 0nn0 12543 . . . 4 0 ∈ ℕ0
13 fvconst2g 7223 . . . 4 ((0 ∈ ℕ0 ∧ 0 ∈ ℕ0) → ((ℕ0 × {0})‘0) = 0)
1412, 12, 13mp2an 692 . . 3 ((ℕ0 × {0})‘0) = 0
1511, 14eqtrdi 2792 . 2 (𝐹 = 0𝑝 → (𝐴𝑁) = 0)
161coefv0 26288 . . . . . . . 8 (𝐹 ∈ (Poly‘𝑆) → (𝐹‘0) = (𝐴‘0))
1716adantr 480 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → (𝐹‘0) = (𝐴‘0))
18 simpr 484 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
1918nnred 12282 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
2019ltm1d 12201 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) < 𝑁)
21 nnre 12274 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
2221adantl 481 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
23 peano2rem 11577 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
2422, 23syl 17 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) ∈ ℝ)
25 simpll 766 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → 𝐹 ∈ (Poly‘𝑆))
26 nnm1nn0 12569 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
2726adantl 481 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) ∈ ℕ0)
281, 6dgrub 26274 . . . . . . . . . . . . . . . . . . 19 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0) → 𝑘𝑁)
29283expia 1121 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) ≠ 0 → 𝑘𝑁))
3029ad2ant2rl 749 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → ((𝐴𝑘) ≠ 0 → 𝑘𝑁))
31 simplr 768 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → (𝐴𝑁) = 0)
32 fveqeq2 6914 . . . . . . . . . . . . . . . . . . 19 (𝑁 = 𝑘 → ((𝐴𝑁) = 0 ↔ (𝐴𝑘) = 0))
3331, 32syl5ibcom 245 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → (𝑁 = 𝑘 → (𝐴𝑘) = 0))
3433necon3d 2960 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → ((𝐴𝑘) ≠ 0 → 𝑁𝑘))
3530, 34jcad 512 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → ((𝐴𝑘) ≠ 0 → (𝑘𝑁𝑁𝑘)))
36 nn0re 12537 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
3736ad2antll 729 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → 𝑘 ∈ ℝ)
3821ad2antrl 728 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → 𝑁 ∈ ℝ)
3937, 38ltlend 11407 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → (𝑘 < 𝑁 ↔ (𝑘𝑁𝑁𝑘)))
40 nn0z 12640 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
4140ad2antll 729 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → 𝑘 ∈ ℤ)
42 nnz 12636 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
4342ad2antrl 728 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → 𝑁 ∈ ℤ)
44 zltlem1 12672 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 < 𝑁𝑘 ≤ (𝑁 − 1)))
4541, 43, 44syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → (𝑘 < 𝑁𝑘 ≤ (𝑁 − 1)))
4639, 45bitr3d 281 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → ((𝑘𝑁𝑁𝑘) ↔ 𝑘 ≤ (𝑁 − 1)))
4735, 46sylibd 239 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → ((𝐴𝑘) ≠ 0 → 𝑘 ≤ (𝑁 − 1)))
4847expr 456 . . . . . . . . . . . . . 14 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → (𝑘 ∈ ℕ0 → ((𝐴𝑘) ≠ 0 → 𝑘 ≤ (𝑁 − 1))))
4948ralrimiv 3144 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘 ≤ (𝑁 − 1)))
501coef3 26272 . . . . . . . . . . . . . . 15 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
5150ad2antrr 726 . . . . . . . . . . . . . 14 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → 𝐴:ℕ0⟶ℂ)
52 plyco0 26232 . . . . . . . . . . . . . 14 (((𝑁 − 1) ∈ ℕ0𝐴:ℕ0⟶ℂ) → ((𝐴 “ (ℤ‘((𝑁 − 1) + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘 ≤ (𝑁 − 1))))
5327, 51, 52syl2anc 584 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → ((𝐴 “ (ℤ‘((𝑁 − 1) + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘 ≤ (𝑁 − 1))))
5449, 53mpbird 257 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → (𝐴 “ (ℤ‘((𝑁 − 1) + 1))) = {0})
551, 6dgrlb 26276 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑁 − 1) ∈ ℕ0 ∧ (𝐴 “ (ℤ‘((𝑁 − 1) + 1))) = {0}) → 𝑁 ≤ (𝑁 − 1))
5625, 27, 54, 55syl3anc 1372 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → 𝑁 ≤ (𝑁 − 1))
5722, 24, 56lensymd 11413 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → ¬ (𝑁 − 1) < 𝑁)
5820, 57pm2.65da 816 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → ¬ 𝑁 ∈ ℕ)
59 dgrcl 26273 . . . . . . . . . . . . 13 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
606, 59eqeltrid 2844 . . . . . . . . . . . 12 (𝐹 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0)
6160adantr 480 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → 𝑁 ∈ ℕ0)
62 elnn0 12530 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
6361, 62sylib 218 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
6463ord 864 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → (¬ 𝑁 ∈ ℕ → 𝑁 = 0))
6558, 64mpd 15 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → 𝑁 = 0)
6665fveq2d 6909 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → (𝐴𝑁) = (𝐴‘0))
67 simpr 484 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → (𝐴𝑁) = 0)
6817, 66, 673eqtr2d 2782 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → (𝐹‘0) = 0)
6968sneqd 4637 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → {(𝐹‘0)} = {0})
7069xpeq2d 5714 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → (ℂ × {(𝐹‘0)}) = (ℂ × {0}))
716, 65eqtr3id 2790 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → (deg‘𝐹) = 0)
72 0dgrb 26286 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → ((deg‘𝐹) = 0 ↔ 𝐹 = (ℂ × {(𝐹‘0)})))
7372adantr 480 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → ((deg‘𝐹) = 0 ↔ 𝐹 = (ℂ × {(𝐹‘0)})))
7471, 73mpbid 232 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → 𝐹 = (ℂ × {(𝐹‘0)}))
75 df-0p 25706 . . . . 5 0𝑝 = (ℂ × {0})
7675a1i 11 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → 0𝑝 = (ℂ × {0}))
7770, 74, 763eqtr4d 2786 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → 𝐹 = 0𝑝)
7877ex 412 . 2 (𝐹 ∈ (Poly‘𝑆) → ((𝐴𝑁) = 0 → 𝐹 = 0𝑝))
7915, 78impbid2 226 1 (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1539  wcel 2107  wne 2939  wral 3060  {csn 4625   class class class wbr 5142   × cxp 5682  cima 5687  wf 6556  cfv 6560  (class class class)co 7432  cc 11154  cr 11155  0cc0 11156  1c1 11157   + caddc 11159   < clt 11296  cle 11297  cmin 11493  cn 12267  0cn0 12528  cz 12615  cuz 12879  0𝑝c0p 25705  Polycply 26224  coeffccoe 26226  degcdgr 26227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-pm 8870  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-inf 9484  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-n0 12529  df-z 12616  df-uz 12880  df-rp 13036  df-fz 13549  df-fzo 13696  df-fl 13833  df-seq 14044  df-exp 14104  df-hash 14371  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-clim 15525  df-rlim 15526  df-sum 15724  df-0p 25706  df-ply 26228  df-coe 26230  df-dgr 26231
This theorem is referenced by:  dgrlt  26307  dgradd2  26309  dgrmul  26311  dgrcolem2  26315  plymul0or  26323  plydivlem4  26339  plydiveu  26341  vieta1lem2  26354  vieta1  26355  aareccl  26369  ftalem2  27118  ftalem4  27120  ftalem5  27121  signsply0  34567  mpaaeu  43167  elaa2lem  46253
  Copyright terms: Public domain W3C validator