Step | Hyp | Ref
| Expression |
1 | | dgreq0.2 |
. . . . . 6
⊢ 𝐴 = (coeff‘𝐹) |
2 | | fveq2 6756 |
. . . . . 6
⊢ (𝐹 = 0𝑝 →
(coeff‘𝐹) =
(coeff‘0𝑝)) |
3 | 1, 2 | syl5eq 2791 |
. . . . 5
⊢ (𝐹 = 0𝑝 →
𝐴 =
(coeff‘0𝑝)) |
4 | | coe0 25322 |
. . . . 5
⊢
(coeff‘0𝑝) = (ℕ0 ×
{0}) |
5 | 3, 4 | eqtrdi 2795 |
. . . 4
⊢ (𝐹 = 0𝑝 →
𝐴 = (ℕ0
× {0})) |
6 | | dgreq0.1 |
. . . . . 6
⊢ 𝑁 = (deg‘𝐹) |
7 | | fveq2 6756 |
. . . . . 6
⊢ (𝐹 = 0𝑝 →
(deg‘𝐹) =
(deg‘0𝑝)) |
8 | 6, 7 | syl5eq 2791 |
. . . . 5
⊢ (𝐹 = 0𝑝 →
𝑁 =
(deg‘0𝑝)) |
9 | | dgr0 25328 |
. . . . 5
⊢
(deg‘0𝑝) = 0 |
10 | 8, 9 | eqtrdi 2795 |
. . . 4
⊢ (𝐹 = 0𝑝 →
𝑁 = 0) |
11 | 5, 10 | fveq12d 6763 |
. . 3
⊢ (𝐹 = 0𝑝 →
(𝐴‘𝑁) = ((ℕ0 ×
{0})‘0)) |
12 | | 0nn0 12178 |
. . . 4
⊢ 0 ∈
ℕ0 |
13 | | fvconst2g 7059 |
. . . 4
⊢ ((0
∈ ℕ0 ∧ 0 ∈ ℕ0) →
((ℕ0 × {0})‘0) = 0) |
14 | 12, 12, 13 | mp2an 688 |
. . 3
⊢
((ℕ0 × {0})‘0) = 0 |
15 | 11, 14 | eqtrdi 2795 |
. 2
⊢ (𝐹 = 0𝑝 →
(𝐴‘𝑁) = 0) |
16 | 1 | coefv0 25314 |
. . . . . . . 8
⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐹‘0) = (𝐴‘0)) |
17 | 16 | adantr 480 |
. . . . . . 7
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → (𝐹‘0) = (𝐴‘0)) |
18 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) |
19 | 18 | nnred 11918 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ) |
20 | 19 | ltm1d 11837 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) < 𝑁) |
21 | | nnre 11910 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ) |
22 | 21 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ) |
23 | | peano2rem 11218 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℝ → (𝑁 − 1) ∈
ℝ) |
24 | 22, 23 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) ∈ ℝ) |
25 | | simpll 763 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ 𝑁 ∈ ℕ) → 𝐹 ∈ (Poly‘𝑆)) |
26 | | nnm1nn0 12204 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈
ℕ0) |
27 | 26 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) ∈
ℕ0) |
28 | 1, 6 | dgrub 25300 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0 ∧ (𝐴‘𝑘) ≠ 0) → 𝑘 ≤ 𝑁) |
29 | 28 | 3expia 1119 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁)) |
30 | 29 | ad2ant2rl 745 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁)) |
31 | | simplr 765 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → (𝐴‘𝑁) = 0) |
32 | | fveqeq2 6765 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 = 𝑘 → ((𝐴‘𝑁) = 0 ↔ (𝐴‘𝑘) = 0)) |
33 | 31, 32 | syl5ibcom 244 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → (𝑁 = 𝑘 → (𝐴‘𝑘) = 0)) |
34 | 33 | necon3d 2963 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → ((𝐴‘𝑘) ≠ 0 → 𝑁 ≠ 𝑘)) |
35 | 30, 34 | jcad 512 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → ((𝐴‘𝑘) ≠ 0 → (𝑘 ≤ 𝑁 ∧ 𝑁 ≠ 𝑘))) |
36 | | nn0re 12172 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℝ) |
37 | 36 | ad2antll 725 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → 𝑘 ∈
ℝ) |
38 | 21 | ad2antrl 724 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → 𝑁 ∈
ℝ) |
39 | 37, 38 | ltlend 11050 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → (𝑘 < 𝑁 ↔ (𝑘 ≤ 𝑁 ∧ 𝑁 ≠ 𝑘))) |
40 | | nn0z 12273 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℤ) |
41 | 40 | ad2antll 725 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → 𝑘 ∈
ℤ) |
42 | | nnz 12272 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) |
43 | 42 | ad2antrl 724 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → 𝑁 ∈
ℤ) |
44 | | zltlem1 12303 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 < 𝑁 ↔ 𝑘 ≤ (𝑁 − 1))) |
45 | 41, 43, 44 | syl2anc 583 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → (𝑘 < 𝑁 ↔ 𝑘 ≤ (𝑁 − 1))) |
46 | 39, 45 | bitr3d 280 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → ((𝑘 ≤ 𝑁 ∧ 𝑁 ≠ 𝑘) ↔ 𝑘 ≤ (𝑁 − 1))) |
47 | 35, 46 | sylibd 238 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ (𝑁 − 1))) |
48 | 47 | expr 456 |
. . . . . . . . . . . . . 14
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ 𝑁 ∈ ℕ) → (𝑘 ∈ ℕ0 → ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ (𝑁 − 1)))) |
49 | 48 | ralrimiv 3106 |
. . . . . . . . . . . . 13
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ 𝑁 ∈ ℕ) → ∀𝑘 ∈ ℕ0
((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ (𝑁 − 1))) |
50 | 1 | coef3 25298 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ) |
51 | 50 | ad2antrr 722 |
. . . . . . . . . . . . . 14
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ 𝑁 ∈ ℕ) → 𝐴:ℕ0⟶ℂ) |
52 | | plyco0 25258 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 − 1) ∈
ℕ0 ∧ 𝐴:ℕ0⟶ℂ) →
((𝐴 “
(ℤ≥‘((𝑁 − 1) + 1))) = {0} ↔
∀𝑘 ∈
ℕ0 ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ (𝑁 − 1)))) |
53 | 27, 51, 52 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ 𝑁 ∈ ℕ) → ((𝐴 “
(ℤ≥‘((𝑁 − 1) + 1))) = {0} ↔
∀𝑘 ∈
ℕ0 ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ (𝑁 − 1)))) |
54 | 49, 53 | mpbird 256 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ 𝑁 ∈ ℕ) → (𝐴 “
(ℤ≥‘((𝑁 − 1) + 1))) = {0}) |
55 | 1, 6 | dgrlb 25302 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑁 − 1) ∈ ℕ0 ∧
(𝐴 “
(ℤ≥‘((𝑁 − 1) + 1))) = {0}) → 𝑁 ≤ (𝑁 − 1)) |
56 | 25, 27, 54, 55 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ 𝑁 ∈ ℕ) → 𝑁 ≤ (𝑁 − 1)) |
57 | 22, 24, 56 | lensymd 11056 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ 𝑁 ∈ ℕ) → ¬ (𝑁 − 1) < 𝑁) |
58 | 20, 57 | pm2.65da 813 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → ¬ 𝑁 ∈ ℕ) |
59 | | dgrcl 25299 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈
ℕ0) |
60 | 6, 59 | eqeltrid 2843 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑁 ∈
ℕ0) |
61 | 60 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → 𝑁 ∈
ℕ0) |
62 | | elnn0 12165 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ0
↔ (𝑁 ∈ ℕ
∨ 𝑁 =
0)) |
63 | 61, 62 | sylib 217 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → (𝑁 ∈ ℕ ∨ 𝑁 = 0)) |
64 | 63 | ord 860 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → (¬ 𝑁 ∈ ℕ → 𝑁 = 0)) |
65 | 58, 64 | mpd 15 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → 𝑁 = 0) |
66 | 65 | fveq2d 6760 |
. . . . . . 7
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → (𝐴‘𝑁) = (𝐴‘0)) |
67 | | simpr 484 |
. . . . . . 7
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → (𝐴‘𝑁) = 0) |
68 | 17, 66, 67 | 3eqtr2d 2784 |
. . . . . 6
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → (𝐹‘0) = 0) |
69 | 68 | sneqd 4570 |
. . . . 5
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → {(𝐹‘0)} = {0}) |
70 | 69 | xpeq2d 5610 |
. . . 4
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → (ℂ × {(𝐹‘0)}) = (ℂ ×
{0})) |
71 | 6, 65 | eqtr3id 2793 |
. . . . 5
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → (deg‘𝐹) = 0) |
72 | | 0dgrb 25312 |
. . . . . 6
⊢ (𝐹 ∈ (Poly‘𝑆) → ((deg‘𝐹) = 0 ↔ 𝐹 = (ℂ × {(𝐹‘0)}))) |
73 | 72 | adantr 480 |
. . . . 5
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → ((deg‘𝐹) = 0 ↔ 𝐹 = (ℂ × {(𝐹‘0)}))) |
74 | 71, 73 | mpbid 231 |
. . . 4
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → 𝐹 = (ℂ × {(𝐹‘0)})) |
75 | | df-0p 24739 |
. . . . 5
⊢
0𝑝 = (ℂ × {0}) |
76 | 75 | a1i 11 |
. . . 4
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → 0𝑝 =
(ℂ × {0})) |
77 | 70, 74, 76 | 3eqtr4d 2788 |
. . 3
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → 𝐹 = 0𝑝) |
78 | 77 | ex 412 |
. 2
⊢ (𝐹 ∈ (Poly‘𝑆) → ((𝐴‘𝑁) = 0 → 𝐹 = 0𝑝)) |
79 | 15, 78 | impbid2 225 |
1
⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴‘𝑁) = 0)) |