| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | dgreq0.2 | . . . . . 6
⊢ 𝐴 = (coeff‘𝐹) | 
| 2 |  | fveq2 6905 | . . . . . 6
⊢ (𝐹 = 0𝑝 →
(coeff‘𝐹) =
(coeff‘0𝑝)) | 
| 3 | 1, 2 | eqtrid 2788 | . . . . 5
⊢ (𝐹 = 0𝑝 →
𝐴 =
(coeff‘0𝑝)) | 
| 4 |  | coe0 26296 | . . . . 5
⊢
(coeff‘0𝑝) = (ℕ0 ×
{0}) | 
| 5 | 3, 4 | eqtrdi 2792 | . . . 4
⊢ (𝐹 = 0𝑝 →
𝐴 = (ℕ0
× {0})) | 
| 6 |  | dgreq0.1 | . . . . . 6
⊢ 𝑁 = (deg‘𝐹) | 
| 7 |  | fveq2 6905 | . . . . . 6
⊢ (𝐹 = 0𝑝 →
(deg‘𝐹) =
(deg‘0𝑝)) | 
| 8 | 6, 7 | eqtrid 2788 | . . . . 5
⊢ (𝐹 = 0𝑝 →
𝑁 =
(deg‘0𝑝)) | 
| 9 |  | dgr0 26303 | . . . . 5
⊢
(deg‘0𝑝) = 0 | 
| 10 | 8, 9 | eqtrdi 2792 | . . . 4
⊢ (𝐹 = 0𝑝 →
𝑁 = 0) | 
| 11 | 5, 10 | fveq12d 6912 | . . 3
⊢ (𝐹 = 0𝑝 →
(𝐴‘𝑁) = ((ℕ0 ×
{0})‘0)) | 
| 12 |  | 0nn0 12543 | . . . 4
⊢ 0 ∈
ℕ0 | 
| 13 |  | fvconst2g 7223 | . . . 4
⊢ ((0
∈ ℕ0 ∧ 0 ∈ ℕ0) →
((ℕ0 × {0})‘0) = 0) | 
| 14 | 12, 12, 13 | mp2an 692 | . . 3
⊢
((ℕ0 × {0})‘0) = 0 | 
| 15 | 11, 14 | eqtrdi 2792 | . 2
⊢ (𝐹 = 0𝑝 →
(𝐴‘𝑁) = 0) | 
| 16 | 1 | coefv0 26288 | . . . . . . . 8
⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐹‘0) = (𝐴‘0)) | 
| 17 | 16 | adantr 480 | . . . . . . 7
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → (𝐹‘0) = (𝐴‘0)) | 
| 18 |  | simpr 484 | . . . . . . . . . . . 12
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) | 
| 19 | 18 | nnred 12282 | . . . . . . . . . . 11
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ) | 
| 20 | 19 | ltm1d 12201 | . . . . . . . . . 10
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) < 𝑁) | 
| 21 |  | nnre 12274 | . . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ) | 
| 22 | 21 | adantl 481 | . . . . . . . . . . 11
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ) | 
| 23 |  | peano2rem 11577 | . . . . . . . . . . . 12
⊢ (𝑁 ∈ ℝ → (𝑁 − 1) ∈
ℝ) | 
| 24 | 22, 23 | syl 17 | . . . . . . . . . . 11
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) ∈ ℝ) | 
| 25 |  | simpll 766 | . . . . . . . . . . . 12
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ 𝑁 ∈ ℕ) → 𝐹 ∈ (Poly‘𝑆)) | 
| 26 |  | nnm1nn0 12569 | . . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈
ℕ0) | 
| 27 | 26 | adantl 481 | . . . . . . . . . . . 12
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) ∈
ℕ0) | 
| 28 | 1, 6 | dgrub 26274 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0 ∧ (𝐴‘𝑘) ≠ 0) → 𝑘 ≤ 𝑁) | 
| 29 | 28 | 3expia 1121 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁)) | 
| 30 | 29 | ad2ant2rl 749 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁)) | 
| 31 |  | simplr 768 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → (𝐴‘𝑁) = 0) | 
| 32 |  | fveqeq2 6914 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 = 𝑘 → ((𝐴‘𝑁) = 0 ↔ (𝐴‘𝑘) = 0)) | 
| 33 | 31, 32 | syl5ibcom 245 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → (𝑁 = 𝑘 → (𝐴‘𝑘) = 0)) | 
| 34 | 33 | necon3d 2960 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → ((𝐴‘𝑘) ≠ 0 → 𝑁 ≠ 𝑘)) | 
| 35 | 30, 34 | jcad 512 | . . . . . . . . . . . . . . . 16
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → ((𝐴‘𝑘) ≠ 0 → (𝑘 ≤ 𝑁 ∧ 𝑁 ≠ 𝑘))) | 
| 36 |  | nn0re 12537 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℝ) | 
| 37 | 36 | ad2antll 729 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → 𝑘 ∈
ℝ) | 
| 38 | 21 | ad2antrl 728 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → 𝑁 ∈
ℝ) | 
| 39 | 37, 38 | ltlend 11407 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → (𝑘 < 𝑁 ↔ (𝑘 ≤ 𝑁 ∧ 𝑁 ≠ 𝑘))) | 
| 40 |  | nn0z 12640 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℤ) | 
| 41 | 40 | ad2antll 729 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → 𝑘 ∈
ℤ) | 
| 42 |  | nnz 12636 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) | 
| 43 | 42 | ad2antrl 728 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → 𝑁 ∈
ℤ) | 
| 44 |  | zltlem1 12672 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 < 𝑁 ↔ 𝑘 ≤ (𝑁 − 1))) | 
| 45 | 41, 43, 44 | syl2anc 584 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → (𝑘 < 𝑁 ↔ 𝑘 ≤ (𝑁 − 1))) | 
| 46 | 39, 45 | bitr3d 281 | . . . . . . . . . . . . . . . 16
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → ((𝑘 ≤ 𝑁 ∧ 𝑁 ≠ 𝑘) ↔ 𝑘 ≤ (𝑁 − 1))) | 
| 47 | 35, 46 | sylibd 239 | . . . . . . . . . . . . . . 15
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ (𝑁 − 1))) | 
| 48 | 47 | expr 456 | . . . . . . . . . . . . . 14
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ 𝑁 ∈ ℕ) → (𝑘 ∈ ℕ0 → ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ (𝑁 − 1)))) | 
| 49 | 48 | ralrimiv 3144 | . . . . . . . . . . . . 13
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ 𝑁 ∈ ℕ) → ∀𝑘 ∈ ℕ0
((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ (𝑁 − 1))) | 
| 50 | 1 | coef3 26272 | . . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ) | 
| 51 | 50 | ad2antrr 726 | . . . . . . . . . . . . . 14
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ 𝑁 ∈ ℕ) → 𝐴:ℕ0⟶ℂ) | 
| 52 |  | plyco0 26232 | . . . . . . . . . . . . . 14
⊢ (((𝑁 − 1) ∈
ℕ0 ∧ 𝐴:ℕ0⟶ℂ) →
((𝐴 “
(ℤ≥‘((𝑁 − 1) + 1))) = {0} ↔
∀𝑘 ∈
ℕ0 ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ (𝑁 − 1)))) | 
| 53 | 27, 51, 52 | syl2anc 584 | . . . . . . . . . . . . 13
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ 𝑁 ∈ ℕ) → ((𝐴 “
(ℤ≥‘((𝑁 − 1) + 1))) = {0} ↔
∀𝑘 ∈
ℕ0 ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ (𝑁 − 1)))) | 
| 54 | 49, 53 | mpbird 257 | . . . . . . . . . . . 12
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ 𝑁 ∈ ℕ) → (𝐴 “
(ℤ≥‘((𝑁 − 1) + 1))) = {0}) | 
| 55 | 1, 6 | dgrlb 26276 | . . . . . . . . . . . 12
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑁 − 1) ∈ ℕ0 ∧
(𝐴 “
(ℤ≥‘((𝑁 − 1) + 1))) = {0}) → 𝑁 ≤ (𝑁 − 1)) | 
| 56 | 25, 27, 54, 55 | syl3anc 1372 | . . . . . . . . . . 11
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ 𝑁 ∈ ℕ) → 𝑁 ≤ (𝑁 − 1)) | 
| 57 | 22, 24, 56 | lensymd 11413 | . . . . . . . . . 10
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ 𝑁 ∈ ℕ) → ¬ (𝑁 − 1) < 𝑁) | 
| 58 | 20, 57 | pm2.65da 816 | . . . . . . . . 9
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → ¬ 𝑁 ∈ ℕ) | 
| 59 |  | dgrcl 26273 | . . . . . . . . . . . . 13
⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈
ℕ0) | 
| 60 | 6, 59 | eqeltrid 2844 | . . . . . . . . . . . 12
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑁 ∈
ℕ0) | 
| 61 | 60 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → 𝑁 ∈
ℕ0) | 
| 62 |  | elnn0 12530 | . . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ0
↔ (𝑁 ∈ ℕ
∨ 𝑁 =
0)) | 
| 63 | 61, 62 | sylib 218 | . . . . . . . . . 10
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | 
| 64 | 63 | ord 864 | . . . . . . . . 9
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → (¬ 𝑁 ∈ ℕ → 𝑁 = 0)) | 
| 65 | 58, 64 | mpd 15 | . . . . . . . 8
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → 𝑁 = 0) | 
| 66 | 65 | fveq2d 6909 | . . . . . . 7
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → (𝐴‘𝑁) = (𝐴‘0)) | 
| 67 |  | simpr 484 | . . . . . . 7
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → (𝐴‘𝑁) = 0) | 
| 68 | 17, 66, 67 | 3eqtr2d 2782 | . . . . . 6
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → (𝐹‘0) = 0) | 
| 69 | 68 | sneqd 4637 | . . . . 5
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → {(𝐹‘0)} = {0}) | 
| 70 | 69 | xpeq2d 5714 | . . . 4
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → (ℂ × {(𝐹‘0)}) = (ℂ ×
{0})) | 
| 71 | 6, 65 | eqtr3id 2790 | . . . . 5
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → (deg‘𝐹) = 0) | 
| 72 |  | 0dgrb 26286 | . . . . . 6
⊢ (𝐹 ∈ (Poly‘𝑆) → ((deg‘𝐹) = 0 ↔ 𝐹 = (ℂ × {(𝐹‘0)}))) | 
| 73 | 72 | adantr 480 | . . . . 5
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → ((deg‘𝐹) = 0 ↔ 𝐹 = (ℂ × {(𝐹‘0)}))) | 
| 74 | 71, 73 | mpbid 232 | . . . 4
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → 𝐹 = (ℂ × {(𝐹‘0)})) | 
| 75 |  | df-0p 25706 | . . . . 5
⊢
0𝑝 = (ℂ × {0}) | 
| 76 | 75 | a1i 11 | . . . 4
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → 0𝑝 =
(ℂ × {0})) | 
| 77 | 70, 74, 76 | 3eqtr4d 2786 | . . 3
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → 𝐹 = 0𝑝) | 
| 78 | 77 | ex 412 | . 2
⊢ (𝐹 ∈ (Poly‘𝑆) → ((𝐴‘𝑁) = 0 → 𝐹 = 0𝑝)) | 
| 79 | 15, 78 | impbid2 226 | 1
⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴‘𝑁) = 0)) |