MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgreq0 Structured version   Visualization version   GIF version

Theorem dgreq0 26187
Description: The leading coefficient of a polynomial is nonzero, unless the entire polynomial is zero. (Contributed by Mario Carneiro, 22-Jul-2014.) (Proof shortened by Fan Zheng, 21-Jun-2016.)
Hypotheses
Ref Expression
dgreq0.1 𝑁 = (deg‘𝐹)
dgreq0.2 𝐴 = (coeff‘𝐹)
Assertion
Ref Expression
dgreq0 (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))

Proof of Theorem dgreq0
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 dgreq0.2 . . . . . 6 𝐴 = (coeff‘𝐹)
2 fveq2 6826 . . . . . 6 (𝐹 = 0𝑝 → (coeff‘𝐹) = (coeff‘0𝑝))
31, 2eqtrid 2776 . . . . 5 (𝐹 = 0𝑝𝐴 = (coeff‘0𝑝))
4 coe0 26177 . . . . 5 (coeff‘0𝑝) = (ℕ0 × {0})
53, 4eqtrdi 2780 . . . 4 (𝐹 = 0𝑝𝐴 = (ℕ0 × {0}))
6 dgreq0.1 . . . . . 6 𝑁 = (deg‘𝐹)
7 fveq2 6826 . . . . . 6 (𝐹 = 0𝑝 → (deg‘𝐹) = (deg‘0𝑝))
86, 7eqtrid 2776 . . . . 5 (𝐹 = 0𝑝𝑁 = (deg‘0𝑝))
9 dgr0 26184 . . . . 5 (deg‘0𝑝) = 0
108, 9eqtrdi 2780 . . . 4 (𝐹 = 0𝑝𝑁 = 0)
115, 10fveq12d 6833 . . 3 (𝐹 = 0𝑝 → (𝐴𝑁) = ((ℕ0 × {0})‘0))
12 0nn0 12417 . . . 4 0 ∈ ℕ0
13 fvconst2g 7142 . . . 4 ((0 ∈ ℕ0 ∧ 0 ∈ ℕ0) → ((ℕ0 × {0})‘0) = 0)
1412, 12, 13mp2an 692 . . 3 ((ℕ0 × {0})‘0) = 0
1511, 14eqtrdi 2780 . 2 (𝐹 = 0𝑝 → (𝐴𝑁) = 0)
161coefv0 26169 . . . . . . . 8 (𝐹 ∈ (Poly‘𝑆) → (𝐹‘0) = (𝐴‘0))
1716adantr 480 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → (𝐹‘0) = (𝐴‘0))
18 simpr 484 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
1918nnred 12161 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
2019ltm1d 12075 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) < 𝑁)
21 nnre 12153 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
2221adantl 481 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
23 peano2rem 11449 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
2422, 23syl 17 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) ∈ ℝ)
25 simpll 766 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → 𝐹 ∈ (Poly‘𝑆))
26 nnm1nn0 12443 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
2726adantl 481 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) ∈ ℕ0)
281, 6dgrub 26155 . . . . . . . . . . . . . . . . . . 19 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0) → 𝑘𝑁)
29283expia 1121 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) ≠ 0 → 𝑘𝑁))
3029ad2ant2rl 749 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → ((𝐴𝑘) ≠ 0 → 𝑘𝑁))
31 simplr 768 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → (𝐴𝑁) = 0)
32 fveqeq2 6835 . . . . . . . . . . . . . . . . . . 19 (𝑁 = 𝑘 → ((𝐴𝑁) = 0 ↔ (𝐴𝑘) = 0))
3331, 32syl5ibcom 245 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → (𝑁 = 𝑘 → (𝐴𝑘) = 0))
3433necon3d 2946 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → ((𝐴𝑘) ≠ 0 → 𝑁𝑘))
3530, 34jcad 512 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → ((𝐴𝑘) ≠ 0 → (𝑘𝑁𝑁𝑘)))
36 nn0re 12411 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
3736ad2antll 729 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → 𝑘 ∈ ℝ)
3821ad2antrl 728 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → 𝑁 ∈ ℝ)
3937, 38ltlend 11279 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → (𝑘 < 𝑁 ↔ (𝑘𝑁𝑁𝑘)))
40 nn0z 12514 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
4140ad2antll 729 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → 𝑘 ∈ ℤ)
42 nnz 12510 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
4342ad2antrl 728 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → 𝑁 ∈ ℤ)
44 zltlem1 12546 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 < 𝑁𝑘 ≤ (𝑁 − 1)))
4541, 43, 44syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → (𝑘 < 𝑁𝑘 ≤ (𝑁 − 1)))
4639, 45bitr3d 281 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → ((𝑘𝑁𝑁𝑘) ↔ 𝑘 ≤ (𝑁 − 1)))
4735, 46sylibd 239 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → ((𝐴𝑘) ≠ 0 → 𝑘 ≤ (𝑁 − 1)))
4847expr 456 . . . . . . . . . . . . . 14 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → (𝑘 ∈ ℕ0 → ((𝐴𝑘) ≠ 0 → 𝑘 ≤ (𝑁 − 1))))
4948ralrimiv 3120 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘 ≤ (𝑁 − 1)))
501coef3 26153 . . . . . . . . . . . . . . 15 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
5150ad2antrr 726 . . . . . . . . . . . . . 14 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → 𝐴:ℕ0⟶ℂ)
52 plyco0 26113 . . . . . . . . . . . . . 14 (((𝑁 − 1) ∈ ℕ0𝐴:ℕ0⟶ℂ) → ((𝐴 “ (ℤ‘((𝑁 − 1) + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘 ≤ (𝑁 − 1))))
5327, 51, 52syl2anc 584 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → ((𝐴 “ (ℤ‘((𝑁 − 1) + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘 ≤ (𝑁 − 1))))
5449, 53mpbird 257 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → (𝐴 “ (ℤ‘((𝑁 − 1) + 1))) = {0})
551, 6dgrlb 26157 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑁 − 1) ∈ ℕ0 ∧ (𝐴 “ (ℤ‘((𝑁 − 1) + 1))) = {0}) → 𝑁 ≤ (𝑁 − 1))
5625, 27, 54, 55syl3anc 1373 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → 𝑁 ≤ (𝑁 − 1))
5722, 24, 56lensymd 11285 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → ¬ (𝑁 − 1) < 𝑁)
5820, 57pm2.65da 816 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → ¬ 𝑁 ∈ ℕ)
59 dgrcl 26154 . . . . . . . . . . . . 13 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
606, 59eqeltrid 2832 . . . . . . . . . . . 12 (𝐹 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0)
6160adantr 480 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → 𝑁 ∈ ℕ0)
62 elnn0 12404 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
6361, 62sylib 218 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
6463ord 864 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → (¬ 𝑁 ∈ ℕ → 𝑁 = 0))
6558, 64mpd 15 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → 𝑁 = 0)
6665fveq2d 6830 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → (𝐴𝑁) = (𝐴‘0))
67 simpr 484 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → (𝐴𝑁) = 0)
6817, 66, 673eqtr2d 2770 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → (𝐹‘0) = 0)
6968sneqd 4591 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → {(𝐹‘0)} = {0})
7069xpeq2d 5653 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → (ℂ × {(𝐹‘0)}) = (ℂ × {0}))
716, 65eqtr3id 2778 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → (deg‘𝐹) = 0)
72 0dgrb 26167 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → ((deg‘𝐹) = 0 ↔ 𝐹 = (ℂ × {(𝐹‘0)})))
7372adantr 480 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → ((deg‘𝐹) = 0 ↔ 𝐹 = (ℂ × {(𝐹‘0)})))
7471, 73mpbid 232 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → 𝐹 = (ℂ × {(𝐹‘0)}))
75 df-0p 25587 . . . . 5 0𝑝 = (ℂ × {0})
7675a1i 11 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → 0𝑝 = (ℂ × {0}))
7770, 74, 763eqtr4d 2774 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → 𝐹 = 0𝑝)
7877ex 412 . 2 (𝐹 ∈ (Poly‘𝑆) → ((𝐴𝑁) = 0 → 𝐹 = 0𝑝))
7915, 78impbid2 226 1 (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044  {csn 4579   class class class wbr 5095   × cxp 5621  cima 5626  wf 6482  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   < clt 11168  cle 11169  cmin 11365  cn 12146  0cn0 12402  cz 12489  cuz 12753  0𝑝c0p 25586  Polycply 26105  coeffccoe 26107  degcdgr 26108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-fl 13714  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-rlim 15414  df-sum 15612  df-0p 25587  df-ply 26109  df-coe 26111  df-dgr 26112
This theorem is referenced by:  dgrlt  26188  dgradd2  26190  dgrmul  26192  dgrcolem2  26196  plymul0or  26204  plydivlem4  26220  plydiveu  26222  vieta1lem2  26235  vieta1  26236  aareccl  26250  ftalem2  27000  ftalem4  27002  ftalem5  27003  signsply0  34521  mpaaeu  43126  elaa2lem  46218
  Copyright terms: Public domain W3C validator