MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgreq0 Structured version   Visualization version   GIF version

Theorem dgreq0 25426
Description: The leading coefficient of a polynomial is nonzero, unless the entire polynomial is zero. (Contributed by Mario Carneiro, 22-Jul-2014.) (Proof shortened by Fan Zheng, 21-Jun-2016.)
Hypotheses
Ref Expression
dgreq0.1 𝑁 = (deg‘𝐹)
dgreq0.2 𝐴 = (coeff‘𝐹)
Assertion
Ref Expression
dgreq0 (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))

Proof of Theorem dgreq0
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 dgreq0.2 . . . . . 6 𝐴 = (coeff‘𝐹)
2 fveq2 6774 . . . . . 6 (𝐹 = 0𝑝 → (coeff‘𝐹) = (coeff‘0𝑝))
31, 2eqtrid 2790 . . . . 5 (𝐹 = 0𝑝𝐴 = (coeff‘0𝑝))
4 coe0 25417 . . . . 5 (coeff‘0𝑝) = (ℕ0 × {0})
53, 4eqtrdi 2794 . . . 4 (𝐹 = 0𝑝𝐴 = (ℕ0 × {0}))
6 dgreq0.1 . . . . . 6 𝑁 = (deg‘𝐹)
7 fveq2 6774 . . . . . 6 (𝐹 = 0𝑝 → (deg‘𝐹) = (deg‘0𝑝))
86, 7eqtrid 2790 . . . . 5 (𝐹 = 0𝑝𝑁 = (deg‘0𝑝))
9 dgr0 25423 . . . . 5 (deg‘0𝑝) = 0
108, 9eqtrdi 2794 . . . 4 (𝐹 = 0𝑝𝑁 = 0)
115, 10fveq12d 6781 . . 3 (𝐹 = 0𝑝 → (𝐴𝑁) = ((ℕ0 × {0})‘0))
12 0nn0 12248 . . . 4 0 ∈ ℕ0
13 fvconst2g 7077 . . . 4 ((0 ∈ ℕ0 ∧ 0 ∈ ℕ0) → ((ℕ0 × {0})‘0) = 0)
1412, 12, 13mp2an 689 . . 3 ((ℕ0 × {0})‘0) = 0
1511, 14eqtrdi 2794 . 2 (𝐹 = 0𝑝 → (𝐴𝑁) = 0)
161coefv0 25409 . . . . . . . 8 (𝐹 ∈ (Poly‘𝑆) → (𝐹‘0) = (𝐴‘0))
1716adantr 481 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → (𝐹‘0) = (𝐴‘0))
18 simpr 485 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
1918nnred 11988 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
2019ltm1d 11907 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) < 𝑁)
21 nnre 11980 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
2221adantl 482 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
23 peano2rem 11288 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
2422, 23syl 17 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) ∈ ℝ)
25 simpll 764 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → 𝐹 ∈ (Poly‘𝑆))
26 nnm1nn0 12274 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
2726adantl 482 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) ∈ ℕ0)
281, 6dgrub 25395 . . . . . . . . . . . . . . . . . . 19 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0) → 𝑘𝑁)
29283expia 1120 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) ≠ 0 → 𝑘𝑁))
3029ad2ant2rl 746 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → ((𝐴𝑘) ≠ 0 → 𝑘𝑁))
31 simplr 766 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → (𝐴𝑁) = 0)
32 fveqeq2 6783 . . . . . . . . . . . . . . . . . . 19 (𝑁 = 𝑘 → ((𝐴𝑁) = 0 ↔ (𝐴𝑘) = 0))
3331, 32syl5ibcom 244 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → (𝑁 = 𝑘 → (𝐴𝑘) = 0))
3433necon3d 2964 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → ((𝐴𝑘) ≠ 0 → 𝑁𝑘))
3530, 34jcad 513 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → ((𝐴𝑘) ≠ 0 → (𝑘𝑁𝑁𝑘)))
36 nn0re 12242 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
3736ad2antll 726 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → 𝑘 ∈ ℝ)
3821ad2antrl 725 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → 𝑁 ∈ ℝ)
3937, 38ltlend 11120 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → (𝑘 < 𝑁 ↔ (𝑘𝑁𝑁𝑘)))
40 nn0z 12343 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
4140ad2antll 726 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → 𝑘 ∈ ℤ)
42 nnz 12342 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
4342ad2antrl 725 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → 𝑁 ∈ ℤ)
44 zltlem1 12373 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 < 𝑁𝑘 ≤ (𝑁 − 1)))
4541, 43, 44syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → (𝑘 < 𝑁𝑘 ≤ (𝑁 − 1)))
4639, 45bitr3d 280 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → ((𝑘𝑁𝑁𝑘) ↔ 𝑘 ≤ (𝑁 − 1)))
4735, 46sylibd 238 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → ((𝐴𝑘) ≠ 0 → 𝑘 ≤ (𝑁 − 1)))
4847expr 457 . . . . . . . . . . . . . 14 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → (𝑘 ∈ ℕ0 → ((𝐴𝑘) ≠ 0 → 𝑘 ≤ (𝑁 − 1))))
4948ralrimiv 3102 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘 ≤ (𝑁 − 1)))
501coef3 25393 . . . . . . . . . . . . . . 15 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
5150ad2antrr 723 . . . . . . . . . . . . . 14 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → 𝐴:ℕ0⟶ℂ)
52 plyco0 25353 . . . . . . . . . . . . . 14 (((𝑁 − 1) ∈ ℕ0𝐴:ℕ0⟶ℂ) → ((𝐴 “ (ℤ‘((𝑁 − 1) + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘 ≤ (𝑁 − 1))))
5327, 51, 52syl2anc 584 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → ((𝐴 “ (ℤ‘((𝑁 − 1) + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘 ≤ (𝑁 − 1))))
5449, 53mpbird 256 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → (𝐴 “ (ℤ‘((𝑁 − 1) + 1))) = {0})
551, 6dgrlb 25397 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑁 − 1) ∈ ℕ0 ∧ (𝐴 “ (ℤ‘((𝑁 − 1) + 1))) = {0}) → 𝑁 ≤ (𝑁 − 1))
5625, 27, 54, 55syl3anc 1370 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → 𝑁 ≤ (𝑁 − 1))
5722, 24, 56lensymd 11126 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) ∧ 𝑁 ∈ ℕ) → ¬ (𝑁 − 1) < 𝑁)
5820, 57pm2.65da 814 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → ¬ 𝑁 ∈ ℕ)
59 dgrcl 25394 . . . . . . . . . . . . 13 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
606, 59eqeltrid 2843 . . . . . . . . . . . 12 (𝐹 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0)
6160adantr 481 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → 𝑁 ∈ ℕ0)
62 elnn0 12235 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
6361, 62sylib 217 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
6463ord 861 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → (¬ 𝑁 ∈ ℕ → 𝑁 = 0))
6558, 64mpd 15 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → 𝑁 = 0)
6665fveq2d 6778 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → (𝐴𝑁) = (𝐴‘0))
67 simpr 485 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → (𝐴𝑁) = 0)
6817, 66, 673eqtr2d 2784 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → (𝐹‘0) = 0)
6968sneqd 4573 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → {(𝐹‘0)} = {0})
7069xpeq2d 5619 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → (ℂ × {(𝐹‘0)}) = (ℂ × {0}))
716, 65eqtr3id 2792 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → (deg‘𝐹) = 0)
72 0dgrb 25407 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → ((deg‘𝐹) = 0 ↔ 𝐹 = (ℂ × {(𝐹‘0)})))
7372adantr 481 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → ((deg‘𝐹) = 0 ↔ 𝐹 = (ℂ × {(𝐹‘0)})))
7471, 73mpbid 231 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → 𝐹 = (ℂ × {(𝐹‘0)}))
75 df-0p 24834 . . . . 5 0𝑝 = (ℂ × {0})
7675a1i 11 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → 0𝑝 = (ℂ × {0}))
7770, 74, 763eqtr4d 2788 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴𝑁) = 0) → 𝐹 = 0𝑝)
7877ex 413 . 2 (𝐹 ∈ (Poly‘𝑆) → ((𝐴𝑁) = 0 → 𝐹 = 0𝑝))
7915, 78impbid2 225 1 (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  wral 3064  {csn 4561   class class class wbr 5074   × cxp 5587  cima 5592  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   < clt 11009  cle 11010  cmin 11205  cn 11973  0cn0 12233  cz 12319  cuz 12582  0𝑝c0p 24833  Polycply 25345  coeffccoe 25347  degcdgr 25348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-sum 15398  df-0p 24834  df-ply 25349  df-coe 25351  df-dgr 25352
This theorem is referenced by:  dgrlt  25427  dgradd2  25429  dgrmul  25431  dgrcolem2  25435  plymul0or  25441  plydivlem4  25456  plydiveu  25458  vieta1lem2  25471  vieta1  25472  aareccl  25486  ftalem2  26223  ftalem4  26225  ftalem5  26226  signsply0  32530  mpaaeu  40975  elaa2lem  43774
  Copyright terms: Public domain W3C validator