| Step | Hyp | Ref
| Expression |
| 1 | | dgreq0.2 |
. . . . . 6
⊢ 𝐴 = (coeff‘𝐹) |
| 2 | | fveq2 6881 |
. . . . . 6
⊢ (𝐹 = 0𝑝 →
(coeff‘𝐹) =
(coeff‘0𝑝)) |
| 3 | 1, 2 | eqtrid 2783 |
. . . . 5
⊢ (𝐹 = 0𝑝 →
𝐴 =
(coeff‘0𝑝)) |
| 4 | | coe0 26218 |
. . . . 5
⊢
(coeff‘0𝑝) = (ℕ0 ×
{0}) |
| 5 | 3, 4 | eqtrdi 2787 |
. . . 4
⊢ (𝐹 = 0𝑝 →
𝐴 = (ℕ0
× {0})) |
| 6 | | dgreq0.1 |
. . . . . 6
⊢ 𝑁 = (deg‘𝐹) |
| 7 | | fveq2 6881 |
. . . . . 6
⊢ (𝐹 = 0𝑝 →
(deg‘𝐹) =
(deg‘0𝑝)) |
| 8 | 6, 7 | eqtrid 2783 |
. . . . 5
⊢ (𝐹 = 0𝑝 →
𝑁 =
(deg‘0𝑝)) |
| 9 | | dgr0 26225 |
. . . . 5
⊢
(deg‘0𝑝) = 0 |
| 10 | 8, 9 | eqtrdi 2787 |
. . . 4
⊢ (𝐹 = 0𝑝 →
𝑁 = 0) |
| 11 | 5, 10 | fveq12d 6888 |
. . 3
⊢ (𝐹 = 0𝑝 →
(𝐴‘𝑁) = ((ℕ0 ×
{0})‘0)) |
| 12 | | 0nn0 12521 |
. . . 4
⊢ 0 ∈
ℕ0 |
| 13 | | fvconst2g 7199 |
. . . 4
⊢ ((0
∈ ℕ0 ∧ 0 ∈ ℕ0) →
((ℕ0 × {0})‘0) = 0) |
| 14 | 12, 12, 13 | mp2an 692 |
. . 3
⊢
((ℕ0 × {0})‘0) = 0 |
| 15 | 11, 14 | eqtrdi 2787 |
. 2
⊢ (𝐹 = 0𝑝 →
(𝐴‘𝑁) = 0) |
| 16 | 1 | coefv0 26210 |
. . . . . . . 8
⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐹‘0) = (𝐴‘0)) |
| 17 | 16 | adantr 480 |
. . . . . . 7
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → (𝐹‘0) = (𝐴‘0)) |
| 18 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) |
| 19 | 18 | nnred 12260 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ) |
| 20 | 19 | ltm1d 12179 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) < 𝑁) |
| 21 | | nnre 12252 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ) |
| 22 | 21 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ) |
| 23 | | peano2rem 11555 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℝ → (𝑁 − 1) ∈
ℝ) |
| 24 | 22, 23 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) ∈ ℝ) |
| 25 | | simpll 766 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ 𝑁 ∈ ℕ) → 𝐹 ∈ (Poly‘𝑆)) |
| 26 | | nnm1nn0 12547 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈
ℕ0) |
| 27 | 26 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) ∈
ℕ0) |
| 28 | 1, 6 | dgrub 26196 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0 ∧ (𝐴‘𝑘) ≠ 0) → 𝑘 ≤ 𝑁) |
| 29 | 28 | 3expia 1121 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁)) |
| 30 | 29 | ad2ant2rl 749 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁)) |
| 31 | | simplr 768 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → (𝐴‘𝑁) = 0) |
| 32 | | fveqeq2 6890 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 = 𝑘 → ((𝐴‘𝑁) = 0 ↔ (𝐴‘𝑘) = 0)) |
| 33 | 31, 32 | syl5ibcom 245 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → (𝑁 = 𝑘 → (𝐴‘𝑘) = 0)) |
| 34 | 33 | necon3d 2954 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → ((𝐴‘𝑘) ≠ 0 → 𝑁 ≠ 𝑘)) |
| 35 | 30, 34 | jcad 512 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → ((𝐴‘𝑘) ≠ 0 → (𝑘 ≤ 𝑁 ∧ 𝑁 ≠ 𝑘))) |
| 36 | | nn0re 12515 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℝ) |
| 37 | 36 | ad2antll 729 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → 𝑘 ∈
ℝ) |
| 38 | 21 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → 𝑁 ∈
ℝ) |
| 39 | 37, 38 | ltlend 11385 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → (𝑘 < 𝑁 ↔ (𝑘 ≤ 𝑁 ∧ 𝑁 ≠ 𝑘))) |
| 40 | | nn0z 12618 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℤ) |
| 41 | 40 | ad2antll 729 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → 𝑘 ∈
ℤ) |
| 42 | | nnz 12614 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) |
| 43 | 42 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → 𝑁 ∈
ℤ) |
| 44 | | zltlem1 12650 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 < 𝑁 ↔ 𝑘 ≤ (𝑁 − 1))) |
| 45 | 41, 43, 44 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → (𝑘 < 𝑁 ↔ 𝑘 ≤ (𝑁 − 1))) |
| 46 | 39, 45 | bitr3d 281 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → ((𝑘 ≤ 𝑁 ∧ 𝑁 ≠ 𝑘) ↔ 𝑘 ≤ (𝑁 − 1))) |
| 47 | 35, 46 | sylibd 239 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ (𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0)) → ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ (𝑁 − 1))) |
| 48 | 47 | expr 456 |
. . . . . . . . . . . . . 14
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ 𝑁 ∈ ℕ) → (𝑘 ∈ ℕ0 → ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ (𝑁 − 1)))) |
| 49 | 48 | ralrimiv 3132 |
. . . . . . . . . . . . 13
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ 𝑁 ∈ ℕ) → ∀𝑘 ∈ ℕ0
((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ (𝑁 − 1))) |
| 50 | 1 | coef3 26194 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ) |
| 51 | 50 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ 𝑁 ∈ ℕ) → 𝐴:ℕ0⟶ℂ) |
| 52 | | plyco0 26154 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 − 1) ∈
ℕ0 ∧ 𝐴:ℕ0⟶ℂ) →
((𝐴 “
(ℤ≥‘((𝑁 − 1) + 1))) = {0} ↔
∀𝑘 ∈
ℕ0 ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ (𝑁 − 1)))) |
| 53 | 27, 51, 52 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ 𝑁 ∈ ℕ) → ((𝐴 “
(ℤ≥‘((𝑁 − 1) + 1))) = {0} ↔
∀𝑘 ∈
ℕ0 ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ (𝑁 − 1)))) |
| 54 | 49, 53 | mpbird 257 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ 𝑁 ∈ ℕ) → (𝐴 “
(ℤ≥‘((𝑁 − 1) + 1))) = {0}) |
| 55 | 1, 6 | dgrlb 26198 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑁 − 1) ∈ ℕ0 ∧
(𝐴 “
(ℤ≥‘((𝑁 − 1) + 1))) = {0}) → 𝑁 ≤ (𝑁 − 1)) |
| 56 | 25, 27, 54, 55 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ 𝑁 ∈ ℕ) → 𝑁 ≤ (𝑁 − 1)) |
| 57 | 22, 24, 56 | lensymd 11391 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) ∧ 𝑁 ∈ ℕ) → ¬ (𝑁 − 1) < 𝑁) |
| 58 | 20, 57 | pm2.65da 816 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → ¬ 𝑁 ∈ ℕ) |
| 59 | | dgrcl 26195 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈
ℕ0) |
| 60 | 6, 59 | eqeltrid 2839 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑁 ∈
ℕ0) |
| 61 | 60 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → 𝑁 ∈
ℕ0) |
| 62 | | elnn0 12508 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ0
↔ (𝑁 ∈ ℕ
∨ 𝑁 =
0)) |
| 63 | 61, 62 | sylib 218 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → (𝑁 ∈ ℕ ∨ 𝑁 = 0)) |
| 64 | 63 | ord 864 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → (¬ 𝑁 ∈ ℕ → 𝑁 = 0)) |
| 65 | 58, 64 | mpd 15 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → 𝑁 = 0) |
| 66 | 65 | fveq2d 6885 |
. . . . . . 7
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → (𝐴‘𝑁) = (𝐴‘0)) |
| 67 | | simpr 484 |
. . . . . . 7
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → (𝐴‘𝑁) = 0) |
| 68 | 17, 66, 67 | 3eqtr2d 2777 |
. . . . . 6
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → (𝐹‘0) = 0) |
| 69 | 68 | sneqd 4618 |
. . . . 5
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → {(𝐹‘0)} = {0}) |
| 70 | 69 | xpeq2d 5689 |
. . . 4
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → (ℂ × {(𝐹‘0)}) = (ℂ ×
{0})) |
| 71 | 6, 65 | eqtr3id 2785 |
. . . . 5
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → (deg‘𝐹) = 0) |
| 72 | | 0dgrb 26208 |
. . . . . 6
⊢ (𝐹 ∈ (Poly‘𝑆) → ((deg‘𝐹) = 0 ↔ 𝐹 = (ℂ × {(𝐹‘0)}))) |
| 73 | 72 | adantr 480 |
. . . . 5
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → ((deg‘𝐹) = 0 ↔ 𝐹 = (ℂ × {(𝐹‘0)}))) |
| 74 | 71, 73 | mpbid 232 |
. . . 4
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → 𝐹 = (ℂ × {(𝐹‘0)})) |
| 75 | | df-0p 25628 |
. . . . 5
⊢
0𝑝 = (ℂ × {0}) |
| 76 | 75 | a1i 11 |
. . . 4
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → 0𝑝 =
(ℂ × {0})) |
| 77 | 70, 74, 76 | 3eqtr4d 2781 |
. . 3
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝐴‘𝑁) = 0) → 𝐹 = 0𝑝) |
| 78 | 77 | ex 412 |
. 2
⊢ (𝐹 ∈ (Poly‘𝑆) → ((𝐴‘𝑁) = 0 → 𝐹 = 0𝑝)) |
| 79 | 15, 78 | impbid2 226 |
1
⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴‘𝑁) = 0)) |