Home | Metamath
Proof Explorer Theorem List (p. 255 of 465) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29277) |
Hilbert Space Explorer
(29278-30800) |
Users' Mathboxes
(30801-46488) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | coeeq2 25401* | Compute the coefficient function given a sum expression for the polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.) |
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → (coeff‘𝐹) = (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))) | ||
Theorem | dgrle 25402* | Given an explicit expression for a polynomial, the degree is at most the highest term in the sum. (Contributed by Mario Carneiro, 24-Jul-2014.) |
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧↑𝑘)))) ⇒ ⊢ (𝜑 → (deg‘𝐹) ≤ 𝑁) | ||
Theorem | dgreq 25403* | If the highest term in a polynomial expression is nonzero, then the polynomial's degree is completely determined. (Contributed by Mario Carneiro, 24-Jul-2014.) |
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑁 + 1))) = {0}) & ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → (𝐴‘𝑁) ≠ 0) ⇒ ⊢ (𝜑 → (deg‘𝐹) = 𝑁) | ||
Theorem | 0dgr 25404 | A constant function has degree 0. (Contributed by Mario Carneiro, 24-Jul-2014.) |
⊢ (𝐴 ∈ ℂ → (deg‘(ℂ × {𝐴})) = 0) | ||
Theorem | 0dgrb 25405 | A function has degree zero iff it is a constant function. (Contributed by Mario Carneiro, 23-Jul-2014.) |
⊢ (𝐹 ∈ (Poly‘𝑆) → ((deg‘𝐹) = 0 ↔ 𝐹 = (ℂ × {(𝐹‘0)}))) | ||
Theorem | dgrnznn 25406 | A nonzero polynomial with a root has positive degree. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
⊢ (((𝑃 ∈ (Poly‘𝑆) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0)) → (deg‘𝑃) ∈ ℕ) | ||
Theorem | coefv0 25407 | The result of evaluating a polynomial at zero is the constant term. (Contributed by Mario Carneiro, 24-Jul-2014.) |
⊢ 𝐴 = (coeff‘𝐹) ⇒ ⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐹‘0) = (𝐴‘0)) | ||
Theorem | coeaddlem 25408 | Lemma for coeadd 25410 and dgradd 25426. (Contributed by Mario Carneiro, 24-Jul-2014.) |
⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝐵 = (coeff‘𝐺) & ⊢ 𝑀 = (deg‘𝐹) & ⊢ 𝑁 = (deg‘𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹 ∘f + 𝐺)) = (𝐴 ∘f + 𝐵) ∧ (deg‘(𝐹 ∘f + 𝐺)) ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) | ||
Theorem | coemullem 25409* | Lemma for coemul 25411 and dgrmul 25429. (Contributed by Mario Carneiro, 24-Jul-2014.) |
⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝐵 = (coeff‘𝐺) & ⊢ 𝑀 = (deg‘𝐹) & ⊢ 𝑁 = (deg‘𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹 ∘f · 𝐺)) = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘)))) ∧ (deg‘(𝐹 ∘f · 𝐺)) ≤ (𝑀 + 𝑁))) | ||
Theorem | coeadd 25410 | The coefficient function of a sum is the sum of coefficients. (Contributed by Mario Carneiro, 24-Jul-2014.) |
⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝐵 = (coeff‘𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹 ∘f + 𝐺)) = (𝐴 ∘f + 𝐵)) | ||
Theorem | coemul 25411* | A coefficient of a product of polynomials. (Contributed by Mario Carneiro, 24-Jul-2014.) |
⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝐵 = (coeff‘𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0) → ((coeff‘(𝐹 ∘f · 𝐺))‘𝑁) = Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝐵‘(𝑁 − 𝑘)))) | ||
Theorem | coe11 25412 | The coefficient function is one-to-one, so if the coefficients are equal then the functions are equal and vice-versa. (Contributed by Mario Carneiro, 24-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝐵 = (coeff‘𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 = 𝐺 ↔ 𝐴 = 𝐵)) | ||
Theorem | coemulhi 25413 | The leading coefficient of a product of polynomials. (Contributed by Mario Carneiro, 24-Jul-2014.) |
⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝐵 = (coeff‘𝐺) & ⊢ 𝑀 = (deg‘𝐹) & ⊢ 𝑁 = (deg‘𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹 ∘f · 𝐺))‘(𝑀 + 𝑁)) = ((𝐴‘𝑀) · (𝐵‘𝑁))) | ||
Theorem | coemulc 25414 | The coefficient function is linear under scalar multiplication. (Contributed by Mario Carneiro, 24-Jul-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐹 ∈ (Poly‘𝑆)) → (coeff‘((ℂ × {𝐴}) ∘f · 𝐹)) = ((ℕ0 × {𝐴}) ∘f · (coeff‘𝐹))) | ||
Theorem | coe0 25415 | The coefficients of the zero polynomial are zero. (Contributed by Mario Carneiro, 22-Jul-2014.) |
⊢ (coeff‘0𝑝) = (ℕ0 × {0}) | ||
Theorem | coesub 25416 | The coefficient function of a sum is the sum of coefficients. (Contributed by Mario Carneiro, 24-Jul-2014.) |
⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝐵 = (coeff‘𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹 ∘f − 𝐺)) = (𝐴 ∘f − 𝐵)) | ||
Theorem | coe1termlem 25417* | The coefficient function of a monomial. (Contributed by Mario Carneiro, 26-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
⊢ 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧↑𝑁))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((coeff‘𝐹) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑁, 𝐴, 0)) ∧ (𝐴 ≠ 0 → (deg‘𝐹) = 𝑁))) | ||
Theorem | coe1term 25418* | The coefficient function of a monomial. (Contributed by Mario Carneiro, 26-Jul-2014.) |
⊢ 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧↑𝑁))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0) → ((coeff‘𝐹)‘𝑀) = if(𝑀 = 𝑁, 𝐴, 0)) | ||
Theorem | dgr1term 25419* | The degree of a monomial. (Contributed by Mario Carneiro, 26-Jul-2014.) |
⊢ 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧↑𝑁))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℕ0) → (deg‘𝐹) = 𝑁) | ||
Theorem | plycn 25420 | A polynomial is a continuous function. (Contributed by Mario Carneiro, 23-Jul-2014.) |
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (ℂ–cn→ℂ)) | ||
Theorem | dgr0 25421 | The degree of the zero polynomial is zero. Note: this differs from some other definitions of the degree of the zero polynomial, such as -1, -∞ or undefined. But it is convenient for us to define it this way, so that we have dgrcl 25392, dgreq0 25424 and coeid 25397 without having to special-case zero, although plydivalg 25457 is a little more complicated as a result. (Contributed by Mario Carneiro, 22-Jul-2014.) |
⊢ (deg‘0𝑝) = 0 | ||
Theorem | coeidp 25422 | The coefficients of the identity function. (Contributed by Mario Carneiro, 28-Jul-2014.) |
⊢ (𝐴 ∈ ℕ0 → ((coeff‘Xp)‘𝐴) = if(𝐴 = 1, 1, 0)) | ||
Theorem | dgrid 25423 | The degree of the identity function. (Contributed by Mario Carneiro, 26-Jul-2014.) |
⊢ (deg‘Xp) = 1 | ||
Theorem | dgreq0 25424 | The leading coefficient of a polynomial is nonzero, unless the entire polynomial is zero. (Contributed by Mario Carneiro, 22-Jul-2014.) (Proof shortened by Fan Zheng, 21-Jun-2016.) |
⊢ 𝑁 = (deg‘𝐹) & ⊢ 𝐴 = (coeff‘𝐹) ⇒ ⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴‘𝑁) = 0)) | ||
Theorem | dgrlt 25425 | Two ways to say that the degree of 𝐹 is strictly less than 𝑁. (Contributed by Mario Carneiro, 25-Jul-2014.) |
⊢ 𝑁 = (deg‘𝐹) & ⊢ 𝐴 = (coeff‘𝐹) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) → ((𝐹 = 0𝑝 ∨ 𝑁 < 𝑀) ↔ (𝑁 ≤ 𝑀 ∧ (𝐴‘𝑀) = 0))) | ||
Theorem | dgradd 25426 | The degree of a sum of polynomials is at most the maximum of the degrees. (Contributed by Mario Carneiro, 24-Jul-2014.) |
⊢ 𝑀 = (deg‘𝐹) & ⊢ 𝑁 = (deg‘𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹 ∘f + 𝐺)) ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) | ||
Theorem | dgradd2 25427 | The degree of a sum of polynomials of unequal degrees is the degree of the larger polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.) |
⊢ 𝑀 = (deg‘𝐹) & ⊢ 𝑁 = (deg‘𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (deg‘(𝐹 ∘f + 𝐺)) = 𝑁) | ||
Theorem | dgrmul2 25428 | The degree of a product of polynomials is at most the sum of degrees. (Contributed by Mario Carneiro, 24-Jul-2014.) |
⊢ 𝑀 = (deg‘𝐹) & ⊢ 𝑁 = (deg‘𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹 ∘f · 𝐺)) ≤ (𝑀 + 𝑁)) | ||
Theorem | dgrmul 25429 | The degree of a product of nonzero polynomials is the sum of degrees. (Contributed by Mario Carneiro, 24-Jul-2014.) |
⊢ 𝑀 = (deg‘𝐹) & ⊢ 𝑁 = (deg‘𝐺) ⇒ ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (deg‘(𝐹 ∘f · 𝐺)) = (𝑀 + 𝑁)) | ||
Theorem | dgrmulc 25430 | Scalar multiplication by a nonzero constant does not change the degree of a function. (Contributed by Mario Carneiro, 24-Jul-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐹 ∈ (Poly‘𝑆)) → (deg‘((ℂ × {𝐴}) ∘f · 𝐹)) = (deg‘𝐹)) | ||
Theorem | dgrsub 25431 | The degree of a difference of polynomials is at most the maximum of the degrees. (Contributed by Mario Carneiro, 26-Jul-2014.) |
⊢ 𝑀 = (deg‘𝐹) & ⊢ 𝑁 = (deg‘𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹 ∘f − 𝐺)) ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) | ||
Theorem | dgrcolem1 25432* | The degree of a composition of a monomial with a polynomial. (Contributed by Mario Carneiro, 15-Sep-2014.) |
⊢ 𝑁 = (deg‘𝐺) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) ⇒ ⊢ (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑀))) = (𝑀 · 𝑁)) | ||
Theorem | dgrcolem2 25433* | Lemma for dgrco 25434. (Contributed by Mario Carneiro, 15-Sep-2014.) |
⊢ 𝑀 = (deg‘𝐹) & ⊢ 𝑁 = (deg‘𝐺) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ 𝐴 = (coeff‘𝐹) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 = (𝐷 + 1)) & ⊢ (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝐷 → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁))) ⇒ ⊢ (𝜑 → (deg‘(𝐹 ∘ 𝐺)) = (𝑀 · 𝑁)) | ||
Theorem | dgrco 25434 | The degree of a composition of two polynomials is the product of the degrees. (Contributed by Mario Carneiro, 15-Sep-2014.) |
⊢ 𝑀 = (deg‘𝐹) & ⊢ 𝑁 = (deg‘𝐺) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) ⇒ ⊢ (𝜑 → (deg‘(𝐹 ∘ 𝐺)) = (𝑀 · 𝑁)) | ||
Theorem | plycjlem 25435* | Lemma for plycj 25436 and coecj 25437. (Contributed by Mario Carneiro, 24-Jul-2014.) |
⊢ 𝑁 = (deg‘𝐹) & ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗) & ⊢ 𝐴 = (coeff‘𝐹) ⇒ ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧↑𝑘)))) | ||
Theorem | plycj 25436* | The double conjugation of a polynomial is a polynomial. (The single conjugation is not because our definition of polynomial includes only holomorphic functions, i.e. no dependence on (∗‘𝑧) independently of 𝑧.) (Contributed by Mario Carneiro, 24-Jul-2014.) |
⊢ 𝑁 = (deg‘𝐹) & ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (∗‘𝑥) ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) ⇒ ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) | ||
Theorem | coecj 25437 | Double conjugation of a polynomial causes the coefficients to be conjugated. (Contributed by Mario Carneiro, 24-Jul-2014.) |
⊢ 𝑁 = (deg‘𝐹) & ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗) & ⊢ 𝐴 = (coeff‘𝐹) ⇒ ⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐺) = (∗ ∘ 𝐴)) | ||
Theorem | plyrecj 25438 | A polynomial with real coefficients distributes under conjugation. (Contributed by Mario Carneiro, 24-Jul-2014.) |
⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘(𝐹‘𝐴)) = (𝐹‘(∗‘𝐴))) | ||
Theorem | plymul0or 25439 | Polynomial multiplication has no zero divisors. (Contributed by Mario Carneiro, 26-Jul-2014.) |
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝐹 ∘f · 𝐺) = 0𝑝 ↔ (𝐹 = 0𝑝 ∨ 𝐺 = 0𝑝))) | ||
Theorem | ofmulrt 25440 | The set of roots of a product is the union of the roots of the terms. (Contributed by Mario Carneiro, 28-Jul-2014.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (◡(𝐹 ∘f · 𝐺) “ {0}) = ((◡𝐹 “ {0}) ∪ (◡𝐺 “ {0}))) | ||
Theorem | plyreres 25441 | Real-coefficient polynomials restrict to real functions. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
⊢ (𝐹 ∈ (Poly‘ℝ) → (𝐹 ↾ ℝ):ℝ⟶ℝ) | ||
Theorem | dvply1 25442* | Derivative of a polynomial, explicit sum version. (Contributed by Stefan O'Rear, 13-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵‘𝑘) · (𝑧↑𝑘)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝐵 = (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) · (𝐴‘(𝑘 + 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (ℂ D 𝐹) = 𝐺) | ||
Theorem | dvply2g 25443 | The derivative of a polynomial with coefficients in a subring is a polynomial with coefficients in the same ring. (Contributed by Mario Carneiro, 1-Jan-2017.) |
⊢ ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℂ D 𝐹) ∈ (Poly‘𝑆)) | ||
Theorem | dvply2 25444 | The derivative of a polynomial is a polynomial. (Contributed by Stefan O'Rear, 14-Nov-2014.) (Proof shortened by Mario Carneiro, 1-Jan-2017.) |
⊢ (𝐹 ∈ (Poly‘𝑆) → (ℂ D 𝐹) ∈ (Poly‘ℂ)) | ||
Theorem | dvnply2 25445 | Polynomials have polynomials as derivatives of all orders. (Contributed by Mario Carneiro, 1-Jan-2017.) |
⊢ ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0) → ((ℂ D𝑛 𝐹)‘𝑁) ∈ (Poly‘𝑆)) | ||
Theorem | dvnply 25446 | Polynomials have polynomials as derivatives of all orders. (Contributed by Stefan O'Rear, 15-Nov-2014.) (Revised by Mario Carneiro, 1-Jan-2017.) |
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0) → ((ℂ D𝑛 𝐹)‘𝑁) ∈ (Poly‘ℂ)) | ||
Theorem | plycpn 25447 | Polynomials are smooth. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ ∩ ran (𝓑C𝑛‘ℂ)) | ||
Syntax | cquot 25448 | Extend class notation to include the quotient of a polynomial division. |
class quot | ||
Definition | df-quot 25449* | Define the quotient function on polynomials. This is the 𝑞 of the expression 𝑓 = 𝑔 · 𝑞 + 𝑟 in the division algorithm. (Contributed by Mario Carneiro, 23-Jul-2014.) |
⊢ quot = (𝑓 ∈ (Poly‘ℂ), 𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ↦ (℩𝑞 ∈ (Poly‘ℂ)[(𝑓 ∘f − (𝑔 ∘f · 𝑞)) / 𝑟](𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔)))) | ||
Theorem | quotval 25450* | Value of the quotient function. (Contributed by Mario Carneiro, 23-Jul-2014.) |
⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f · 𝑞)) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) = (℩𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))) | ||
Theorem | plydivlem1 25451* | Lemma for plydivalg 25457. (Contributed by Mario Carneiro, 24-Jul-2014.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) & ⊢ (𝜑 → -1 ∈ 𝑆) ⇒ ⊢ (𝜑 → 0 ∈ 𝑆) | ||
Theorem | plydivlem2 25452* | Lemma for plydivalg 25457. (Contributed by Mario Carneiro, 24-Jul-2014.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) & ⊢ (𝜑 → -1 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ≠ 0𝑝) & ⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f · 𝑞)) ⇒ ⊢ ((𝜑 ∧ 𝑞 ∈ (Poly‘𝑆)) → 𝑅 ∈ (Poly‘𝑆)) | ||
Theorem | plydivlem3 25453* | Lemma for plydivex 25455. Base case of induction. (Contributed by Mario Carneiro, 24-Jul-2014.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) & ⊢ (𝜑 → -1 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ≠ 0𝑝) & ⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f · 𝑞)) & ⊢ (𝜑 → (𝐹 = 0𝑝 ∨ ((deg‘𝐹) − (deg‘𝐺)) < 0)) ⇒ ⊢ (𝜑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))) | ||
Theorem | plydivlem4 25454* | Lemma for plydivex 25455. Induction step. (Contributed by Mario Carneiro, 26-Jul-2014.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) & ⊢ (𝜑 → -1 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ≠ 0𝑝) & ⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f · 𝑞)) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → (𝑀 − 𝑁) = 𝐷) & ⊢ (𝜑 → 𝐹 ≠ 0𝑝) & ⊢ 𝑈 = (𝑓 ∘f − (𝐺 ∘f · 𝑝)) & ⊢ 𝐻 = (𝑧 ∈ ℂ ↦ (((𝐴‘𝑀) / (𝐵‘𝑁)) · (𝑧↑𝐷))) & ⊢ (𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − 𝑁) < 𝐷) → ∃𝑝 ∈ (Poly‘𝑆)(𝑈 = 0𝑝 ∨ (deg‘𝑈) < 𝑁))) & ⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝐵 = (coeff‘𝐺) & ⊢ 𝑀 = (deg‘𝐹) & ⊢ 𝑁 = (deg‘𝐺) ⇒ ⊢ (𝜑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < 𝑁)) | ||
Theorem | plydivex 25455* | Lemma for plydivalg 25457. (Contributed by Mario Carneiro, 24-Jul-2014.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) & ⊢ (𝜑 → -1 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ≠ 0𝑝) & ⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f · 𝑞)) ⇒ ⊢ (𝜑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))) | ||
Theorem | plydiveu 25456* | Lemma for plydivalg 25457. (Contributed by Mario Carneiro, 24-Jul-2014.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) & ⊢ (𝜑 → -1 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ≠ 0𝑝) & ⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f · 𝑞)) & ⊢ (𝜑 → 𝑞 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))) & ⊢ 𝑇 = (𝐹 ∘f − (𝐺 ∘f · 𝑝)) & ⊢ (𝜑 → 𝑝 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → (𝑇 = 0𝑝 ∨ (deg‘𝑇) < (deg‘𝐺))) ⇒ ⊢ (𝜑 → 𝑝 = 𝑞) | ||
Theorem | plydivalg 25457* | The division algorithm on polynomials over a subfield 𝑆 of the complex numbers. If 𝐹 and 𝐺 ≠ 0 are polynomials over 𝑆, then there is a unique quotient polynomial 𝑞 such that the remainder 𝐹 − 𝐺 · 𝑞 is either zero or has degree less than 𝐺. (Contributed by Mario Carneiro, 26-Jul-2014.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) & ⊢ (𝜑 → -1 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ≠ 0𝑝) & ⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f · 𝑞)) ⇒ ⊢ (𝜑 → ∃!𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))) | ||
Theorem | quotlem 25458* | Lemma for properties of the polynomial quotient function. (Contributed by Mario Carneiro, 26-Jul-2014.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) & ⊢ (𝜑 → -1 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ≠ 0𝑝) & ⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) ⇒ ⊢ (𝜑 → ((𝐹 quot 𝐺) ∈ (Poly‘𝑆) ∧ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))) | ||
Theorem | quotcl 25459* | The quotient of two polynomials in a field 𝑆 is also in the field. (Contributed by Mario Carneiro, 26-Jul-2014.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) & ⊢ (𝜑 → -1 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → 𝐺 ≠ 0𝑝) ⇒ ⊢ (𝜑 → (𝐹 quot 𝐺) ∈ (Poly‘𝑆)) | ||
Theorem | quotcl2 25460 | Closure of the quotient function. (Contributed by Mario Carneiro, 26-Jul-2014.) |
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) ∈ (Poly‘ℂ)) | ||
Theorem | quotdgr 25461 | Remainder property of the quotient function. (Contributed by Mario Carneiro, 26-Jul-2014.) |
⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))) | ||
Theorem | plyremlem 25462 | Closure of a linear factor. (Contributed by Mario Carneiro, 26-Jul-2014.) |
⊢ 𝐺 = (Xp ∘f − (ℂ × {𝐴})) ⇒ ⊢ (𝐴 ∈ ℂ → (𝐺 ∈ (Poly‘ℂ) ∧ (deg‘𝐺) = 1 ∧ (◡𝐺 “ {0}) = {𝐴})) | ||
Theorem | plyrem 25463 | The polynomial remainder theorem, or little Bézout's theorem (by contrast to the regular Bézout's theorem bezout 16249). If a polynomial 𝐹 is divided by the linear factor 𝑥 − 𝐴, the remainder is equal to 𝐹(𝐴), the evaluation of the polynomial at 𝐴 (interpreted as a constant polynomial). This is part of Metamath 100 proof #89. (Contributed by Mario Carneiro, 26-Jul-2014.) |
⊢ 𝐺 = (Xp ∘f − (ℂ × {𝐴})) & ⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ) → 𝑅 = (ℂ × {(𝐹‘𝐴)})) | ||
Theorem | facth 25464 | The factor theorem. If a polynomial 𝐹 has a root at 𝐴, then 𝐺 = 𝑥 − 𝐴 is a factor of 𝐹 (and the other factor is 𝐹 quot 𝐺). This is part of Metamath 100 proof #89. (Contributed by Mario Carneiro, 26-Jul-2014.) |
⊢ 𝐺 = (Xp ∘f − (ℂ × {𝐴})) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐴 ∈ ℂ ∧ (𝐹‘𝐴) = 0) → 𝐹 = (𝐺 ∘f · (𝐹 quot 𝐺))) | ||
Theorem | fta1lem 25465* | Lemma for fta1 25466. (Contributed by Mario Carneiro, 26-Jul-2014.) |
⊢ 𝑅 = (◡𝐹 “ {0}) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → 𝐹 ∈ ((Poly‘ℂ) ∖ {0𝑝})) & ⊢ (𝜑 → (deg‘𝐹) = (𝐷 + 1)) & ⊢ (𝜑 → 𝐴 ∈ (◡𝐹 “ {0})) & ⊢ (𝜑 → ∀𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝})((deg‘𝑔) = 𝐷 → ((◡𝑔 “ {0}) ∈ Fin ∧ (♯‘(◡𝑔 “ {0})) ≤ (deg‘𝑔)))) ⇒ ⊢ (𝜑 → (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹))) | ||
Theorem | fta1 25466 | The easy direction of the Fundamental Theorem of Algebra: A nonzero polynomial has at most deg(𝐹) roots. (Contributed by Mario Carneiro, 26-Jul-2014.) |
⊢ 𝑅 = (◡𝐹 “ {0}) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) → (𝑅 ∈ Fin ∧ (♯‘𝑅) ≤ (deg‘𝐹))) | ||
Theorem | quotcan 25467 | Exact division with a multiple. (Contributed by Mario Carneiro, 26-Jul-2014.) |
⊢ 𝐻 = (𝐹 ∘f · 𝐺) ⇒ ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐻 quot 𝐺) = 𝐹) | ||
Theorem | vieta1lem1 25468* | Lemma for vieta1 25470. (Contributed by Mario Carneiro, 28-Jul-2014.) |
⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) & ⊢ 𝑅 = (◡𝐹 “ {0}) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → (♯‘𝑅) = 𝑁) & ⊢ (𝜑 → 𝐷 ∈ ℕ) & ⊢ (𝜑 → (𝐷 + 1) = 𝑁) & ⊢ (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((𝐷 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))) & ⊢ 𝑄 = (𝐹 quot (Xp ∘f − (ℂ × {𝑧}))) ⇒ ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑅) → (𝑄 ∈ (Poly‘ℂ) ∧ 𝐷 = (deg‘𝑄))) | ||
Theorem | vieta1lem2 25469* | Lemma for vieta1 25470: inductive step. Let 𝑧 be a root of 𝐹. Then 𝐹 = (Xp − 𝑧) · 𝑄 for some 𝑄 by the factor theorem, and 𝑄 is a degree- 𝐷 polynomial, so by the induction hypothesis Σ𝑥 ∈ (◡𝑄 “ 0)𝑥 = -(coeff‘𝑄)‘(𝐷 − 1) / (coeff‘𝑄)‘𝐷, so Σ𝑥 ∈ 𝑅𝑥 = 𝑧 − (coeff‘𝑄)‘ (𝐷 − 1) / (coeff‘𝑄)‘𝐷. Now the coefficients of 𝐹 are 𝐴‘(𝐷 + 1) = (coeff‘𝑄)‘𝐷 and 𝐴‘𝐷 = Σ𝑘 ∈ (0...𝐷)(coeff‘Xp − 𝑧)‘𝑘 · (coeff‘𝑄) ‘(𝐷 − 𝑘), which works out to -𝑧 · (coeff‘𝑄)‘𝐷 + (coeff‘𝑄)‘(𝐷 − 1), so putting it all together we have Σ𝑥 ∈ 𝑅𝑥 = -𝐴‘𝐷 / 𝐴‘(𝐷 + 1) as we wanted to show. (Contributed by Mario Carneiro, 28-Jul-2014.) |
⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) & ⊢ 𝑅 = (◡𝐹 “ {0}) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → (♯‘𝑅) = 𝑁) & ⊢ (𝜑 → 𝐷 ∈ ℕ) & ⊢ (𝜑 → (𝐷 + 1) = 𝑁) & ⊢ (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((𝐷 = (deg‘𝑓) ∧ (♯‘(◡𝑓 “ {0})) = (deg‘𝑓)) → Σ𝑥 ∈ (◡𝑓 “ {0})𝑥 = -(((coeff‘𝑓)‘((deg‘𝑓) − 1)) / ((coeff‘𝑓)‘(deg‘𝑓))))) & ⊢ 𝑄 = (𝐹 quot (Xp ∘f − (ℂ × {𝑧}))) ⇒ ⊢ (𝜑 → Σ𝑥 ∈ 𝑅 𝑥 = -((𝐴‘(𝑁 − 1)) / (𝐴‘𝑁))) | ||
Theorem | vieta1 25470* | The first-order Vieta's formula (see http://en.wikipedia.org/wiki/Vieta%27s_formulas). If a polynomial of degree 𝑁 has 𝑁 distinct roots, then the sum over these roots can be calculated as -𝐴(𝑁 − 1) / 𝐴(𝑁). (If the roots are not distinct, then this formula is still true but must double-count some of the roots according to their multiplicities.) (Contributed by Mario Carneiro, 28-Jul-2014.) |
⊢ 𝐴 = (coeff‘𝐹) & ⊢ 𝑁 = (deg‘𝐹) & ⊢ 𝑅 = (◡𝐹 “ {0}) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) & ⊢ (𝜑 → (♯‘𝑅) = 𝑁) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → Σ𝑥 ∈ 𝑅 𝑥 = -((𝐴‘(𝑁 − 1)) / (𝐴‘𝑁))) | ||
Theorem | plyexmo 25471* | An infinite set of values can be extended to a polynomial in at most one way. (Contributed by Stefan O'Rear, 14-Nov-2014.) |
⊢ ((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) → ∃*𝑝(𝑝 ∈ (Poly‘𝑆) ∧ (𝑝 ↾ 𝐷) = 𝐹)) | ||
Syntax | caa 25472 | Extend class notation to include the set of algebraic numbers. |
class 𝔸 | ||
Definition | df-aa 25473 | Define the set of algebraic numbers. An algebraic number is a root of a nonzero polynomial over the integers. Here we construct it as the union of all kernels (preimages of {0}) of all polynomials in (Poly‘ℤ), except the zero polynomial 0𝑝. (Contributed by Mario Carneiro, 22-Jul-2014.) |
⊢ 𝔸 = ∪ 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(◡𝑓 “ {0}) | ||
Theorem | elaa 25474* | Elementhood in the set of algebraic numbers. (Contributed by Mario Carneiro, 22-Jul-2014.) |
⊢ (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘𝐴) = 0)) | ||
Theorem | aacn 25475 | An algebraic number is a complex number. (Contributed by Mario Carneiro, 23-Jul-2014.) |
⊢ (𝐴 ∈ 𝔸 → 𝐴 ∈ ℂ) | ||
Theorem | aasscn 25476 | The algebraic numbers are a subset of the complex numbers. (Contributed by Mario Carneiro, 23-Jul-2014.) |
⊢ 𝔸 ⊆ ℂ | ||
Theorem | elqaalem1 25477* | Lemma for elqaa 25480. The function 𝑁 represents the denominators of the rational coefficients 𝐵. By multiplying them all together to make 𝑅, we get a number big enough to clear all the denominators and make 𝑅 · 𝐹 an integer polynomial. (Contributed by Mario Carneiro, 23-Jul-2014.) (Revised by AV, 3-Oct-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝})) & ⊢ (𝜑 → (𝐹‘𝐴) = 0) & ⊢ 𝐵 = (coeff‘𝐹) & ⊢ 𝑁 = (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝑘) · 𝑛) ∈ ℤ}, ℝ, < )) & ⊢ 𝑅 = (seq0( · , 𝑁)‘(deg‘𝐹)) ⇒ ⊢ ((𝜑 ∧ 𝐾 ∈ ℕ0) → ((𝑁‘𝐾) ∈ ℕ ∧ ((𝐵‘𝐾) · (𝑁‘𝐾)) ∈ ℤ)) | ||
Theorem | elqaalem2 25478* | Lemma for elqaa 25480. (Contributed by Mario Carneiro, 23-Jul-2014.) (Revised by AV, 3-Oct-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝})) & ⊢ (𝜑 → (𝐹‘𝐴) = 0) & ⊢ 𝐵 = (coeff‘𝐹) & ⊢ 𝑁 = (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝑘) · 𝑛) ∈ ℤ}, ℝ, < )) & ⊢ 𝑅 = (seq0( · , 𝑁)‘(deg‘𝐹)) & ⊢ 𝑃 = (𝑥 ∈ V, 𝑦 ∈ V ↦ ((𝑥 · 𝑦) mod (𝑁‘𝐾))) ⇒ ⊢ ((𝜑 ∧ 𝐾 ∈ (0...(deg‘𝐹))) → (𝑅 mod (𝑁‘𝐾)) = 0) | ||
Theorem | elqaalem3 25479* | Lemma for elqaa 25480. (Contributed by Mario Carneiro, 23-Jul-2014.) (Revised by AV, 3-Oct-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝})) & ⊢ (𝜑 → (𝐹‘𝐴) = 0) & ⊢ 𝐵 = (coeff‘𝐹) & ⊢ 𝑁 = (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝑘) · 𝑛) ∈ ℤ}, ℝ, < )) & ⊢ 𝑅 = (seq0( · , 𝑁)‘(deg‘𝐹)) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝔸) | ||
Theorem | elqaa 25480* | The set of numbers generated by the roots of polynomials in the rational numbers is the same as the set of algebraic numbers, which by elaa 25474 are defined only in terms of polynomials over the integers. (Contributed by Mario Carneiro, 23-Jul-2014.) (Proof shortened by AV, 3-Oct-2020.) |
⊢ (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓‘𝐴) = 0)) | ||
Theorem | qaa 25481 | Every rational number is algebraic. (Contributed by Mario Carneiro, 23-Jul-2014.) |
⊢ (𝐴 ∈ ℚ → 𝐴 ∈ 𝔸) | ||
Theorem | qssaa 25482 | The rational numbers are contained in the algebraic numbers. (Contributed by Mario Carneiro, 23-Jul-2014.) |
⊢ ℚ ⊆ 𝔸 | ||
Theorem | iaa 25483 | The imaginary unit is algebraic. (Contributed by Mario Carneiro, 23-Jul-2014.) |
⊢ i ∈ 𝔸 | ||
Theorem | aareccl 25484 | The reciprocal of an algebraic number is algebraic. (Contributed by Mario Carneiro, 24-Jul-2014.) |
⊢ ((𝐴 ∈ 𝔸 ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ 𝔸) | ||
Theorem | aacjcl 25485 | The conjugate of an algebraic number is algebraic. (Contributed by Mario Carneiro, 24-Jul-2014.) |
⊢ (𝐴 ∈ 𝔸 → (∗‘𝐴) ∈ 𝔸) | ||
Theorem | aannenlem1 25486* | Lemma for aannen 25489. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
⊢ 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0}) ⇒ ⊢ (𝐴 ∈ ℕ0 → (𝐻‘𝐴) ∈ Fin) | ||
Theorem | aannenlem2 25487* | Lemma for aannen 25489. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
⊢ 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0}) ⇒ ⊢ 𝔸 = ∪ ran 𝐻 | ||
Theorem | aannenlem3 25488* | The algebraic numbers are countable. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
⊢ 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0}) ⇒ ⊢ 𝔸 ≈ ℕ | ||
Theorem | aannen 25489 | The algebraic numbers are countable. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
⊢ 𝔸 ≈ ℕ | ||
Theorem | aalioulem1 25490 | Lemma for aaliou 25496. An integer polynomial cannot inflate the denominator of a rational by more than its degree. (Contributed by Stefan O'Rear, 12-Nov-2014.) |
⊢ (𝜑 → 𝐹 ∈ (Poly‘ℤ)) & ⊢ (𝜑 → 𝑋 ∈ ℤ) & ⊢ (𝜑 → 𝑌 ∈ ℕ) ⇒ ⊢ (𝜑 → ((𝐹‘(𝑋 / 𝑌)) · (𝑌↑(deg‘𝐹))) ∈ ℤ) | ||
Theorem | aalioulem2 25491* | Lemma for aaliou 25496. (Contributed by Stefan O'Rear, 15-Nov-2014.) (Proof shortened by AV, 28-Sep-2020.) |
⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘ℤ)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) = 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) | ||
Theorem | aalioulem3 25492* | Lemma for aaliou 25496. (Contributed by Stefan O'Rear, 15-Nov-2014.) |
⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘ℤ)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (𝐹‘𝐴) = 0) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑟 ∈ ℝ ((abs‘(𝐴 − 𝑟)) ≤ 1 → (𝑥 · (abs‘(𝐹‘𝑟))) ≤ (abs‘(𝐴 − 𝑟)))) | ||
Theorem | aalioulem4 25493* | Lemma for aaliou 25496. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘ℤ)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (𝐹‘𝐴) = 0) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) | ||
Theorem | aalioulem5 25494* | Lemma for aaliou 25496. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘ℤ)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (𝐹‘𝐴) = 0) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) | ||
Theorem | aalioulem6 25495* | Lemma for aaliou 25496. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘ℤ)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (𝐹‘𝐴) = 0) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) | ||
Theorem | aaliou 25496* | Liouville's theorem on diophantine approximation: Any algebraic number, being a root of a polynomial 𝐹 in integer coefficients, is not approximable beyond order 𝑁 = deg(𝐹) by rational numbers. In this form, it also applies to rational numbers themselves, which are not well approximable by other rational numbers. This is Metamath 100 proof #18. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
⊢ 𝑁 = (deg‘𝐹) & ⊢ (𝜑 → 𝐹 ∈ (Poly‘ℤ)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (𝐹‘𝐴) = 0) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) | ||
Theorem | geolim3 25497* | Geometric series convergence with arbitrary shift, radix, and multiplicative constant. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐵) < 1) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ 𝐹 = (𝑘 ∈ (ℤ≥‘𝐴) ↦ (𝐶 · (𝐵↑(𝑘 − 𝐴)))) ⇒ ⊢ (𝜑 → seq𝐴( + , 𝐹) ⇝ (𝐶 / (1 − 𝐵))) | ||
Theorem | aaliou2 25498* | Liouville's approximation theorem for algebraic numbers per se. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
⊢ (𝐴 ∈ (𝔸 ∩ ℝ) → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) | ||
Theorem | aaliou2b 25499* | Liouville's approximation theorem extended to complex 𝐴. (Contributed by Stefan O'Rear, 20-Nov-2014.) |
⊢ (𝐴 ∈ 𝔸 → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) | ||
Theorem | aaliou3lem1 25500* | Lemma for aaliou3 25509. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
⊢ 𝐺 = (𝑐 ∈ (ℤ≥‘𝐴) ↦ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐 − 𝐴)))) ⇒ ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (𝐺‘𝐵) ∈ ℝ) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |