| Metamath
Proof Explorer Theorem List (p. 255 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30900) |
(30901-32423) |
(32424-49930) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | ovolsf 25401 | Closure for the partial sums of the interval length function. (Contributed by Mario Carneiro, 16-Mar-2014.) |
| ⊢ 𝐺 = ((abs ∘ − ) ∘ 𝐹) & ⊢ 𝑆 = seq1( + , 𝐺) ⇒ ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞)) | ||
| Theorem | ovolval 25402* | The value of the outer measure. (Contributed by Mario Carneiro, 16-Mar-2014.) (Revised by AV, 17-Sep-2020.) |
| ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} ⇒ ⊢ (𝐴 ⊆ ℝ → (vol*‘𝐴) = inf(𝑀, ℝ*, < )) | ||
| Theorem | elovolmlem 25403 | Lemma for elovolm 25404 and related theorems. (Contributed by BJ, 23-Jul-2022.) |
| ⊢ (𝐹 ∈ ((𝐴 ∩ (ℝ × ℝ)) ↑m ℕ) ↔ 𝐹:ℕ⟶(𝐴 ∩ (ℝ × ℝ))) | ||
| Theorem | elovolm 25404* | Elementhood in the set 𝑀 of approximations to the outer measure. (Contributed by Mario Carneiro, 16-Mar-2014.) |
| ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} ⇒ ⊢ (𝐵 ∈ 𝑀 ↔ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝐵 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))) | ||
| Theorem | elovolmr 25405* | Sufficient condition for elementhood in the set 𝑀. (Contributed by Mario Carneiro, 16-Mar-2014.) |
| ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) ⇒ ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝐹)) → sup(ran 𝑆, ℝ*, < ) ∈ 𝑀) | ||
| Theorem | ovolmge0 25406* | The set 𝑀 is composed of nonnegative extended real numbers. (Contributed by Mario Carneiro, 16-Mar-2014.) |
| ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} ⇒ ⊢ (𝐵 ∈ 𝑀 → 0 ≤ 𝐵) | ||
| Theorem | ovolcl 25407 | The volume of a set is an extended real number. (Contributed by Mario Carneiro, 16-Mar-2014.) |
| ⊢ (𝐴 ⊆ ℝ → (vol*‘𝐴) ∈ ℝ*) | ||
| Theorem | ovollb 25408 | The outer volume is a lower bound on the sum of all interval coverings of 𝐴. (Contributed by Mario Carneiro, 15-Jun-2014.) |
| ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) ⇒ ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝐹)) → (vol*‘𝐴) ≤ sup(ran 𝑆, ℝ*, < )) | ||
| Theorem | ovolgelb 25409* | The outer volume is the greatest lower bound on the sum of all interval coverings of 𝐴. (Contributed by Mario Carneiro, 15-Jun-2014.) |
| ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝑔)) ⇒ ⊢ ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + 𝐵))) | ||
| Theorem | ovolge0 25410 | The volume of a set is always nonnegative. (Contributed by Mario Carneiro, 16-Mar-2014.) |
| ⊢ (𝐴 ⊆ ℝ → 0 ≤ (vol*‘𝐴)) | ||
| Theorem | ovolf 25411 | The domain and codomain of the outer volume function. (Contributed by Mario Carneiro, 16-Mar-2014.) (Proof shortened by AV, 17-Sep-2020.) |
| ⊢ vol*:𝒫 ℝ⟶(0[,]+∞) | ||
| Theorem | ovollecl 25412 | If an outer volume is bounded above, then it is real. (Contributed by Mario Carneiro, 18-Mar-2014.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ (vol*‘𝐴) ≤ 𝐵) → (vol*‘𝐴) ∈ ℝ) | ||
| Theorem | ovolsslem 25413* | Lemma for ovolss 25414. (Contributed by Mario Carneiro, 16-Mar-2014.) (Proof shortened by AV, 17-Sep-2020.) |
| ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} & ⊢ 𝑁 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} ⇒ ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) → (vol*‘𝐴) ≤ (vol*‘𝐵)) | ||
| Theorem | ovolss 25414 | The volume of a set is monotone with respect to set inclusion. (Contributed by Mario Carneiro, 16-Mar-2014.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) → (vol*‘𝐴) ≤ (vol*‘𝐵)) | ||
| Theorem | ovolsscl 25415 | If a set is contained in another of bounded measure, it too is bounded. (Contributed by Mario Carneiro, 18-Mar-2014.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (vol*‘𝐴) ∈ ℝ) | ||
| Theorem | ovolssnul 25416 | A subset of a nullset is null. (Contributed by Mario Carneiro, 19-Mar-2014.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) → (vol*‘𝐴) = 0) | ||
| Theorem | ovollb2lem 25417* | Lemma for ovollb2 25418. (Contributed by Mario Carneiro, 24-Mar-2015.) |
| ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ 〈((1st ‘(𝐹‘𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹‘𝑛)) + ((𝐵 / 2) / (2↑𝑛)))〉) & ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) & ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝐴 ⊆ ∪ ran ([,] ∘ 𝐹)) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ) ⇒ ⊢ (𝜑 → (vol*‘𝐴) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵)) | ||
| Theorem | ovollb2 25418 | It is often more convenient to do calculations with *closed* coverings rather than open ones; here we show that it makes no difference (compare ovollb 25408). (Contributed by Mario Carneiro, 24-Mar-2015.) |
| ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) ⇒ ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ⊆ ∪ ran ([,] ∘ 𝐹)) → (vol*‘𝐴) ≤ sup(ran 𝑆, ℝ*, < )) | ||
| Theorem | ovolctb 25419 | The volume of a denumerable set is 0. (Contributed by Mario Carneiro, 17-Mar-2014.) (Proof shortened by Mario Carneiro, 25-Mar-2015.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≈ ℕ) → (vol*‘𝐴) = 0) | ||
| Theorem | ovolq 25420 | The rational numbers have 0 outer Lebesgue measure. (Contributed by Mario Carneiro, 17-Mar-2014.) |
| ⊢ (vol*‘ℚ) = 0 | ||
| Theorem | ovolctb2 25421 | The volume of a countable set is 0. (Contributed by Mario Carneiro, 17-Mar-2014.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (vol*‘𝐴) = 0) | ||
| Theorem | ovol0 25422 | The empty set has 0 outer Lebesgue measure. (Contributed by Mario Carneiro, 17-Mar-2014.) |
| ⊢ (vol*‘∅) = 0 | ||
| Theorem | ovolfi 25423 | A finite set has 0 outer Lebesgue measure. (Contributed by Mario Carneiro, 13-Aug-2014.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ ℝ) → (vol*‘𝐴) = 0) | ||
| Theorem | ovolsn 25424 | A singleton has 0 outer Lebesgue measure. (Contributed by Mario Carneiro, 15-Aug-2014.) |
| ⊢ (𝐴 ∈ ℝ → (vol*‘{𝐴}) = 0) | ||
| Theorem | ovolunlem1a 25425* | Lemma for ovolun 25428. (Contributed by Mario Carneiro, 7-May-2015.) |
| ⊢ (𝜑 → (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ)) & ⊢ (𝜑 → (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) & ⊢ 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) & ⊢ (𝜑 → 𝐴 ⊆ ∪ ran ((,) ∘ 𝐹)) & ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) & ⊢ (𝜑 → 𝐺 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) & ⊢ (𝜑 → 𝐵 ⊆ ∪ ran ((,) ∘ 𝐺)) & ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2))) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ if((𝑛 / 2) ∈ ℕ, (𝐺‘(𝑛 / 2)), (𝐹‘((𝑛 + 1) / 2)))) ⇒ ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑈‘𝑘) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶)) | ||
| Theorem | ovolunlem1 25426* | Lemma for ovolun 25428. (Contributed by Mario Carneiro, 12-Jun-2014.) |
| ⊢ (𝜑 → (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ)) & ⊢ (𝜑 → (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) & ⊢ 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) & ⊢ (𝜑 → 𝐴 ⊆ ∪ ran ((,) ∘ 𝐹)) & ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) & ⊢ (𝜑 → 𝐺 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) & ⊢ (𝜑 → 𝐵 ⊆ ∪ ran ((,) ∘ 𝐺)) & ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2))) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ if((𝑛 / 2) ∈ ℕ, (𝐺‘(𝑛 / 2)), (𝐹‘((𝑛 + 1) / 2)))) ⇒ ⊢ (𝜑 → (vol*‘(𝐴 ∪ 𝐵)) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶)) | ||
| Theorem | ovolunlem2 25427 | Lemma for ovolun 25428. (Contributed by Mario Carneiro, 12-Jun-2014.) |
| ⊢ (𝜑 → (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ)) & ⊢ (𝜑 → (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) ⇒ ⊢ (𝜑 → (vol*‘(𝐴 ∪ 𝐵)) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶)) | ||
| Theorem | ovolun 25428 | The Lebesgue outer measure function is finitely sub-additive. (Unlike the stronger ovoliun 25434, this does not require any choice principles.) (Contributed by Mario Carneiro, 12-Jun-2014.) |
| ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘(𝐴 ∪ 𝐵)) ≤ ((vol*‘𝐴) + (vol*‘𝐵))) | ||
| Theorem | ovolunnul 25429 | Adding a nullset does not change the measure of a set. (Contributed by Mario Carneiro, 25-Mar-2015.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) → (vol*‘(𝐴 ∪ 𝐵)) = (vol*‘𝐴)) | ||
| Theorem | ovolfiniun 25430* | The Lebesgue outer measure function is finitely sub-additive. Finite sum version. (Contributed by Mario Carneiro, 19-Jun-2014.) |
| ⊢ ((𝐴 ∈ Fin ∧ ∀𝑘 ∈ 𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘∪ 𝑘 ∈ 𝐴 𝐵) ≤ Σ𝑘 ∈ 𝐴 (vol*‘𝐵)) | ||
| Theorem | ovoliunlem1 25431* | Lemma for ovoliun 25434. (Contributed by Mario Carneiro, 12-Jun-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| ⊢ 𝑇 = seq1( + , 𝐺) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴)) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ) & ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ (𝐹‘𝑛))) & ⊢ 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻)) & ⊢ 𝐻 = (𝑘 ∈ ℕ ↦ ((𝐹‘(1st ‘(𝐽‘𝑘)))‘(2nd ‘(𝐽‘𝑘)))) & ⊢ (𝜑 → 𝐽:ℕ–1-1-onto→(ℕ × ℕ)) & ⊢ (𝜑 → 𝐹:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ⊆ ∪ ran ((,) ∘ (𝐹‘𝑛))) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝐿 ∈ ℤ) & ⊢ (𝜑 → ∀𝑤 ∈ (1...𝐾)(1st ‘(𝐽‘𝑤)) ≤ 𝐿) ⇒ ⊢ (𝜑 → (𝑈‘𝐾) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵)) | ||
| Theorem | ovoliunlem2 25432* | Lemma for ovoliun 25434. (Contributed by Mario Carneiro, 12-Jun-2014.) |
| ⊢ 𝑇 = seq1( + , 𝐺) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴)) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ) & ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ (𝐹‘𝑛))) & ⊢ 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻)) & ⊢ 𝐻 = (𝑘 ∈ ℕ ↦ ((𝐹‘(1st ‘(𝐽‘𝑘)))‘(2nd ‘(𝐽‘𝑘)))) & ⊢ (𝜑 → 𝐽:ℕ–1-1-onto→(ℕ × ℕ)) & ⊢ (𝜑 → 𝐹:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ⊆ ∪ ran ((,) ∘ (𝐹‘𝑛))) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))) ⇒ ⊢ (𝜑 → (vol*‘∪ 𝑛 ∈ ℕ 𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵)) | ||
| Theorem | ovoliunlem3 25433* | Lemma for ovoliun 25434. (Contributed by Mario Carneiro, 12-Jun-2014.) |
| ⊢ 𝑇 = seq1( + , 𝐺) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴)) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ) & ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) ⇒ ⊢ (𝜑 → (vol*‘∪ 𝑛 ∈ ℕ 𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵)) | ||
| Theorem | ovoliun 25434* | The Lebesgue outer measure function is countably sub-additive. (Many books allow +∞ as a value for one of the sets in the sum, but in our setup we can't do arithmetic on infinity, and in any case the volume of a union containing an infinitely large set is already infinitely large by monotonicity ovolss 25414, so we need not consider this case here, although we do allow the sum itself to be infinite.) (Contributed by Mario Carneiro, 12-Jun-2014.) |
| ⊢ 𝑇 = seq1( + , 𝐺) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴)) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ) ⇒ ⊢ (𝜑 → (vol*‘∪ 𝑛 ∈ ℕ 𝐴) ≤ sup(ran 𝑇, ℝ*, < )) | ||
| Theorem | ovoliun2 25435* | The Lebesgue outer measure function is countably sub-additive. (This version is a little easier to read, but does not allow infinite values like ovoliun 25434.) (Contributed by Mario Carneiro, 12-Jun-2014.) |
| ⊢ 𝑇 = seq1( + , 𝐺) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴)) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ) & ⊢ (𝜑 → 𝑇 ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → (vol*‘∪ 𝑛 ∈ ℕ 𝐴) ≤ Σ𝑛 ∈ ℕ (vol*‘𝐴)) | ||
| Theorem | ovoliunnul 25436* | A countable union of nullsets is null. (Contributed by Mario Carneiro, 8-Apr-2015.) |
| ⊢ ((𝐴 ≼ ℕ ∧ ∀𝑛 ∈ 𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) → (vol*‘∪ 𝑛 ∈ 𝐴 𝐵) = 0) | ||
| Theorem | shft2rab 25437* | If 𝐵 is a shift of 𝐴 by 𝐶, then 𝐴 is a shift of 𝐵 by -𝐶. (Contributed by Mario Carneiro, 22-Mar-2014.) (Revised by Mario Carneiro, 6-Apr-2015.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴}) ⇒ ⊢ (𝜑 → 𝐴 = {𝑦 ∈ ℝ ∣ (𝑦 − -𝐶) ∈ 𝐵}) | ||
| Theorem | ovolshftlem1 25438* | Lemma for ovolshft 25440. (Contributed by Mario Carneiro, 22-Mar-2014.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴}) & ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ 〈((1st ‘(𝐹‘𝑛)) + 𝐶), ((2nd ‘(𝐹‘𝑛)) + 𝐶)〉) & ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝐴 ⊆ ∪ ran ((,) ∘ 𝐹)) ⇒ ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ 𝑀) | ||
| Theorem | ovolshftlem2 25439* | Lemma for ovolshft 25440. (Contributed by Mario Carneiro, 22-Mar-2014.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴}) & ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} ⇒ ⊢ (𝜑 → {𝑧 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ⊆ 𝑀) | ||
| Theorem | ovolshft 25440* | The Lebesgue outer measure function is shift-invariant. (Contributed by Mario Carneiro, 22-Mar-2014.) (Proof shortened by AV, 17-Sep-2020.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴}) ⇒ ⊢ (𝜑 → (vol*‘𝐴) = (vol*‘𝐵)) | ||
| Theorem | sca2rab 25441* | If 𝐵 is a scale of 𝐴 by 𝐶, then 𝐴 is a scale of 𝐵 by 1 / 𝐶. (Contributed by Mario Carneiro, 22-Mar-2014.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴}) ⇒ ⊢ (𝜑 → 𝐴 = {𝑦 ∈ ℝ ∣ ((1 / 𝐶) · 𝑦) ∈ 𝐵}) | ||
| Theorem | ovolscalem1 25442* | Lemma for ovolsca 25444. (Contributed by Mario Carneiro, 6-Apr-2015.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴}) & ⊢ (𝜑 → (vol*‘𝐴) ∈ ℝ) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ 〈((1st ‘(𝐹‘𝑛)) / 𝐶), ((2nd ‘(𝐹‘𝑛)) / 𝐶)〉) & ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝐴 ⊆ ∪ ran ((,) ∘ 𝐹)) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑅))) ⇒ ⊢ (𝜑 → (vol*‘𝐵) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅)) | ||
| Theorem | ovolscalem2 25443* | Lemma for ovolshft 25440. (Contributed by Mario Carneiro, 22-Mar-2014.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴}) & ⊢ (𝜑 → (vol*‘𝐴) ∈ ℝ) ⇒ ⊢ (𝜑 → (vol*‘𝐵) ≤ ((vol*‘𝐴) / 𝐶)) | ||
| Theorem | ovolsca 25444* | The Lebesgue outer measure function respects scaling of sets by positive reals. (Contributed by Mario Carneiro, 6-Apr-2015.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴}) & ⊢ (𝜑 → (vol*‘𝐴) ∈ ℝ) ⇒ ⊢ (𝜑 → (vol*‘𝐵) = ((vol*‘𝐴) / 𝐶)) | ||
| Theorem | ovolicc1 25445* | The measure of a closed interval is lower bounded by its length. (Contributed by Mario Carneiro, 13-Jun-2014.) (Proof shortened by Mario Carneiro, 25-Mar-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 = 1, 〈𝐴, 𝐵〉, 〈0, 0〉)) ⇒ ⊢ (𝜑 → (vol*‘(𝐴[,]𝐵)) ≤ (𝐵 − 𝐴)) | ||
| Theorem | ovolicc2lem1 25446* | Lemma for ovolicc2 25451. (Contributed by Mario Carneiro, 14-Jun-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝑈 ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin)) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ∪ 𝑈) & ⊢ (𝜑 → 𝐺:𝑈⟶ℕ) & ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑈) → (((,) ∘ 𝐹)‘(𝐺‘𝑡)) = 𝑡) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → (𝑃 ∈ 𝑋 ↔ (𝑃 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺‘𝑋))) < 𝑃 ∧ 𝑃 < (2nd ‘(𝐹‘(𝐺‘𝑋)))))) | ||
| Theorem | ovolicc2lem2 25447* | Lemma for ovolicc2 25451. (Contributed by Mario Carneiro, 14-Jun-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝑈 ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin)) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ∪ 𝑈) & ⊢ (𝜑 → 𝐺:𝑈⟶ℕ) & ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑈) → (((,) ∘ 𝐹)‘(𝐺‘𝑡)) = 𝑡) & ⊢ 𝑇 = {𝑢 ∈ 𝑈 ∣ (𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅} & ⊢ (𝜑 → 𝐻:𝑇⟶𝑇) & ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ (𝐻‘𝑡)) & ⊢ (𝜑 → 𝐴 ∈ 𝐶) & ⊢ (𝜑 → 𝐶 ∈ 𝑇) & ⊢ 𝐾 = seq1((𝐻 ∘ 1st ), (ℕ × {𝐶})) & ⊢ 𝑊 = {𝑛 ∈ ℕ ∣ 𝐵 ∈ (𝐾‘𝑛)} ⇒ ⊢ ((𝜑 ∧ (𝑁 ∈ ℕ ∧ ¬ 𝑁 ∈ 𝑊)) → (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑁)))) ≤ 𝐵) | ||
| Theorem | ovolicc2lem3 25448* | Lemma for ovolicc2 25451. (Contributed by Mario Carneiro, 14-Jun-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝑈 ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin)) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ∪ 𝑈) & ⊢ (𝜑 → 𝐺:𝑈⟶ℕ) & ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑈) → (((,) ∘ 𝐹)‘(𝐺‘𝑡)) = 𝑡) & ⊢ 𝑇 = {𝑢 ∈ 𝑈 ∣ (𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅} & ⊢ (𝜑 → 𝐻:𝑇⟶𝑇) & ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ (𝐻‘𝑡)) & ⊢ (𝜑 → 𝐴 ∈ 𝐶) & ⊢ (𝜑 → 𝐶 ∈ 𝑇) & ⊢ 𝐾 = seq1((𝐻 ∘ 1st ), (ℕ × {𝐶})) & ⊢ 𝑊 = {𝑛 ∈ ℕ ∣ 𝐵 ∈ (𝐾‘𝑛)} ⇒ ⊢ ((𝜑 ∧ (𝑁 ∈ {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑊 𝑛 ≤ 𝑚} ∧ 𝑃 ∈ {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑊 𝑛 ≤ 𝑚})) → (𝑁 = 𝑃 ↔ (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑁)))) = (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑃)))))) | ||
| Theorem | ovolicc2lem4 25449* | Lemma for ovolicc2 25451. (Contributed by Mario Carneiro, 14-Jun-2014.) (Revised by AV, 17-Sep-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝑈 ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin)) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ∪ 𝑈) & ⊢ (𝜑 → 𝐺:𝑈⟶ℕ) & ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑈) → (((,) ∘ 𝐹)‘(𝐺‘𝑡)) = 𝑡) & ⊢ 𝑇 = {𝑢 ∈ 𝑈 ∣ (𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅} & ⊢ (𝜑 → 𝐻:𝑇⟶𝑇) & ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ (𝐻‘𝑡)) & ⊢ (𝜑 → 𝐴 ∈ 𝐶) & ⊢ (𝜑 → 𝐶 ∈ 𝑇) & ⊢ 𝐾 = seq1((𝐻 ∘ 1st ), (ℕ × {𝐶})) & ⊢ 𝑊 = {𝑛 ∈ ℕ ∣ 𝐵 ∈ (𝐾‘𝑛)} & ⊢ 𝑀 = inf(𝑊, ℝ, < ) ⇒ ⊢ (𝜑 → (𝐵 − 𝐴) ≤ sup(ran 𝑆, ℝ*, < )) | ||
| Theorem | ovolicc2lem5 25450* | Lemma for ovolicc2 25451. (Contributed by Mario Carneiro, 14-Jun-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝑈 ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin)) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ∪ 𝑈) & ⊢ (𝜑 → 𝐺:𝑈⟶ℕ) & ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑈) → (((,) ∘ 𝐹)‘(𝐺‘𝑡)) = 𝑡) & ⊢ 𝑇 = {𝑢 ∈ 𝑈 ∣ (𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅} ⇒ ⊢ (𝜑 → (𝐵 − 𝐴) ≤ sup(ran 𝑆, ℝ*, < )) | ||
| Theorem | ovolicc2 25451* | The measure of a closed interval is upper bounded by its length. (Contributed by Mario Carneiro, 14-Jun-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)((𝐴[,]𝐵) ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} ⇒ ⊢ (𝜑 → (𝐵 − 𝐴) ≤ (vol*‘(𝐴[,]𝐵))) | ||
| Theorem | ovolicc 25452 | The measure of a closed interval. (Contributed by Mario Carneiro, 14-Jun-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol*‘(𝐴[,]𝐵)) = (𝐵 − 𝐴)) | ||
| Theorem | ovolicopnf 25453 | The measure of a right-unbounded interval. (Contributed by Mario Carneiro, 14-Jun-2014.) |
| ⊢ (𝐴 ∈ ℝ → (vol*‘(𝐴[,)+∞)) = +∞) | ||
| Theorem | ovolre 25454 | The measure of the real numbers. (Contributed by Mario Carneiro, 14-Jun-2014.) |
| ⊢ (vol*‘ℝ) = +∞ | ||
| Theorem | ismbl 25455* | The predicate "𝐴 is Lebesgue-measurable". A set is measurable if it splits every other set 𝑥 in a "nice" way, that is, if the measure of the pieces 𝑥 ∩ 𝐴 and 𝑥 ∖ 𝐴 sum up to the measure of 𝑥 (assuming that the measure of 𝑥 is a real number, so that this addition makes sense). (Contributed by Mario Carneiro, 17-Mar-2014.) |
| ⊢ (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))))) | ||
| Theorem | ismbl2 25456* | From ovolun 25428, it suffices to show that the measure of 𝑥 is at least the sum of the measures of 𝑥 ∩ 𝐴 and 𝑥 ∖ 𝐴. (Contributed by Mario Carneiro, 15-Jun-2014.) |
| ⊢ (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))) ≤ (vol*‘𝑥)))) | ||
| Theorem | volres 25457 | A self-referencing abbreviated definition of the Lebesgue measure. (Contributed by Mario Carneiro, 19-Mar-2014.) |
| ⊢ vol = (vol* ↾ dom vol) | ||
| Theorem | volf 25458 | The domain and codomain of the Lebesgue measure function. (Contributed by Mario Carneiro, 19-Mar-2014.) |
| ⊢ vol:dom vol⟶(0[,]+∞) | ||
| Theorem | mblvol 25459 | The volume of a measurable set is the same as its outer volume. (Contributed by Mario Carneiro, 17-Mar-2014.) |
| ⊢ (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴)) | ||
| Theorem | mblss 25460 | A measurable set is a subset of the reals. (Contributed by Mario Carneiro, 17-Mar-2014.) |
| ⊢ (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ) | ||
| Theorem | mblsplit 25461 | The defining property of measurability. (Contributed by Mario Carneiro, 17-Mar-2014.) |
| ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (vol*‘𝐵) = ((vol*‘(𝐵 ∩ 𝐴)) + (vol*‘(𝐵 ∖ 𝐴)))) | ||
| Theorem | volss 25462 | The Lebesgue measure is monotone with respect to set inclusion. (Contributed by Thierry Arnoux, 17-Oct-2017.) |
| ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ 𝐴 ⊆ 𝐵) → (vol‘𝐴) ≤ (vol‘𝐵)) | ||
| Theorem | cmmbl 25463 | The complement of a measurable set is measurable. (Contributed by Mario Carneiro, 18-Mar-2014.) |
| ⊢ (𝐴 ∈ dom vol → (ℝ ∖ 𝐴) ∈ dom vol) | ||
| Theorem | nulmbl 25464 | A nullset is measurable. (Contributed by Mario Carneiro, 18-Mar-2014.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → 𝐴 ∈ dom vol) | ||
| Theorem | nulmbl2 25465* | A set of outer measure zero is measurable. The term "outer measure zero" here is slightly different from "nullset/negligible set"; a nullset has vol*(𝐴) = 0 while "outer measure zero" means that for any 𝑥 there is a 𝑦 containing 𝐴 with volume less than 𝑥. Assuming AC, these notions are equivalent (because the intersection of all such 𝑦 is a nullset) but in ZF this is a strictly weaker notion. Proposition 563Gb of [Fremlin5] p. 193. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ dom vol(𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → 𝐴 ∈ dom vol) | ||
| Theorem | unmbl 25466 | A union of measurable sets is measurable. (Contributed by Mario Carneiro, 18-Mar-2014.) |
| ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (𝐴 ∪ 𝐵) ∈ dom vol) | ||
| Theorem | shftmbl 25467* | A shift of a measurable set is measurable. (Contributed by Mario Carneiro, 22-Mar-2014.) |
| ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) → {𝑥 ∈ ℝ ∣ (𝑥 − 𝐵) ∈ 𝐴} ∈ dom vol) | ||
| Theorem | 0mbl 25468 | The empty set is measurable. (Contributed by Mario Carneiro, 18-Mar-2014.) |
| ⊢ ∅ ∈ dom vol | ||
| Theorem | rembl 25469 | The set of all real numbers is measurable. (Contributed by Mario Carneiro, 18-Mar-2014.) |
| ⊢ ℝ ∈ dom vol | ||
| Theorem | unidmvol 25470 | The union of the Lebesgue measurable sets is ℝ. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
| ⊢ ∪ dom vol = ℝ | ||
| Theorem | inmbl 25471 | An intersection of measurable sets is measurable. (Contributed by Mario Carneiro, 18-Mar-2014.) |
| ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (𝐴 ∩ 𝐵) ∈ dom vol) | ||
| Theorem | difmbl 25472 | A difference of measurable sets is measurable. (Contributed by Mario Carneiro, 18-Mar-2014.) |
| ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (𝐴 ∖ 𝐵) ∈ dom vol) | ||
| Theorem | finiunmbl 25473* | A finite union of measurable sets is measurable. (Contributed by Mario Carneiro, 20-Mar-2014.) |
| ⊢ ((𝐴 ∈ Fin ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ dom vol) → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ dom vol) | ||
| Theorem | volun 25474 | The Lebesgue measure function is finitely additive. (Contributed by Mario Carneiro, 18-Mar-2014.) |
| ⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴 ∩ 𝐵) = ∅) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘(𝐴 ∪ 𝐵)) = ((vol‘𝐴) + (vol‘𝐵))) | ||
| Theorem | volinun 25475 | Addition of non-disjoint sets. (Contributed by Mario Carneiro, 25-Mar-2015.) |
| ⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → ((vol‘𝐴) + (vol‘𝐵)) = ((vol‘(𝐴 ∩ 𝐵)) + (vol‘(𝐴 ∪ 𝐵)))) | ||
| Theorem | volfiniun 25476* | The volume of a disjoint finite union of measurable sets is the sum of the measures. (Contributed by Mario Carneiro, 25-Jun-2014.) (Revised by Mario Carneiro, 11-Dec-2016.) |
| ⊢ ((𝐴 ∈ Fin ∧ ∀𝑘 ∈ 𝐴 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ 𝐴 𝐵) → (vol‘∪ 𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (vol‘𝐵)) | ||
| Theorem | iundisj 25477* | Rewrite a countable union as a disjoint union. (Contributed by Mario Carneiro, 20-Mar-2014.) |
| ⊢ (𝑛 = 𝑘 → 𝐴 = 𝐵) ⇒ ⊢ ∪ 𝑛 ∈ ℕ 𝐴 = ∪ 𝑛 ∈ ℕ (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵) | ||
| Theorem | iundisj2 25478* | A disjoint union is disjoint. (Contributed by Mario Carneiro, 4-Jul-2014.) (Revised by Mario Carneiro, 11-Dec-2016.) |
| ⊢ (𝑛 = 𝑘 → 𝐴 = 𝐵) ⇒ ⊢ Disj 𝑛 ∈ ℕ (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵) | ||
| Theorem | voliunlem1 25479* | Lemma for voliun 25483. (Contributed by Mario Carneiro, 20-Mar-2014.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶dom vol) & ⊢ (𝜑 → Disj 𝑖 ∈ ℕ (𝐹‘𝑖)) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ (vol*‘(𝐸 ∩ (𝐹‘𝑛)))) & ⊢ (𝜑 → 𝐸 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) ⇒ ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝐸 ∖ ∪ ran 𝐹))) ≤ (vol*‘𝐸)) | ||
| Theorem | voliunlem2 25480* | Lemma for voliun 25483. (Contributed by Mario Carneiro, 20-Mar-2014.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶dom vol) & ⊢ (𝜑 → Disj 𝑖 ∈ ℕ (𝐹‘𝑖)) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ (vol*‘(𝑥 ∩ (𝐹‘𝑛)))) ⇒ ⊢ (𝜑 → ∪ ran 𝐹 ∈ dom vol) | ||
| Theorem | voliunlem3 25481* | Lemma for voliun 25483. (Contributed by Mario Carneiro, 20-Mar-2014.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶dom vol) & ⊢ (𝜑 → Disj 𝑖 ∈ ℕ (𝐹‘𝑖)) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ (vol*‘(𝑥 ∩ (𝐹‘𝑛)))) & ⊢ 𝑆 = seq1( + , 𝐺) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝐹‘𝑛))) & ⊢ (𝜑 → ∀𝑖 ∈ ℕ (vol‘(𝐹‘𝑖)) ∈ ℝ) ⇒ ⊢ (𝜑 → (vol‘∪ ran 𝐹) = sup(ran 𝑆, ℝ*, < )) | ||
| Theorem | iunmbl 25482 | The measurable sets are closed under countable union. (Contributed by Mario Carneiro, 18-Mar-2014.) |
| ⊢ (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → ∪ 𝑛 ∈ ℕ 𝐴 ∈ dom vol) | ||
| Theorem | voliun 25483 | The Lebesgue measure function is countably additive. (Contributed by Mario Carneiro, 18-Mar-2014.) (Proof shortened by Mario Carneiro, 11-Dec-2016.) |
| ⊢ 𝑆 = seq1( + , 𝐺) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘𝐴)) ⇒ ⊢ ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → (vol‘∪ 𝑛 ∈ ℕ 𝐴) = sup(ran 𝑆, ℝ*, < )) | ||
| Theorem | volsuplem 25484* | Lemma for volsup 25485. (Contributed by Mario Carneiro, 4-Jul-2014.) |
| ⊢ ((∀𝑛 ∈ ℕ (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴))) → (𝐹‘𝐴) ⊆ (𝐹‘𝐵)) | ||
| Theorem | volsup 25485* | The volume of the limit of an increasing sequence of measurable sets is the limit of the volumes. (Contributed by Mario Carneiro, 14-Aug-2014.) (Revised by Mario Carneiro, 11-Dec-2016.) |
| ⊢ ((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) → (vol‘∪ ran 𝐹) = sup((vol “ ran 𝐹), ℝ*, < )) | ||
| Theorem | iunmbl2 25486* | The measurable sets are closed under countable union. (Contributed by Mario Carneiro, 18-Mar-2014.) |
| ⊢ ((𝐴 ≼ ℕ ∧ ∀𝑛 ∈ 𝐴 𝐵 ∈ dom vol) → ∪ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol) | ||
| Theorem | ioombl1lem1 25487* | Lemma for ioombl1 25491. (Contributed by Mario Carneiro, 18-Aug-2014.) |
| ⊢ 𝐵 = (𝐴(,)+∞) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐸 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) & ⊢ 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻)) & ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐹)) & ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) & ⊢ 𝑃 = (1st ‘(𝐹‘𝑛)) & ⊢ 𝑄 = (2nd ‘(𝐹‘𝑛)) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ 〈if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ 〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉) ⇒ ⊢ (𝜑 → (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ)))) | ||
| Theorem | ioombl1lem2 25488* | Lemma for ioombl1 25491. (Contributed by Mario Carneiro, 18-Aug-2014.) |
| ⊢ 𝐵 = (𝐴(,)+∞) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐸 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) & ⊢ 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻)) & ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐹)) & ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) & ⊢ 𝑃 = (1st ‘(𝐹‘𝑛)) & ⊢ 𝑄 = (2nd ‘(𝐹‘𝑛)) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ 〈if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ 〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉) ⇒ ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ) | ||
| Theorem | ioombl1lem3 25489* | Lemma for ioombl1 25491. (Contributed by Mario Carneiro, 18-Aug-2014.) |
| ⊢ 𝐵 = (𝐴(,)+∞) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐸 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) & ⊢ 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻)) & ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐹)) & ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) & ⊢ 𝑃 = (1st ‘(𝐹‘𝑛)) & ⊢ 𝑄 = (2nd ‘(𝐹‘𝑛)) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ 〈if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ 〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉) ⇒ ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((((abs ∘ − ) ∘ 𝐺)‘𝑛) + (((abs ∘ − ) ∘ 𝐻)‘𝑛)) = (((abs ∘ − ) ∘ 𝐹)‘𝑛)) | ||
| Theorem | ioombl1lem4 25490* | Lemma for ioombl1 25491. (Contributed by Mario Carneiro, 16-Jun-2014.) |
| ⊢ 𝐵 = (𝐴(,)+∞) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐸 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) & ⊢ 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻)) & ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐹)) & ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) & ⊢ 𝑃 = (1st ‘(𝐹‘𝑛)) & ⊢ 𝑄 = (2nd ‘(𝐹‘𝑛)) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ 〈if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ 〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉) ⇒ ⊢ (𝜑 → ((vol*‘(𝐸 ∩ 𝐵)) + (vol*‘(𝐸 ∖ 𝐵))) ≤ ((vol*‘𝐸) + 𝐶)) | ||
| Theorem | ioombl1 25491 | An open right-unbounded interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014.) (Proof shortened by Mario Carneiro, 25-Mar-2015.) |
| ⊢ (𝐴 ∈ ℝ* → (𝐴(,)+∞) ∈ dom vol) | ||
| Theorem | icombl1 25492 | A closed unbounded-above interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴[,)+∞) ∈ dom vol) | ||
| Theorem | icombl 25493 | A closed-below, open-above real interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ∈ dom vol) | ||
| Theorem | ioombl 25494 | An open real interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014.) |
| ⊢ (𝐴(,)𝐵) ∈ dom vol | ||
| Theorem | iccmbl 25495 | A closed real interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ∈ dom vol) | ||
| Theorem | iccvolcl 25496 | A closed real interval has finite volume. (Contributed by Mario Carneiro, 25-Aug-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,]𝐵)) ∈ ℝ) | ||
| Theorem | ovolioo 25497 | The measure of an open interval. (Contributed by Mario Carneiro, 2-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol*‘(𝐴(,)𝐵)) = (𝐵 − 𝐴)) | ||
| Theorem | volioo 25498 | The measure of an open interval. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵 − 𝐴)) | ||
| Theorem | ioovolcl 25499 | An open real interval has finite volume. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴(,)𝐵)) ∈ ℝ) | ||
| Theorem | ovolfs2 25500 | Alternative expression for the interval length function. (Contributed by Mario Carneiro, 26-Mar-2015.) |
| ⊢ 𝐺 = ((abs ∘ − ) ∘ 𝐹) ⇒ ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺 = ((vol* ∘ (,)) ∘ 𝐹)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |