| Metamath
Proof Explorer Theorem List (p. 255 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | ovolunnul 25401 | Adding a nullset does not change the measure of a set. (Contributed by Mario Carneiro, 25-Mar-2015.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) → (vol*‘(𝐴 ∪ 𝐵)) = (vol*‘𝐴)) | ||
| Theorem | ovolfiniun 25402* | The Lebesgue outer measure function is finitely sub-additive. Finite sum version. (Contributed by Mario Carneiro, 19-Jun-2014.) |
| ⊢ ((𝐴 ∈ Fin ∧ ∀𝑘 ∈ 𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘∪ 𝑘 ∈ 𝐴 𝐵) ≤ Σ𝑘 ∈ 𝐴 (vol*‘𝐵)) | ||
| Theorem | ovoliunlem1 25403* | Lemma for ovoliun 25406. (Contributed by Mario Carneiro, 12-Jun-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| ⊢ 𝑇 = seq1( + , 𝐺) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴)) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ) & ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ (𝐹‘𝑛))) & ⊢ 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻)) & ⊢ 𝐻 = (𝑘 ∈ ℕ ↦ ((𝐹‘(1st ‘(𝐽‘𝑘)))‘(2nd ‘(𝐽‘𝑘)))) & ⊢ (𝜑 → 𝐽:ℕ–1-1-onto→(ℕ × ℕ)) & ⊢ (𝜑 → 𝐹:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ⊆ ∪ ran ((,) ∘ (𝐹‘𝑛))) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝐿 ∈ ℤ) & ⊢ (𝜑 → ∀𝑤 ∈ (1...𝐾)(1st ‘(𝐽‘𝑤)) ≤ 𝐿) ⇒ ⊢ (𝜑 → (𝑈‘𝐾) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵)) | ||
| Theorem | ovoliunlem2 25404* | Lemma for ovoliun 25406. (Contributed by Mario Carneiro, 12-Jun-2014.) |
| ⊢ 𝑇 = seq1( + , 𝐺) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴)) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ) & ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ (𝐹‘𝑛))) & ⊢ 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻)) & ⊢ 𝐻 = (𝑘 ∈ ℕ ↦ ((𝐹‘(1st ‘(𝐽‘𝑘)))‘(2nd ‘(𝐽‘𝑘)))) & ⊢ (𝜑 → 𝐽:ℕ–1-1-onto→(ℕ × ℕ)) & ⊢ (𝜑 → 𝐹:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ⊆ ∪ ran ((,) ∘ (𝐹‘𝑛))) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))) ⇒ ⊢ (𝜑 → (vol*‘∪ 𝑛 ∈ ℕ 𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵)) | ||
| Theorem | ovoliunlem3 25405* | Lemma for ovoliun 25406. (Contributed by Mario Carneiro, 12-Jun-2014.) |
| ⊢ 𝑇 = seq1( + , 𝐺) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴)) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ) & ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) ⇒ ⊢ (𝜑 → (vol*‘∪ 𝑛 ∈ ℕ 𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵)) | ||
| Theorem | ovoliun 25406* | The Lebesgue outer measure function is countably sub-additive. (Many books allow +∞ as a value for one of the sets in the sum, but in our setup we can't do arithmetic on infinity, and in any case the volume of a union containing an infinitely large set is already infinitely large by monotonicity ovolss 25386, so we need not consider this case here, although we do allow the sum itself to be infinite.) (Contributed by Mario Carneiro, 12-Jun-2014.) |
| ⊢ 𝑇 = seq1( + , 𝐺) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴)) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ) ⇒ ⊢ (𝜑 → (vol*‘∪ 𝑛 ∈ ℕ 𝐴) ≤ sup(ran 𝑇, ℝ*, < )) | ||
| Theorem | ovoliun2 25407* | The Lebesgue outer measure function is countably sub-additive. (This version is a little easier to read, but does not allow infinite values like ovoliun 25406.) (Contributed by Mario Carneiro, 12-Jun-2014.) |
| ⊢ 𝑇 = seq1( + , 𝐺) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴)) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ) & ⊢ (𝜑 → 𝑇 ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → (vol*‘∪ 𝑛 ∈ ℕ 𝐴) ≤ Σ𝑛 ∈ ℕ (vol*‘𝐴)) | ||
| Theorem | ovoliunnul 25408* | A countable union of nullsets is null. (Contributed by Mario Carneiro, 8-Apr-2015.) |
| ⊢ ((𝐴 ≼ ℕ ∧ ∀𝑛 ∈ 𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) → (vol*‘∪ 𝑛 ∈ 𝐴 𝐵) = 0) | ||
| Theorem | shft2rab 25409* | If 𝐵 is a shift of 𝐴 by 𝐶, then 𝐴 is a shift of 𝐵 by -𝐶. (Contributed by Mario Carneiro, 22-Mar-2014.) (Revised by Mario Carneiro, 6-Apr-2015.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴}) ⇒ ⊢ (𝜑 → 𝐴 = {𝑦 ∈ ℝ ∣ (𝑦 − -𝐶) ∈ 𝐵}) | ||
| Theorem | ovolshftlem1 25410* | Lemma for ovolshft 25412. (Contributed by Mario Carneiro, 22-Mar-2014.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴}) & ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ 〈((1st ‘(𝐹‘𝑛)) + 𝐶), ((2nd ‘(𝐹‘𝑛)) + 𝐶)〉) & ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝐴 ⊆ ∪ ran ((,) ∘ 𝐹)) ⇒ ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ 𝑀) | ||
| Theorem | ovolshftlem2 25411* | Lemma for ovolshft 25412. (Contributed by Mario Carneiro, 22-Mar-2014.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴}) & ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} ⇒ ⊢ (𝜑 → {𝑧 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ⊆ 𝑀) | ||
| Theorem | ovolshft 25412* | The Lebesgue outer measure function is shift-invariant. (Contributed by Mario Carneiro, 22-Mar-2014.) (Proof shortened by AV, 17-Sep-2020.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴}) ⇒ ⊢ (𝜑 → (vol*‘𝐴) = (vol*‘𝐵)) | ||
| Theorem | sca2rab 25413* | If 𝐵 is a scale of 𝐴 by 𝐶, then 𝐴 is a scale of 𝐵 by 1 / 𝐶. (Contributed by Mario Carneiro, 22-Mar-2014.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴}) ⇒ ⊢ (𝜑 → 𝐴 = {𝑦 ∈ ℝ ∣ ((1 / 𝐶) · 𝑦) ∈ 𝐵}) | ||
| Theorem | ovolscalem1 25414* | Lemma for ovolsca 25416. (Contributed by Mario Carneiro, 6-Apr-2015.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴}) & ⊢ (𝜑 → (vol*‘𝐴) ∈ ℝ) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ 〈((1st ‘(𝐹‘𝑛)) / 𝐶), ((2nd ‘(𝐹‘𝑛)) / 𝐶)〉) & ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝐴 ⊆ ∪ ran ((,) ∘ 𝐹)) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑅))) ⇒ ⊢ (𝜑 → (vol*‘𝐵) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅)) | ||
| Theorem | ovolscalem2 25415* | Lemma for ovolshft 25412. (Contributed by Mario Carneiro, 22-Mar-2014.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴}) & ⊢ (𝜑 → (vol*‘𝐴) ∈ ℝ) ⇒ ⊢ (𝜑 → (vol*‘𝐵) ≤ ((vol*‘𝐴) / 𝐶)) | ||
| Theorem | ovolsca 25416* | The Lebesgue outer measure function respects scaling of sets by positive reals. (Contributed by Mario Carneiro, 6-Apr-2015.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴}) & ⊢ (𝜑 → (vol*‘𝐴) ∈ ℝ) ⇒ ⊢ (𝜑 → (vol*‘𝐵) = ((vol*‘𝐴) / 𝐶)) | ||
| Theorem | ovolicc1 25417* | The measure of a closed interval is lower bounded by its length. (Contributed by Mario Carneiro, 13-Jun-2014.) (Proof shortened by Mario Carneiro, 25-Mar-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 = 1, 〈𝐴, 𝐵〉, 〈0, 0〉)) ⇒ ⊢ (𝜑 → (vol*‘(𝐴[,]𝐵)) ≤ (𝐵 − 𝐴)) | ||
| Theorem | ovolicc2lem1 25418* | Lemma for ovolicc2 25423. (Contributed by Mario Carneiro, 14-Jun-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝑈 ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin)) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ∪ 𝑈) & ⊢ (𝜑 → 𝐺:𝑈⟶ℕ) & ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑈) → (((,) ∘ 𝐹)‘(𝐺‘𝑡)) = 𝑡) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → (𝑃 ∈ 𝑋 ↔ (𝑃 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺‘𝑋))) < 𝑃 ∧ 𝑃 < (2nd ‘(𝐹‘(𝐺‘𝑋)))))) | ||
| Theorem | ovolicc2lem2 25419* | Lemma for ovolicc2 25423. (Contributed by Mario Carneiro, 14-Jun-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝑈 ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin)) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ∪ 𝑈) & ⊢ (𝜑 → 𝐺:𝑈⟶ℕ) & ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑈) → (((,) ∘ 𝐹)‘(𝐺‘𝑡)) = 𝑡) & ⊢ 𝑇 = {𝑢 ∈ 𝑈 ∣ (𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅} & ⊢ (𝜑 → 𝐻:𝑇⟶𝑇) & ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ (𝐻‘𝑡)) & ⊢ (𝜑 → 𝐴 ∈ 𝐶) & ⊢ (𝜑 → 𝐶 ∈ 𝑇) & ⊢ 𝐾 = seq1((𝐻 ∘ 1st ), (ℕ × {𝐶})) & ⊢ 𝑊 = {𝑛 ∈ ℕ ∣ 𝐵 ∈ (𝐾‘𝑛)} ⇒ ⊢ ((𝜑 ∧ (𝑁 ∈ ℕ ∧ ¬ 𝑁 ∈ 𝑊)) → (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑁)))) ≤ 𝐵) | ||
| Theorem | ovolicc2lem3 25420* | Lemma for ovolicc2 25423. (Contributed by Mario Carneiro, 14-Jun-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝑈 ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin)) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ∪ 𝑈) & ⊢ (𝜑 → 𝐺:𝑈⟶ℕ) & ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑈) → (((,) ∘ 𝐹)‘(𝐺‘𝑡)) = 𝑡) & ⊢ 𝑇 = {𝑢 ∈ 𝑈 ∣ (𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅} & ⊢ (𝜑 → 𝐻:𝑇⟶𝑇) & ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ (𝐻‘𝑡)) & ⊢ (𝜑 → 𝐴 ∈ 𝐶) & ⊢ (𝜑 → 𝐶 ∈ 𝑇) & ⊢ 𝐾 = seq1((𝐻 ∘ 1st ), (ℕ × {𝐶})) & ⊢ 𝑊 = {𝑛 ∈ ℕ ∣ 𝐵 ∈ (𝐾‘𝑛)} ⇒ ⊢ ((𝜑 ∧ (𝑁 ∈ {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑊 𝑛 ≤ 𝑚} ∧ 𝑃 ∈ {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑊 𝑛 ≤ 𝑚})) → (𝑁 = 𝑃 ↔ (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑁)))) = (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑃)))))) | ||
| Theorem | ovolicc2lem4 25421* | Lemma for ovolicc2 25423. (Contributed by Mario Carneiro, 14-Jun-2014.) (Revised by AV, 17-Sep-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝑈 ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin)) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ∪ 𝑈) & ⊢ (𝜑 → 𝐺:𝑈⟶ℕ) & ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑈) → (((,) ∘ 𝐹)‘(𝐺‘𝑡)) = 𝑡) & ⊢ 𝑇 = {𝑢 ∈ 𝑈 ∣ (𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅} & ⊢ (𝜑 → 𝐻:𝑇⟶𝑇) & ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ (𝐻‘𝑡)) & ⊢ (𝜑 → 𝐴 ∈ 𝐶) & ⊢ (𝜑 → 𝐶 ∈ 𝑇) & ⊢ 𝐾 = seq1((𝐻 ∘ 1st ), (ℕ × {𝐶})) & ⊢ 𝑊 = {𝑛 ∈ ℕ ∣ 𝐵 ∈ (𝐾‘𝑛)} & ⊢ 𝑀 = inf(𝑊, ℝ, < ) ⇒ ⊢ (𝜑 → (𝐵 − 𝐴) ≤ sup(ran 𝑆, ℝ*, < )) | ||
| Theorem | ovolicc2lem5 25422* | Lemma for ovolicc2 25423. (Contributed by Mario Carneiro, 14-Jun-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝑈 ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin)) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ∪ 𝑈) & ⊢ (𝜑 → 𝐺:𝑈⟶ℕ) & ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑈) → (((,) ∘ 𝐹)‘(𝐺‘𝑡)) = 𝑡) & ⊢ 𝑇 = {𝑢 ∈ 𝑈 ∣ (𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅} ⇒ ⊢ (𝜑 → (𝐵 − 𝐴) ≤ sup(ran 𝑆, ℝ*, < )) | ||
| Theorem | ovolicc2 25423* | The measure of a closed interval is upper bounded by its length. (Contributed by Mario Carneiro, 14-Jun-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)((𝐴[,]𝐵) ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} ⇒ ⊢ (𝜑 → (𝐵 − 𝐴) ≤ (vol*‘(𝐴[,]𝐵))) | ||
| Theorem | ovolicc 25424 | The measure of a closed interval. (Contributed by Mario Carneiro, 14-Jun-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol*‘(𝐴[,]𝐵)) = (𝐵 − 𝐴)) | ||
| Theorem | ovolicopnf 25425 | The measure of a right-unbounded interval. (Contributed by Mario Carneiro, 14-Jun-2014.) |
| ⊢ (𝐴 ∈ ℝ → (vol*‘(𝐴[,)+∞)) = +∞) | ||
| Theorem | ovolre 25426 | The measure of the real numbers. (Contributed by Mario Carneiro, 14-Jun-2014.) |
| ⊢ (vol*‘ℝ) = +∞ | ||
| Theorem | ismbl 25427* | The predicate "𝐴 is Lebesgue-measurable". A set is measurable if it splits every other set 𝑥 in a "nice" way, that is, if the measure of the pieces 𝑥 ∩ 𝐴 and 𝑥 ∖ 𝐴 sum up to the measure of 𝑥 (assuming that the measure of 𝑥 is a real number, so that this addition makes sense). (Contributed by Mario Carneiro, 17-Mar-2014.) |
| ⊢ (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))))) | ||
| Theorem | ismbl2 25428* | From ovolun 25400, it suffices to show that the measure of 𝑥 is at least the sum of the measures of 𝑥 ∩ 𝐴 and 𝑥 ∖ 𝐴. (Contributed by Mario Carneiro, 15-Jun-2014.) |
| ⊢ (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))) ≤ (vol*‘𝑥)))) | ||
| Theorem | volres 25429 | A self-referencing abbreviated definition of the Lebesgue measure. (Contributed by Mario Carneiro, 19-Mar-2014.) |
| ⊢ vol = (vol* ↾ dom vol) | ||
| Theorem | volf 25430 | The domain and codomain of the Lebesgue measure function. (Contributed by Mario Carneiro, 19-Mar-2014.) |
| ⊢ vol:dom vol⟶(0[,]+∞) | ||
| Theorem | mblvol 25431 | The volume of a measurable set is the same as its outer volume. (Contributed by Mario Carneiro, 17-Mar-2014.) |
| ⊢ (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴)) | ||
| Theorem | mblss 25432 | A measurable set is a subset of the reals. (Contributed by Mario Carneiro, 17-Mar-2014.) |
| ⊢ (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ) | ||
| Theorem | mblsplit 25433 | The defining property of measurability. (Contributed by Mario Carneiro, 17-Mar-2014.) |
| ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (vol*‘𝐵) = ((vol*‘(𝐵 ∩ 𝐴)) + (vol*‘(𝐵 ∖ 𝐴)))) | ||
| Theorem | volss 25434 | The Lebesgue measure is monotone with respect to set inclusion. (Contributed by Thierry Arnoux, 17-Oct-2017.) |
| ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ 𝐴 ⊆ 𝐵) → (vol‘𝐴) ≤ (vol‘𝐵)) | ||
| Theorem | cmmbl 25435 | The complement of a measurable set is measurable. (Contributed by Mario Carneiro, 18-Mar-2014.) |
| ⊢ (𝐴 ∈ dom vol → (ℝ ∖ 𝐴) ∈ dom vol) | ||
| Theorem | nulmbl 25436 | A nullset is measurable. (Contributed by Mario Carneiro, 18-Mar-2014.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → 𝐴 ∈ dom vol) | ||
| Theorem | nulmbl2 25437* | A set of outer measure zero is measurable. The term "outer measure zero" here is slightly different from "nullset/negligible set"; a nullset has vol*(𝐴) = 0 while "outer measure zero" means that for any 𝑥 there is a 𝑦 containing 𝐴 with volume less than 𝑥. Assuming AC, these notions are equivalent (because the intersection of all such 𝑦 is a nullset) but in ZF this is a strictly weaker notion. Proposition 563Gb of [Fremlin5] p. 193. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ dom vol(𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → 𝐴 ∈ dom vol) | ||
| Theorem | unmbl 25438 | A union of measurable sets is measurable. (Contributed by Mario Carneiro, 18-Mar-2014.) |
| ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (𝐴 ∪ 𝐵) ∈ dom vol) | ||
| Theorem | shftmbl 25439* | A shift of a measurable set is measurable. (Contributed by Mario Carneiro, 22-Mar-2014.) |
| ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) → {𝑥 ∈ ℝ ∣ (𝑥 − 𝐵) ∈ 𝐴} ∈ dom vol) | ||
| Theorem | 0mbl 25440 | The empty set is measurable. (Contributed by Mario Carneiro, 18-Mar-2014.) |
| ⊢ ∅ ∈ dom vol | ||
| Theorem | rembl 25441 | The set of all real numbers is measurable. (Contributed by Mario Carneiro, 18-Mar-2014.) |
| ⊢ ℝ ∈ dom vol | ||
| Theorem | unidmvol 25442 | The union of the Lebesgue measurable sets is ℝ. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
| ⊢ ∪ dom vol = ℝ | ||
| Theorem | inmbl 25443 | An intersection of measurable sets is measurable. (Contributed by Mario Carneiro, 18-Mar-2014.) |
| ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (𝐴 ∩ 𝐵) ∈ dom vol) | ||
| Theorem | difmbl 25444 | A difference of measurable sets is measurable. (Contributed by Mario Carneiro, 18-Mar-2014.) |
| ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (𝐴 ∖ 𝐵) ∈ dom vol) | ||
| Theorem | finiunmbl 25445* | A finite union of measurable sets is measurable. (Contributed by Mario Carneiro, 20-Mar-2014.) |
| ⊢ ((𝐴 ∈ Fin ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ dom vol) → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ dom vol) | ||
| Theorem | volun 25446 | The Lebesgue measure function is finitely additive. (Contributed by Mario Carneiro, 18-Mar-2014.) |
| ⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴 ∩ 𝐵) = ∅) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘(𝐴 ∪ 𝐵)) = ((vol‘𝐴) + (vol‘𝐵))) | ||
| Theorem | volinun 25447 | Addition of non-disjoint sets. (Contributed by Mario Carneiro, 25-Mar-2015.) |
| ⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → ((vol‘𝐴) + (vol‘𝐵)) = ((vol‘(𝐴 ∩ 𝐵)) + (vol‘(𝐴 ∪ 𝐵)))) | ||
| Theorem | volfiniun 25448* | The volume of a disjoint finite union of measurable sets is the sum of the measures. (Contributed by Mario Carneiro, 25-Jun-2014.) (Revised by Mario Carneiro, 11-Dec-2016.) |
| ⊢ ((𝐴 ∈ Fin ∧ ∀𝑘 ∈ 𝐴 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ 𝐴 𝐵) → (vol‘∪ 𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (vol‘𝐵)) | ||
| Theorem | iundisj 25449* | Rewrite a countable union as a disjoint union. (Contributed by Mario Carneiro, 20-Mar-2014.) |
| ⊢ (𝑛 = 𝑘 → 𝐴 = 𝐵) ⇒ ⊢ ∪ 𝑛 ∈ ℕ 𝐴 = ∪ 𝑛 ∈ ℕ (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵) | ||
| Theorem | iundisj2 25450* | A disjoint union is disjoint. (Contributed by Mario Carneiro, 4-Jul-2014.) (Revised by Mario Carneiro, 11-Dec-2016.) |
| ⊢ (𝑛 = 𝑘 → 𝐴 = 𝐵) ⇒ ⊢ Disj 𝑛 ∈ ℕ (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵) | ||
| Theorem | voliunlem1 25451* | Lemma for voliun 25455. (Contributed by Mario Carneiro, 20-Mar-2014.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶dom vol) & ⊢ (𝜑 → Disj 𝑖 ∈ ℕ (𝐹‘𝑖)) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ (vol*‘(𝐸 ∩ (𝐹‘𝑛)))) & ⊢ (𝜑 → 𝐸 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) ⇒ ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝐸 ∖ ∪ ran 𝐹))) ≤ (vol*‘𝐸)) | ||
| Theorem | voliunlem2 25452* | Lemma for voliun 25455. (Contributed by Mario Carneiro, 20-Mar-2014.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶dom vol) & ⊢ (𝜑 → Disj 𝑖 ∈ ℕ (𝐹‘𝑖)) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ (vol*‘(𝑥 ∩ (𝐹‘𝑛)))) ⇒ ⊢ (𝜑 → ∪ ran 𝐹 ∈ dom vol) | ||
| Theorem | voliunlem3 25453* | Lemma for voliun 25455. (Contributed by Mario Carneiro, 20-Mar-2014.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶dom vol) & ⊢ (𝜑 → Disj 𝑖 ∈ ℕ (𝐹‘𝑖)) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ (vol*‘(𝑥 ∩ (𝐹‘𝑛)))) & ⊢ 𝑆 = seq1( + , 𝐺) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝐹‘𝑛))) & ⊢ (𝜑 → ∀𝑖 ∈ ℕ (vol‘(𝐹‘𝑖)) ∈ ℝ) ⇒ ⊢ (𝜑 → (vol‘∪ ran 𝐹) = sup(ran 𝑆, ℝ*, < )) | ||
| Theorem | iunmbl 25454 | The measurable sets are closed under countable union. (Contributed by Mario Carneiro, 18-Mar-2014.) |
| ⊢ (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → ∪ 𝑛 ∈ ℕ 𝐴 ∈ dom vol) | ||
| Theorem | voliun 25455 | The Lebesgue measure function is countably additive. (Contributed by Mario Carneiro, 18-Mar-2014.) (Proof shortened by Mario Carneiro, 11-Dec-2016.) |
| ⊢ 𝑆 = seq1( + , 𝐺) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘𝐴)) ⇒ ⊢ ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → (vol‘∪ 𝑛 ∈ ℕ 𝐴) = sup(ran 𝑆, ℝ*, < )) | ||
| Theorem | volsuplem 25456* | Lemma for volsup 25457. (Contributed by Mario Carneiro, 4-Jul-2014.) |
| ⊢ ((∀𝑛 ∈ ℕ (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴))) → (𝐹‘𝐴) ⊆ (𝐹‘𝐵)) | ||
| Theorem | volsup 25457* | The volume of the limit of an increasing sequence of measurable sets is the limit of the volumes. (Contributed by Mario Carneiro, 14-Aug-2014.) (Revised by Mario Carneiro, 11-Dec-2016.) |
| ⊢ ((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) → (vol‘∪ ran 𝐹) = sup((vol “ ran 𝐹), ℝ*, < )) | ||
| Theorem | iunmbl2 25458* | The measurable sets are closed under countable union. (Contributed by Mario Carneiro, 18-Mar-2014.) |
| ⊢ ((𝐴 ≼ ℕ ∧ ∀𝑛 ∈ 𝐴 𝐵 ∈ dom vol) → ∪ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol) | ||
| Theorem | ioombl1lem1 25459* | Lemma for ioombl1 25463. (Contributed by Mario Carneiro, 18-Aug-2014.) |
| ⊢ 𝐵 = (𝐴(,)+∞) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐸 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) & ⊢ 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻)) & ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐹)) & ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) & ⊢ 𝑃 = (1st ‘(𝐹‘𝑛)) & ⊢ 𝑄 = (2nd ‘(𝐹‘𝑛)) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ 〈if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ 〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉) ⇒ ⊢ (𝜑 → (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ)))) | ||
| Theorem | ioombl1lem2 25460* | Lemma for ioombl1 25463. (Contributed by Mario Carneiro, 18-Aug-2014.) |
| ⊢ 𝐵 = (𝐴(,)+∞) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐸 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) & ⊢ 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻)) & ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐹)) & ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) & ⊢ 𝑃 = (1st ‘(𝐹‘𝑛)) & ⊢ 𝑄 = (2nd ‘(𝐹‘𝑛)) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ 〈if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ 〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉) ⇒ ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ) | ||
| Theorem | ioombl1lem3 25461* | Lemma for ioombl1 25463. (Contributed by Mario Carneiro, 18-Aug-2014.) |
| ⊢ 𝐵 = (𝐴(,)+∞) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐸 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) & ⊢ 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻)) & ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐹)) & ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) & ⊢ 𝑃 = (1st ‘(𝐹‘𝑛)) & ⊢ 𝑄 = (2nd ‘(𝐹‘𝑛)) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ 〈if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ 〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉) ⇒ ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((((abs ∘ − ) ∘ 𝐺)‘𝑛) + (((abs ∘ − ) ∘ 𝐻)‘𝑛)) = (((abs ∘ − ) ∘ 𝐹)‘𝑛)) | ||
| Theorem | ioombl1lem4 25462* | Lemma for ioombl1 25463. (Contributed by Mario Carneiro, 16-Jun-2014.) |
| ⊢ 𝐵 = (𝐴(,)+∞) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐸 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) & ⊢ 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻)) & ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐹)) & ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) & ⊢ 𝑃 = (1st ‘(𝐹‘𝑛)) & ⊢ 𝑄 = (2nd ‘(𝐹‘𝑛)) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ 〈if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ 〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉) ⇒ ⊢ (𝜑 → ((vol*‘(𝐸 ∩ 𝐵)) + (vol*‘(𝐸 ∖ 𝐵))) ≤ ((vol*‘𝐸) + 𝐶)) | ||
| Theorem | ioombl1 25463 | An open right-unbounded interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014.) (Proof shortened by Mario Carneiro, 25-Mar-2015.) |
| ⊢ (𝐴 ∈ ℝ* → (𝐴(,)+∞) ∈ dom vol) | ||
| Theorem | icombl1 25464 | A closed unbounded-above interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴[,)+∞) ∈ dom vol) | ||
| Theorem | icombl 25465 | A closed-below, open-above real interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ∈ dom vol) | ||
| Theorem | ioombl 25466 | An open real interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014.) |
| ⊢ (𝐴(,)𝐵) ∈ dom vol | ||
| Theorem | iccmbl 25467 | A closed real interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ∈ dom vol) | ||
| Theorem | iccvolcl 25468 | A closed real interval has finite volume. (Contributed by Mario Carneiro, 25-Aug-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,]𝐵)) ∈ ℝ) | ||
| Theorem | ovolioo 25469 | The measure of an open interval. (Contributed by Mario Carneiro, 2-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol*‘(𝐴(,)𝐵)) = (𝐵 − 𝐴)) | ||
| Theorem | volioo 25470 | The measure of an open interval. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵 − 𝐴)) | ||
| Theorem | ioovolcl 25471 | An open real interval has finite volume. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴(,)𝐵)) ∈ ℝ) | ||
| Theorem | ovolfs2 25472 | Alternative expression for the interval length function. (Contributed by Mario Carneiro, 26-Mar-2015.) |
| ⊢ 𝐺 = ((abs ∘ − ) ∘ 𝐹) ⇒ ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺 = ((vol* ∘ (,)) ∘ 𝐹)) | ||
| Theorem | ioorcl2 25473 | An open interval with finite volume has real endpoints. (Contributed by Mario Carneiro, 26-Mar-2015.) |
| ⊢ (((𝐴(,)𝐵) ≠ ∅ ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) | ||
| Theorem | ioorf 25474 | Define a function from open intervals to their endpoints. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.) |
| ⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) ⇒ ⊢ 𝐹:ran (,)⟶( ≤ ∩ (ℝ* × ℝ*)) | ||
| Theorem | ioorval 25475* | Define a function from open intervals to their endpoints. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.) |
| ⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) ⇒ ⊢ (𝐴 ∈ ran (,) → (𝐹‘𝐴) = if(𝐴 = ∅, 〈0, 0〉, 〈inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )〉)) | ||
| Theorem | ioorinv2 25476* | The function 𝐹 is an "inverse" of sorts to the open interval function. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.) |
| ⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) ⇒ ⊢ ((𝐴(,)𝐵) ≠ ∅ → (𝐹‘(𝐴(,)𝐵)) = 〈𝐴, 𝐵〉) | ||
| Theorem | ioorinv 25477* | The function 𝐹 is an "inverse" of sorts to the open interval function. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.) |
| ⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) ⇒ ⊢ (𝐴 ∈ ran (,) → ((,)‘(𝐹‘𝐴)) = 𝐴) | ||
| Theorem | ioorcl 25478* | The function 𝐹 does not always return real numbers, but it does on intervals of finite volume. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.) |
| ⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) ⇒ ⊢ ((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) → (𝐹‘𝐴) ∈ ( ≤ ∩ (ℝ × ℝ))) | ||
| Theorem | uniiccdif 25479 | A union of closed intervals differs from the equivalent union of open intervals by a nullset. (Contributed by Mario Carneiro, 25-Mar-2015.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ⇒ ⊢ (𝜑 → (∪ ran ((,) ∘ 𝐹) ⊆ ∪ ran ([,] ∘ 𝐹) ∧ (vol*‘(∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹))) = 0)) | ||
| Theorem | uniioovol 25480* | A disjoint union of open intervals has volume equal to the sum of the volume of the intervals. (This proof does not use countable choice, unlike voliun 25455.) Lemma 565Ca of [Fremlin5] p. 213. (Contributed by Mario Carneiro, 26-Mar-2015.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → Disj 𝑥 ∈ ℕ ((,)‘(𝐹‘𝑥))) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) ⇒ ⊢ (𝜑 → (vol*‘∪ ran ((,) ∘ 𝐹)) = sup(ran 𝑆, ℝ*, < )) | ||
| Theorem | uniiccvol 25481* | An almost-disjoint union of closed intervals (disjoint interiors) has volume equal to the sum of the volume of the intervals. (This proof does not use countable choice, unlike voliun 25455.) (Contributed by Mario Carneiro, 25-Mar-2015.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → Disj 𝑥 ∈ ℕ ((,)‘(𝐹‘𝑥))) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) ⇒ ⊢ (𝜑 → (vol*‘∪ ran ([,] ∘ 𝐹)) = sup(ran 𝑆, ℝ*, < )) | ||
| Theorem | uniioombllem1 25482* | Lemma for uniioombl 25490. (Contributed by Mario Carneiro, 25-Mar-2015.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → Disj 𝑥 ∈ ℕ ((,)‘(𝐹‘𝑥))) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝐴 = ∪ ran ((,) ∘ 𝐹) & ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐺)) & ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) & ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) ⇒ ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ) | ||
| Theorem | uniioombllem2a 25483* | Lemma for uniioombl 25490. (Contributed by Mario Carneiro, 7-May-2015.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → Disj 𝑥 ∈ ℕ ((,)‘(𝐹‘𝑥))) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝐴 = ∪ ran ((,) ∘ 𝐹) & ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐺)) & ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) & ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) ⇒ ⊢ (((𝜑 ∧ 𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (((,)‘(𝐹‘𝑧)) ∩ ((,)‘(𝐺‘𝐽))) ∈ ran (,)) | ||
| Theorem | uniioombllem2 25484* | Lemma for uniioombl 25490. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by Mario Carneiro, 11-Dec-2016.) (Revised by AV, 13-Sep-2020.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → Disj 𝑥 ∈ ℕ ((,)‘(𝐹‘𝑥))) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝐴 = ∪ ran ((,) ∘ 𝐹) & ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐺)) & ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) & ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) & ⊢ 𝐻 = (𝑧 ∈ ℕ ↦ (((,)‘(𝐹‘𝑧)) ∩ ((,)‘(𝐺‘𝐽)))) & ⊢ 𝐾 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) ⇒ ⊢ ((𝜑 ∧ 𝐽 ∈ ℕ) → seq1( + , (vol* ∘ 𝐻)) ⇝ (vol*‘(((,)‘(𝐺‘𝐽)) ∩ 𝐴))) | ||
| Theorem | uniioombllem3a 25485* | Lemma for uniioombl 25490. (Contributed by Mario Carneiro, 8-May-2015.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → Disj 𝑥 ∈ ℕ ((,)‘(𝐹‘𝑥))) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝐴 = ∪ ran ((,) ∘ 𝐹) & ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐺)) & ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) & ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → (abs‘((𝑇‘𝑀) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) & ⊢ 𝐾 = ∪ (((,) ∘ 𝐺) “ (1...𝑀)) ⇒ ⊢ (𝜑 → (𝐾 = ∪ 𝑗 ∈ (1...𝑀)((,)‘(𝐺‘𝑗)) ∧ (vol*‘𝐾) ∈ ℝ)) | ||
| Theorem | uniioombllem3 25486* | Lemma for uniioombl 25490. (Contributed by Mario Carneiro, 26-Mar-2015.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → Disj 𝑥 ∈ ℕ ((,)‘(𝐹‘𝑥))) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝐴 = ∪ ran ((,) ∘ 𝐹) & ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐺)) & ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) & ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → (abs‘((𝑇‘𝑀) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) & ⊢ 𝐾 = ∪ (((,) ∘ 𝐺) “ (1...𝑀)) ⇒ ⊢ (𝜑 → ((vol*‘(𝐸 ∩ 𝐴)) + (vol*‘(𝐸 ∖ 𝐴))) < (((vol*‘(𝐾 ∩ 𝐴)) + (vol*‘(𝐾 ∖ 𝐴))) + (𝐶 + 𝐶))) | ||
| Theorem | uniioombllem4 25487* | Lemma for uniioombl 25490. (Contributed by Mario Carneiro, 26-Mar-2015.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → Disj 𝑥 ∈ ℕ ((,)‘(𝐹‘𝑥))) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝐴 = ∪ ran ((,) ∘ 𝐹) & ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐺)) & ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) & ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → (abs‘((𝑇‘𝑀) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) & ⊢ 𝐾 = ∪ (((,) ∘ 𝐺) “ (1...𝑀)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → ∀𝑗 ∈ (1...𝑀)(abs‘(Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹‘𝑖)) ∩ ((,)‘(𝐺‘𝑗)))) − (vol*‘(((,)‘(𝐺‘𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑀)) & ⊢ 𝐿 = ∪ (((,) ∘ 𝐹) “ (1...𝑁)) ⇒ ⊢ (𝜑 → (vol*‘(𝐾 ∩ 𝐴)) ≤ ((vol*‘(𝐾 ∩ 𝐿)) + 𝐶)) | ||
| Theorem | uniioombllem5 25488* | Lemma for uniioombl 25490. (Contributed by Mario Carneiro, 25-Aug-2014.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → Disj 𝑥 ∈ ℕ ((,)‘(𝐹‘𝑥))) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝐴 = ∪ ran ((,) ∘ 𝐹) & ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐺)) & ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) & ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → (abs‘((𝑇‘𝑀) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) & ⊢ 𝐾 = ∪ (((,) ∘ 𝐺) “ (1...𝑀)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → ∀𝑗 ∈ (1...𝑀)(abs‘(Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹‘𝑖)) ∩ ((,)‘(𝐺‘𝑗)))) − (vol*‘(((,)‘(𝐺‘𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑀)) & ⊢ 𝐿 = ∪ (((,) ∘ 𝐹) “ (1...𝑁)) ⇒ ⊢ (𝜑 → ((vol*‘(𝐸 ∩ 𝐴)) + (vol*‘(𝐸 ∖ 𝐴))) ≤ ((vol*‘𝐸) + (4 · 𝐶))) | ||
| Theorem | uniioombllem6 25489* | Lemma for uniioombl 25490. (Contributed by Mario Carneiro, 26-Mar-2015.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → Disj 𝑥 ∈ ℕ ((,)‘(𝐹‘𝑥))) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝐴 = ∪ ran ((,) ∘ 𝐹) & ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐺)) & ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) & ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) ⇒ ⊢ (𝜑 → ((vol*‘(𝐸 ∩ 𝐴)) + (vol*‘(𝐸 ∖ 𝐴))) ≤ ((vol*‘𝐸) + (4 · 𝐶))) | ||
| Theorem | uniioombl 25490* | A disjoint union of open intervals is measurable. (This proof does not use countable choice, unlike iunmbl 25454.) Lemma 565Ca of [Fremlin5] p. 214. (Contributed by Mario Carneiro, 26-Mar-2015.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → Disj 𝑥 ∈ ℕ ((,)‘(𝐹‘𝑥))) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) ⇒ ⊢ (𝜑 → ∪ ran ((,) ∘ 𝐹) ∈ dom vol) | ||
| Theorem | uniiccmbl 25491* | An almost-disjoint union of closed intervals is measurable. (This proof does not use countable choice, unlike iunmbl 25454.) (Contributed by Mario Carneiro, 25-Mar-2015.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → Disj 𝑥 ∈ ℕ ((,)‘(𝐹‘𝑥))) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) ⇒ ⊢ (𝜑 → ∪ ran ([,] ∘ 𝐹) ∈ dom vol) | ||
| Theorem | dyadf 25492* | The function 𝐹 returns the endpoints of a dyadic rational covering of the real line. (Contributed by Mario Carneiro, 26-Mar-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ⇒ ⊢ 𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) | ||
| Theorem | dyadval 25493* | Value of the dyadic rational function 𝐹. (Contributed by Mario Carneiro, 26-Mar-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴𝐹𝐵) = 〈(𝐴 / (2↑𝐵)), ((𝐴 + 1) / (2↑𝐵))〉) | ||
| Theorem | dyadovol 25494* | Volume of a dyadic rational interval. (Contributed by Mario Carneiro, 26-Mar-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (vol*‘([,]‘(𝐴𝐹𝐵))) = (1 / (2↑𝐵))) | ||
| Theorem | dyadss 25495* | Two closed dyadic rational intervals are either in a subset relationship or are almost disjoint (the interiors are disjoint). (Contributed by Mario Carneiro, 26-Mar-2015.) (Proof shortened by Mario Carneiro, 26-Apr-2016.) |
| ⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ⇒ ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0)) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) → 𝐷 ≤ 𝐶)) | ||
| Theorem | dyaddisjlem 25496* | Lemma for dyaddisj 25497. (Contributed by Mario Carneiro, 26-Mar-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ⇒ ⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0)) ∧ 𝐶 ≤ 𝐷) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∨ ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)) ∨ (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅)) | ||
| Theorem | dyaddisj 25497* | Two closed dyadic rational intervals are either in a subset relationship or are almost disjoint (the interiors are disjoint). (Contributed by Mario Carneiro, 26-Mar-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ⇒ ⊢ ((𝐴 ∈ ran 𝐹 ∧ 𝐵 ∈ ran 𝐹) → (([,]‘𝐴) ⊆ ([,]‘𝐵) ∨ ([,]‘𝐵) ⊆ ([,]‘𝐴) ∨ (((,)‘𝐴) ∩ ((,)‘𝐵)) = ∅)) | ||
| Theorem | dyadmaxlem 25498* | Lemma for dyadmax 25499. (Contributed by Mario Carneiro, 26-Mar-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐶 ∈ ℕ0) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → ¬ 𝐷 < 𝐶) & ⊢ (𝜑 → ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) ⇒ ⊢ (𝜑 → (𝐴 = 𝐵 ∧ 𝐶 = 𝐷)) | ||
| Theorem | dyadmax 25499* | Any nonempty set of dyadic rational intervals has a maximal element. (Contributed by Mario Carneiro, 26-Mar-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ⇒ ⊢ ((𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅) → ∃𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)) | ||
| Theorem | dyadmbllem 25500* | Lemma for dyadmbl 25501. (Contributed by Mario Carneiro, 26-Mar-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) & ⊢ 𝐺 = {𝑧 ∈ 𝐴 ∣ ∀𝑤 ∈ 𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)} & ⊢ (𝜑 → 𝐴 ⊆ ran 𝐹) ⇒ ⊢ (𝜑 → ∪ ([,] “ 𝐴) = ∪ ([,] “ 𝐺)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |