| Metamath
Proof Explorer Theorem List (p. 255 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49791) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | ovolsslem 25401* | Lemma for ovolss 25402. (Contributed by Mario Carneiro, 16-Mar-2014.) (Proof shortened by AV, 17-Sep-2020.) |
| ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} & ⊢ 𝑁 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} ⇒ ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) → (vol*‘𝐴) ≤ (vol*‘𝐵)) | ||
| Theorem | ovolss 25402 | The volume of a set is monotone with respect to set inclusion. (Contributed by Mario Carneiro, 16-Mar-2014.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) → (vol*‘𝐴) ≤ (vol*‘𝐵)) | ||
| Theorem | ovolsscl 25403 | If a set is contained in another of bounded measure, it too is bounded. (Contributed by Mario Carneiro, 18-Mar-2014.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (vol*‘𝐴) ∈ ℝ) | ||
| Theorem | ovolssnul 25404 | A subset of a nullset is null. (Contributed by Mario Carneiro, 19-Mar-2014.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) → (vol*‘𝐴) = 0) | ||
| Theorem | ovollb2lem 25405* | Lemma for ovollb2 25406. (Contributed by Mario Carneiro, 24-Mar-2015.) |
| ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ 〈((1st ‘(𝐹‘𝑛)) − ((𝐵 / 2) / (2↑𝑛))), ((2nd ‘(𝐹‘𝑛)) + ((𝐵 / 2) / (2↑𝑛)))〉) & ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) & ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝐴 ⊆ ∪ ran ([,] ∘ 𝐹)) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ) ⇒ ⊢ (𝜑 → (vol*‘𝐴) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝐵)) | ||
| Theorem | ovollb2 25406 | It is often more convenient to do calculations with *closed* coverings rather than open ones; here we show that it makes no difference (compare ovollb 25396). (Contributed by Mario Carneiro, 24-Mar-2015.) |
| ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) ⇒ ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ⊆ ∪ ran ([,] ∘ 𝐹)) → (vol*‘𝐴) ≤ sup(ran 𝑆, ℝ*, < )) | ||
| Theorem | ovolctb 25407 | The volume of a denumerable set is 0. (Contributed by Mario Carneiro, 17-Mar-2014.) (Proof shortened by Mario Carneiro, 25-Mar-2015.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≈ ℕ) → (vol*‘𝐴) = 0) | ||
| Theorem | ovolq 25408 | The rational numbers have 0 outer Lebesgue measure. (Contributed by Mario Carneiro, 17-Mar-2014.) |
| ⊢ (vol*‘ℚ) = 0 | ||
| Theorem | ovolctb2 25409 | The volume of a countable set is 0. (Contributed by Mario Carneiro, 17-Mar-2014.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (vol*‘𝐴) = 0) | ||
| Theorem | ovol0 25410 | The empty set has 0 outer Lebesgue measure. (Contributed by Mario Carneiro, 17-Mar-2014.) |
| ⊢ (vol*‘∅) = 0 | ||
| Theorem | ovolfi 25411 | A finite set has 0 outer Lebesgue measure. (Contributed by Mario Carneiro, 13-Aug-2014.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ ℝ) → (vol*‘𝐴) = 0) | ||
| Theorem | ovolsn 25412 | A singleton has 0 outer Lebesgue measure. (Contributed by Mario Carneiro, 15-Aug-2014.) |
| ⊢ (𝐴 ∈ ℝ → (vol*‘{𝐴}) = 0) | ||
| Theorem | ovolunlem1a 25413* | Lemma for ovolun 25416. (Contributed by Mario Carneiro, 7-May-2015.) |
| ⊢ (𝜑 → (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ)) & ⊢ (𝜑 → (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) & ⊢ 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) & ⊢ (𝜑 → 𝐴 ⊆ ∪ ran ((,) ∘ 𝐹)) & ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) & ⊢ (𝜑 → 𝐺 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) & ⊢ (𝜑 → 𝐵 ⊆ ∪ ran ((,) ∘ 𝐺)) & ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2))) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ if((𝑛 / 2) ∈ ℕ, (𝐺‘(𝑛 / 2)), (𝐹‘((𝑛 + 1) / 2)))) ⇒ ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑈‘𝑘) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶)) | ||
| Theorem | ovolunlem1 25414* | Lemma for ovolun 25416. (Contributed by Mario Carneiro, 12-Jun-2014.) |
| ⊢ (𝜑 → (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ)) & ⊢ (𝜑 → (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) & ⊢ 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) & ⊢ (𝜑 → 𝐴 ⊆ ∪ ran ((,) ∘ 𝐹)) & ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2))) & ⊢ (𝜑 → 𝐺 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) & ⊢ (𝜑 → 𝐵 ⊆ ∪ ran ((,) ∘ 𝐺)) & ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2))) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ if((𝑛 / 2) ∈ ℕ, (𝐺‘(𝑛 / 2)), (𝐹‘((𝑛 + 1) / 2)))) ⇒ ⊢ (𝜑 → (vol*‘(𝐴 ∪ 𝐵)) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶)) | ||
| Theorem | ovolunlem2 25415 | Lemma for ovolun 25416. (Contributed by Mario Carneiro, 12-Jun-2014.) |
| ⊢ (𝜑 → (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ)) & ⊢ (𝜑 → (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) ⇒ ⊢ (𝜑 → (vol*‘(𝐴 ∪ 𝐵)) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶)) | ||
| Theorem | ovolun 25416 | The Lebesgue outer measure function is finitely sub-additive. (Unlike the stronger ovoliun 25422, this does not require any choice principles.) (Contributed by Mario Carneiro, 12-Jun-2014.) |
| ⊢ (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘(𝐴 ∪ 𝐵)) ≤ ((vol*‘𝐴) + (vol*‘𝐵))) | ||
| Theorem | ovolunnul 25417 | Adding a nullset does not change the measure of a set. (Contributed by Mario Carneiro, 25-Mar-2015.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0) → (vol*‘(𝐴 ∪ 𝐵)) = (vol*‘𝐴)) | ||
| Theorem | ovolfiniun 25418* | The Lebesgue outer measure function is finitely sub-additive. Finite sum version. (Contributed by Mario Carneiro, 19-Jun-2014.) |
| ⊢ ((𝐴 ∈ Fin ∧ ∀𝑘 ∈ 𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘∪ 𝑘 ∈ 𝐴 𝐵) ≤ Σ𝑘 ∈ 𝐴 (vol*‘𝐵)) | ||
| Theorem | ovoliunlem1 25419* | Lemma for ovoliun 25422. (Contributed by Mario Carneiro, 12-Jun-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| ⊢ 𝑇 = seq1( + , 𝐺) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴)) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ) & ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ (𝐹‘𝑛))) & ⊢ 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻)) & ⊢ 𝐻 = (𝑘 ∈ ℕ ↦ ((𝐹‘(1st ‘(𝐽‘𝑘)))‘(2nd ‘(𝐽‘𝑘)))) & ⊢ (𝜑 → 𝐽:ℕ–1-1-onto→(ℕ × ℕ)) & ⊢ (𝜑 → 𝐹:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ⊆ ∪ ran ((,) ∘ (𝐹‘𝑛))) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝐿 ∈ ℤ) & ⊢ (𝜑 → ∀𝑤 ∈ (1...𝐾)(1st ‘(𝐽‘𝑤)) ≤ 𝐿) ⇒ ⊢ (𝜑 → (𝑈‘𝐾) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵)) | ||
| Theorem | ovoliunlem2 25420* | Lemma for ovoliun 25422. (Contributed by Mario Carneiro, 12-Jun-2014.) |
| ⊢ 𝑇 = seq1( + , 𝐺) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴)) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ) & ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ (𝐹‘𝑛))) & ⊢ 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻)) & ⊢ 𝐻 = (𝑘 ∈ ℕ ↦ ((𝐹‘(1st ‘(𝐽‘𝑘)))‘(2nd ‘(𝐽‘𝑘)))) & ⊢ (𝜑 → 𝐽:ℕ–1-1-onto→(ℕ × ℕ)) & ⊢ (𝜑 → 𝐹:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ⊆ ∪ ran ((,) ∘ (𝐹‘𝑛))) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))) ⇒ ⊢ (𝜑 → (vol*‘∪ 𝑛 ∈ ℕ 𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵)) | ||
| Theorem | ovoliunlem3 25421* | Lemma for ovoliun 25422. (Contributed by Mario Carneiro, 12-Jun-2014.) |
| ⊢ 𝑇 = seq1( + , 𝐺) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴)) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ) & ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) ⇒ ⊢ (𝜑 → (vol*‘∪ 𝑛 ∈ ℕ 𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵)) | ||
| Theorem | ovoliun 25422* | The Lebesgue outer measure function is countably sub-additive. (Many books allow +∞ as a value for one of the sets in the sum, but in our setup we can't do arithmetic on infinity, and in any case the volume of a union containing an infinitely large set is already infinitely large by monotonicity ovolss 25402, so we need not consider this case here, although we do allow the sum itself to be infinite.) (Contributed by Mario Carneiro, 12-Jun-2014.) |
| ⊢ 𝑇 = seq1( + , 𝐺) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴)) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ) ⇒ ⊢ (𝜑 → (vol*‘∪ 𝑛 ∈ ℕ 𝐴) ≤ sup(ran 𝑇, ℝ*, < )) | ||
| Theorem | ovoliun2 25423* | The Lebesgue outer measure function is countably sub-additive. (This version is a little easier to read, but does not allow infinite values like ovoliun 25422.) (Contributed by Mario Carneiro, 12-Jun-2014.) |
| ⊢ 𝑇 = seq1( + , 𝐺) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴)) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ) & ⊢ (𝜑 → 𝑇 ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → (vol*‘∪ 𝑛 ∈ ℕ 𝐴) ≤ Σ𝑛 ∈ ℕ (vol*‘𝐴)) | ||
| Theorem | ovoliunnul 25424* | A countable union of nullsets is null. (Contributed by Mario Carneiro, 8-Apr-2015.) |
| ⊢ ((𝐴 ≼ ℕ ∧ ∀𝑛 ∈ 𝐴 (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) = 0)) → (vol*‘∪ 𝑛 ∈ 𝐴 𝐵) = 0) | ||
| Theorem | shft2rab 25425* | If 𝐵 is a shift of 𝐴 by 𝐶, then 𝐴 is a shift of 𝐵 by -𝐶. (Contributed by Mario Carneiro, 22-Mar-2014.) (Revised by Mario Carneiro, 6-Apr-2015.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴}) ⇒ ⊢ (𝜑 → 𝐴 = {𝑦 ∈ ℝ ∣ (𝑦 − -𝐶) ∈ 𝐵}) | ||
| Theorem | ovolshftlem1 25426* | Lemma for ovolshft 25428. (Contributed by Mario Carneiro, 22-Mar-2014.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴}) & ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ 〈((1st ‘(𝐹‘𝑛)) + 𝐶), ((2nd ‘(𝐹‘𝑛)) + 𝐶)〉) & ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝐴 ⊆ ∪ ran ((,) ∘ 𝐹)) ⇒ ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ 𝑀) | ||
| Theorem | ovolshftlem2 25427* | Lemma for ovolshft 25428. (Contributed by Mario Carneiro, 22-Mar-2014.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴}) & ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐵 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} ⇒ ⊢ (𝜑 → {𝑧 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ⊆ 𝑀) | ||
| Theorem | ovolshft 25428* | The Lebesgue outer measure function is shift-invariant. (Contributed by Mario Carneiro, 22-Mar-2014.) (Proof shortened by AV, 17-Sep-2020.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝑥 − 𝐶) ∈ 𝐴}) ⇒ ⊢ (𝜑 → (vol*‘𝐴) = (vol*‘𝐵)) | ||
| Theorem | sca2rab 25429* | If 𝐵 is a scale of 𝐴 by 𝐶, then 𝐴 is a scale of 𝐵 by 1 / 𝐶. (Contributed by Mario Carneiro, 22-Mar-2014.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴}) ⇒ ⊢ (𝜑 → 𝐴 = {𝑦 ∈ ℝ ∣ ((1 / 𝐶) · 𝑦) ∈ 𝐵}) | ||
| Theorem | ovolscalem1 25430* | Lemma for ovolsca 25432. (Contributed by Mario Carneiro, 6-Apr-2015.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴}) & ⊢ (𝜑 → (vol*‘𝐴) ∈ ℝ) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ 〈((1st ‘(𝐹‘𝑛)) / 𝐶), ((2nd ‘(𝐹‘𝑛)) / 𝐶)〉) & ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝐴 ⊆ ∪ ran ((,) ∘ 𝐹)) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 · 𝑅))) ⇒ ⊢ (𝜑 → (vol*‘𝐵) ≤ (((vol*‘𝐴) / 𝐶) + 𝑅)) | ||
| Theorem | ovolscalem2 25431* | Lemma for ovolshft 25428. (Contributed by Mario Carneiro, 22-Mar-2014.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴}) & ⊢ (𝜑 → (vol*‘𝐴) ∈ ℝ) ⇒ ⊢ (𝜑 → (vol*‘𝐵) ≤ ((vol*‘𝐴) / 𝐶)) | ||
| Theorem | ovolsca 25432* | The Lebesgue outer measure function respects scaling of sets by positive reals. (Contributed by Mario Carneiro, 6-Apr-2015.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 = {𝑥 ∈ ℝ ∣ (𝐶 · 𝑥) ∈ 𝐴}) & ⊢ (𝜑 → (vol*‘𝐴) ∈ ℝ) ⇒ ⊢ (𝜑 → (vol*‘𝐵) = ((vol*‘𝐴) / 𝐶)) | ||
| Theorem | ovolicc1 25433* | The measure of a closed interval is lower bounded by its length. (Contributed by Mario Carneiro, 13-Jun-2014.) (Proof shortened by Mario Carneiro, 25-Mar-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 = 1, 〈𝐴, 𝐵〉, 〈0, 0〉)) ⇒ ⊢ (𝜑 → (vol*‘(𝐴[,]𝐵)) ≤ (𝐵 − 𝐴)) | ||
| Theorem | ovolicc2lem1 25434* | Lemma for ovolicc2 25439. (Contributed by Mario Carneiro, 14-Jun-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝑈 ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin)) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ∪ 𝑈) & ⊢ (𝜑 → 𝐺:𝑈⟶ℕ) & ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑈) → (((,) ∘ 𝐹)‘(𝐺‘𝑡)) = 𝑡) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → (𝑃 ∈ 𝑋 ↔ (𝑃 ∈ ℝ ∧ (1st ‘(𝐹‘(𝐺‘𝑋))) < 𝑃 ∧ 𝑃 < (2nd ‘(𝐹‘(𝐺‘𝑋)))))) | ||
| Theorem | ovolicc2lem2 25435* | Lemma for ovolicc2 25439. (Contributed by Mario Carneiro, 14-Jun-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝑈 ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin)) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ∪ 𝑈) & ⊢ (𝜑 → 𝐺:𝑈⟶ℕ) & ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑈) → (((,) ∘ 𝐹)‘(𝐺‘𝑡)) = 𝑡) & ⊢ 𝑇 = {𝑢 ∈ 𝑈 ∣ (𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅} & ⊢ (𝜑 → 𝐻:𝑇⟶𝑇) & ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ (𝐻‘𝑡)) & ⊢ (𝜑 → 𝐴 ∈ 𝐶) & ⊢ (𝜑 → 𝐶 ∈ 𝑇) & ⊢ 𝐾 = seq1((𝐻 ∘ 1st ), (ℕ × {𝐶})) & ⊢ 𝑊 = {𝑛 ∈ ℕ ∣ 𝐵 ∈ (𝐾‘𝑛)} ⇒ ⊢ ((𝜑 ∧ (𝑁 ∈ ℕ ∧ ¬ 𝑁 ∈ 𝑊)) → (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑁)))) ≤ 𝐵) | ||
| Theorem | ovolicc2lem3 25436* | Lemma for ovolicc2 25439. (Contributed by Mario Carneiro, 14-Jun-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝑈 ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin)) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ∪ 𝑈) & ⊢ (𝜑 → 𝐺:𝑈⟶ℕ) & ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑈) → (((,) ∘ 𝐹)‘(𝐺‘𝑡)) = 𝑡) & ⊢ 𝑇 = {𝑢 ∈ 𝑈 ∣ (𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅} & ⊢ (𝜑 → 𝐻:𝑇⟶𝑇) & ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ (𝐻‘𝑡)) & ⊢ (𝜑 → 𝐴 ∈ 𝐶) & ⊢ (𝜑 → 𝐶 ∈ 𝑇) & ⊢ 𝐾 = seq1((𝐻 ∘ 1st ), (ℕ × {𝐶})) & ⊢ 𝑊 = {𝑛 ∈ ℕ ∣ 𝐵 ∈ (𝐾‘𝑛)} ⇒ ⊢ ((𝜑 ∧ (𝑁 ∈ {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑊 𝑛 ≤ 𝑚} ∧ 𝑃 ∈ {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ 𝑊 𝑛 ≤ 𝑚})) → (𝑁 = 𝑃 ↔ (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑁)))) = (2nd ‘(𝐹‘(𝐺‘(𝐾‘𝑃)))))) | ||
| Theorem | ovolicc2lem4 25437* | Lemma for ovolicc2 25439. (Contributed by Mario Carneiro, 14-Jun-2014.) (Revised by AV, 17-Sep-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝑈 ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin)) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ∪ 𝑈) & ⊢ (𝜑 → 𝐺:𝑈⟶ℕ) & ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑈) → (((,) ∘ 𝐹)‘(𝐺‘𝑡)) = 𝑡) & ⊢ 𝑇 = {𝑢 ∈ 𝑈 ∣ (𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅} & ⊢ (𝜑 → 𝐻:𝑇⟶𝑇) & ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → if((2nd ‘(𝐹‘(𝐺‘𝑡))) ≤ 𝐵, (2nd ‘(𝐹‘(𝐺‘𝑡))), 𝐵) ∈ (𝐻‘𝑡)) & ⊢ (𝜑 → 𝐴 ∈ 𝐶) & ⊢ (𝜑 → 𝐶 ∈ 𝑇) & ⊢ 𝐾 = seq1((𝐻 ∘ 1st ), (ℕ × {𝐶})) & ⊢ 𝑊 = {𝑛 ∈ ℕ ∣ 𝐵 ∈ (𝐾‘𝑛)} & ⊢ 𝑀 = inf(𝑊, ℝ, < ) ⇒ ⊢ (𝜑 → (𝐵 − 𝐴) ≤ sup(ran 𝑆, ℝ*, < )) | ||
| Theorem | ovolicc2lem5 25438* | Lemma for ovolicc2 25439. (Contributed by Mario Carneiro, 14-Jun-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝑈 ∈ (𝒫 ran ((,) ∘ 𝐹) ∩ Fin)) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ∪ 𝑈) & ⊢ (𝜑 → 𝐺:𝑈⟶ℕ) & ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑈) → (((,) ∘ 𝐹)‘(𝐺‘𝑡)) = 𝑡) & ⊢ 𝑇 = {𝑢 ∈ 𝑈 ∣ (𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅} ⇒ ⊢ (𝜑 → (𝐵 − 𝐴) ≤ sup(ran 𝑆, ℝ*, < )) | ||
| Theorem | ovolicc2 25439* | The measure of a closed interval is upper bounded by its length. (Contributed by Mario Carneiro, 14-Jun-2014.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)((𝐴[,]𝐵) ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} ⇒ ⊢ (𝜑 → (𝐵 − 𝐴) ≤ (vol*‘(𝐴[,]𝐵))) | ||
| Theorem | ovolicc 25440 | The measure of a closed interval. (Contributed by Mario Carneiro, 14-Jun-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol*‘(𝐴[,]𝐵)) = (𝐵 − 𝐴)) | ||
| Theorem | ovolicopnf 25441 | The measure of a right-unbounded interval. (Contributed by Mario Carneiro, 14-Jun-2014.) |
| ⊢ (𝐴 ∈ ℝ → (vol*‘(𝐴[,)+∞)) = +∞) | ||
| Theorem | ovolre 25442 | The measure of the real numbers. (Contributed by Mario Carneiro, 14-Jun-2014.) |
| ⊢ (vol*‘ℝ) = +∞ | ||
| Theorem | ismbl 25443* | The predicate "𝐴 is Lebesgue-measurable". A set is measurable if it splits every other set 𝑥 in a "nice" way, that is, if the measure of the pieces 𝑥 ∩ 𝐴 and 𝑥 ∖ 𝐴 sum up to the measure of 𝑥 (assuming that the measure of 𝑥 is a real number, so that this addition makes sense). (Contributed by Mario Carneiro, 17-Mar-2014.) |
| ⊢ (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴)))))) | ||
| Theorem | ismbl2 25444* | From ovolun 25416, it suffices to show that the measure of 𝑥 is at least the sum of the measures of 𝑥 ∩ 𝐴 and 𝑥 ∖ 𝐴. (Contributed by Mario Carneiro, 15-Jun-2014.) |
| ⊢ (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥 ∩ 𝐴)) + (vol*‘(𝑥 ∖ 𝐴))) ≤ (vol*‘𝑥)))) | ||
| Theorem | volres 25445 | A self-referencing abbreviated definition of the Lebesgue measure. (Contributed by Mario Carneiro, 19-Mar-2014.) |
| ⊢ vol = (vol* ↾ dom vol) | ||
| Theorem | volf 25446 | The domain and codomain of the Lebesgue measure function. (Contributed by Mario Carneiro, 19-Mar-2014.) |
| ⊢ vol:dom vol⟶(0[,]+∞) | ||
| Theorem | mblvol 25447 | The volume of a measurable set is the same as its outer volume. (Contributed by Mario Carneiro, 17-Mar-2014.) |
| ⊢ (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴)) | ||
| Theorem | mblss 25448 | A measurable set is a subset of the reals. (Contributed by Mario Carneiro, 17-Mar-2014.) |
| ⊢ (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ) | ||
| Theorem | mblsplit 25449 | The defining property of measurability. (Contributed by Mario Carneiro, 17-Mar-2014.) |
| ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (vol*‘𝐵) = ((vol*‘(𝐵 ∩ 𝐴)) + (vol*‘(𝐵 ∖ 𝐴)))) | ||
| Theorem | volss 25450 | The Lebesgue measure is monotone with respect to set inclusion. (Contributed by Thierry Arnoux, 17-Oct-2017.) |
| ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ 𝐴 ⊆ 𝐵) → (vol‘𝐴) ≤ (vol‘𝐵)) | ||
| Theorem | cmmbl 25451 | The complement of a measurable set is measurable. (Contributed by Mario Carneiro, 18-Mar-2014.) |
| ⊢ (𝐴 ∈ dom vol → (ℝ ∖ 𝐴) ∈ dom vol) | ||
| Theorem | nulmbl 25452 | A nullset is measurable. (Contributed by Mario Carneiro, 18-Mar-2014.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → 𝐴 ∈ dom vol) | ||
| Theorem | nulmbl2 25453* | A set of outer measure zero is measurable. The term "outer measure zero" here is slightly different from "nullset/negligible set"; a nullset has vol*(𝐴) = 0 while "outer measure zero" means that for any 𝑥 there is a 𝑦 containing 𝐴 with volume less than 𝑥. Assuming AC, these notions are equivalent (because the intersection of all such 𝑦 is a nullset) but in ZF this is a strictly weaker notion. Proposition 563Gb of [Fremlin5] p. 193. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| ⊢ (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ dom vol(𝐴 ⊆ 𝑦 ∧ (vol*‘𝑦) ≤ 𝑥) → 𝐴 ∈ dom vol) | ||
| Theorem | unmbl 25454 | A union of measurable sets is measurable. (Contributed by Mario Carneiro, 18-Mar-2014.) |
| ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (𝐴 ∪ 𝐵) ∈ dom vol) | ||
| Theorem | shftmbl 25455* | A shift of a measurable set is measurable. (Contributed by Mario Carneiro, 22-Mar-2014.) |
| ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) → {𝑥 ∈ ℝ ∣ (𝑥 − 𝐵) ∈ 𝐴} ∈ dom vol) | ||
| Theorem | 0mbl 25456 | The empty set is measurable. (Contributed by Mario Carneiro, 18-Mar-2014.) |
| ⊢ ∅ ∈ dom vol | ||
| Theorem | rembl 25457 | The set of all real numbers is measurable. (Contributed by Mario Carneiro, 18-Mar-2014.) |
| ⊢ ℝ ∈ dom vol | ||
| Theorem | unidmvol 25458 | The union of the Lebesgue measurable sets is ℝ. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
| ⊢ ∪ dom vol = ℝ | ||
| Theorem | inmbl 25459 | An intersection of measurable sets is measurable. (Contributed by Mario Carneiro, 18-Mar-2014.) |
| ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (𝐴 ∩ 𝐵) ∈ dom vol) | ||
| Theorem | difmbl 25460 | A difference of measurable sets is measurable. (Contributed by Mario Carneiro, 18-Mar-2014.) |
| ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (𝐴 ∖ 𝐵) ∈ dom vol) | ||
| Theorem | finiunmbl 25461* | A finite union of measurable sets is measurable. (Contributed by Mario Carneiro, 20-Mar-2014.) |
| ⊢ ((𝐴 ∈ Fin ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ dom vol) → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ dom vol) | ||
| Theorem | volun 25462 | The Lebesgue measure function is finitely additive. (Contributed by Mario Carneiro, 18-Mar-2014.) |
| ⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴 ∩ 𝐵) = ∅) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘(𝐴 ∪ 𝐵)) = ((vol‘𝐴) + (vol‘𝐵))) | ||
| Theorem | volinun 25463 | Addition of non-disjoint sets. (Contributed by Mario Carneiro, 25-Mar-2015.) |
| ⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → ((vol‘𝐴) + (vol‘𝐵)) = ((vol‘(𝐴 ∩ 𝐵)) + (vol‘(𝐴 ∪ 𝐵)))) | ||
| Theorem | volfiniun 25464* | The volume of a disjoint finite union of measurable sets is the sum of the measures. (Contributed by Mario Carneiro, 25-Jun-2014.) (Revised by Mario Carneiro, 11-Dec-2016.) |
| ⊢ ((𝐴 ∈ Fin ∧ ∀𝑘 ∈ 𝐴 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ 𝐴 𝐵) → (vol‘∪ 𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (vol‘𝐵)) | ||
| Theorem | iundisj 25465* | Rewrite a countable union as a disjoint union. (Contributed by Mario Carneiro, 20-Mar-2014.) |
| ⊢ (𝑛 = 𝑘 → 𝐴 = 𝐵) ⇒ ⊢ ∪ 𝑛 ∈ ℕ 𝐴 = ∪ 𝑛 ∈ ℕ (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵) | ||
| Theorem | iundisj2 25466* | A disjoint union is disjoint. (Contributed by Mario Carneiro, 4-Jul-2014.) (Revised by Mario Carneiro, 11-Dec-2016.) |
| ⊢ (𝑛 = 𝑘 → 𝐴 = 𝐵) ⇒ ⊢ Disj 𝑛 ∈ ℕ (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵) | ||
| Theorem | voliunlem1 25467* | Lemma for voliun 25471. (Contributed by Mario Carneiro, 20-Mar-2014.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶dom vol) & ⊢ (𝜑 → Disj 𝑖 ∈ ℕ (𝐹‘𝑖)) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ (vol*‘(𝐸 ∩ (𝐹‘𝑛)))) & ⊢ (𝜑 → 𝐸 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) ⇒ ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝐸 ∖ ∪ ran 𝐹))) ≤ (vol*‘𝐸)) | ||
| Theorem | voliunlem2 25468* | Lemma for voliun 25471. (Contributed by Mario Carneiro, 20-Mar-2014.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶dom vol) & ⊢ (𝜑 → Disj 𝑖 ∈ ℕ (𝐹‘𝑖)) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ (vol*‘(𝑥 ∩ (𝐹‘𝑛)))) ⇒ ⊢ (𝜑 → ∪ ran 𝐹 ∈ dom vol) | ||
| Theorem | voliunlem3 25469* | Lemma for voliun 25471. (Contributed by Mario Carneiro, 20-Mar-2014.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶dom vol) & ⊢ (𝜑 → Disj 𝑖 ∈ ℕ (𝐹‘𝑖)) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ (vol*‘(𝑥 ∩ (𝐹‘𝑛)))) & ⊢ 𝑆 = seq1( + , 𝐺) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝐹‘𝑛))) & ⊢ (𝜑 → ∀𝑖 ∈ ℕ (vol‘(𝐹‘𝑖)) ∈ ℝ) ⇒ ⊢ (𝜑 → (vol‘∪ ran 𝐹) = sup(ran 𝑆, ℝ*, < )) | ||
| Theorem | iunmbl 25470 | The measurable sets are closed under countable union. (Contributed by Mario Carneiro, 18-Mar-2014.) |
| ⊢ (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → ∪ 𝑛 ∈ ℕ 𝐴 ∈ dom vol) | ||
| Theorem | voliun 25471 | The Lebesgue measure function is countably additive. (Contributed by Mario Carneiro, 18-Mar-2014.) (Proof shortened by Mario Carneiro, 11-Dec-2016.) |
| ⊢ 𝑆 = seq1( + , 𝐺) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘𝐴)) ⇒ ⊢ ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → (vol‘∪ 𝑛 ∈ ℕ 𝐴) = sup(ran 𝑆, ℝ*, < )) | ||
| Theorem | volsuplem 25472* | Lemma for volsup 25473. (Contributed by Mario Carneiro, 4-Jul-2014.) |
| ⊢ ((∀𝑛 ∈ ℕ (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴))) → (𝐹‘𝐴) ⊆ (𝐹‘𝐵)) | ||
| Theorem | volsup 25473* | The volume of the limit of an increasing sequence of measurable sets is the limit of the volumes. (Contributed by Mario Carneiro, 14-Aug-2014.) (Revised by Mario Carneiro, 11-Dec-2016.) |
| ⊢ ((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) → (vol‘∪ ran 𝐹) = sup((vol “ ran 𝐹), ℝ*, < )) | ||
| Theorem | iunmbl2 25474* | The measurable sets are closed under countable union. (Contributed by Mario Carneiro, 18-Mar-2014.) |
| ⊢ ((𝐴 ≼ ℕ ∧ ∀𝑛 ∈ 𝐴 𝐵 ∈ dom vol) → ∪ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol) | ||
| Theorem | ioombl1lem1 25475* | Lemma for ioombl1 25479. (Contributed by Mario Carneiro, 18-Aug-2014.) |
| ⊢ 𝐵 = (𝐴(,)+∞) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐸 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) & ⊢ 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻)) & ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐹)) & ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) & ⊢ 𝑃 = (1st ‘(𝐹‘𝑛)) & ⊢ 𝑄 = (2nd ‘(𝐹‘𝑛)) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ 〈if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ 〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉) ⇒ ⊢ (𝜑 → (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ)))) | ||
| Theorem | ioombl1lem2 25476* | Lemma for ioombl1 25479. (Contributed by Mario Carneiro, 18-Aug-2014.) |
| ⊢ 𝐵 = (𝐴(,)+∞) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐸 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) & ⊢ 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻)) & ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐹)) & ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) & ⊢ 𝑃 = (1st ‘(𝐹‘𝑛)) & ⊢ 𝑄 = (2nd ‘(𝐹‘𝑛)) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ 〈if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ 〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉) ⇒ ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ) | ||
| Theorem | ioombl1lem3 25477* | Lemma for ioombl1 25479. (Contributed by Mario Carneiro, 18-Aug-2014.) |
| ⊢ 𝐵 = (𝐴(,)+∞) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐸 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) & ⊢ 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻)) & ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐹)) & ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) & ⊢ 𝑃 = (1st ‘(𝐹‘𝑛)) & ⊢ 𝑄 = (2nd ‘(𝐹‘𝑛)) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ 〈if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ 〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉) ⇒ ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((((abs ∘ − ) ∘ 𝐺)‘𝑛) + (((abs ∘ − ) ∘ 𝐻)‘𝑛)) = (((abs ∘ − ) ∘ 𝐹)‘𝑛)) | ||
| Theorem | ioombl1lem4 25478* | Lemma for ioombl1 25479. (Contributed by Mario Carneiro, 16-Jun-2014.) |
| ⊢ 𝐵 = (𝐴(,)+∞) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐸 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) & ⊢ 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻)) & ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐹)) & ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) & ⊢ 𝑃 = (1st ‘(𝐹‘𝑛)) & ⊢ 𝑄 = (2nd ‘(𝐹‘𝑛)) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ 〈if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ 〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉) ⇒ ⊢ (𝜑 → ((vol*‘(𝐸 ∩ 𝐵)) + (vol*‘(𝐸 ∖ 𝐵))) ≤ ((vol*‘𝐸) + 𝐶)) | ||
| Theorem | ioombl1 25479 | An open right-unbounded interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014.) (Proof shortened by Mario Carneiro, 25-Mar-2015.) |
| ⊢ (𝐴 ∈ ℝ* → (𝐴(,)+∞) ∈ dom vol) | ||
| Theorem | icombl1 25480 | A closed unbounded-above interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴[,)+∞) ∈ dom vol) | ||
| Theorem | icombl 25481 | A closed-below, open-above real interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ∈ dom vol) | ||
| Theorem | ioombl 25482 | An open real interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014.) |
| ⊢ (𝐴(,)𝐵) ∈ dom vol | ||
| Theorem | iccmbl 25483 | A closed real interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ∈ dom vol) | ||
| Theorem | iccvolcl 25484 | A closed real interval has finite volume. (Contributed by Mario Carneiro, 25-Aug-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,]𝐵)) ∈ ℝ) | ||
| Theorem | ovolioo 25485 | The measure of an open interval. (Contributed by Mario Carneiro, 2-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol*‘(𝐴(,)𝐵)) = (𝐵 − 𝐴)) | ||
| Theorem | volioo 25486 | The measure of an open interval. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵 − 𝐴)) | ||
| Theorem | ioovolcl 25487 | An open real interval has finite volume. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴(,)𝐵)) ∈ ℝ) | ||
| Theorem | ovolfs2 25488 | Alternative expression for the interval length function. (Contributed by Mario Carneiro, 26-Mar-2015.) |
| ⊢ 𝐺 = ((abs ∘ − ) ∘ 𝐹) ⇒ ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺 = ((vol* ∘ (,)) ∘ 𝐹)) | ||
| Theorem | ioorcl2 25489 | An open interval with finite volume has real endpoints. (Contributed by Mario Carneiro, 26-Mar-2015.) |
| ⊢ (((𝐴(,)𝐵) ≠ ∅ ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) | ||
| Theorem | ioorf 25490 | Define a function from open intervals to their endpoints. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.) |
| ⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) ⇒ ⊢ 𝐹:ran (,)⟶( ≤ ∩ (ℝ* × ℝ*)) | ||
| Theorem | ioorval 25491* | Define a function from open intervals to their endpoints. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.) |
| ⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) ⇒ ⊢ (𝐴 ∈ ran (,) → (𝐹‘𝐴) = if(𝐴 = ∅, 〈0, 0〉, 〈inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )〉)) | ||
| Theorem | ioorinv2 25492* | The function 𝐹 is an "inverse" of sorts to the open interval function. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.) |
| ⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) ⇒ ⊢ ((𝐴(,)𝐵) ≠ ∅ → (𝐹‘(𝐴(,)𝐵)) = 〈𝐴, 𝐵〉) | ||
| Theorem | ioorinv 25493* | The function 𝐹 is an "inverse" of sorts to the open interval function. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.) |
| ⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) ⇒ ⊢ (𝐴 ∈ ran (,) → ((,)‘(𝐹‘𝐴)) = 𝐴) | ||
| Theorem | ioorcl 25494* | The function 𝐹 does not always return real numbers, but it does on intervals of finite volume. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.) |
| ⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) ⇒ ⊢ ((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) → (𝐹‘𝐴) ∈ ( ≤ ∩ (ℝ × ℝ))) | ||
| Theorem | uniiccdif 25495 | A union of closed intervals differs from the equivalent union of open intervals by a nullset. (Contributed by Mario Carneiro, 25-Mar-2015.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ⇒ ⊢ (𝜑 → (∪ ran ((,) ∘ 𝐹) ⊆ ∪ ran ([,] ∘ 𝐹) ∧ (vol*‘(∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹))) = 0)) | ||
| Theorem | uniioovol 25496* | A disjoint union of open intervals has volume equal to the sum of the volume of the intervals. (This proof does not use countable choice, unlike voliun 25471.) Lemma 565Ca of [Fremlin5] p. 213. (Contributed by Mario Carneiro, 26-Mar-2015.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → Disj 𝑥 ∈ ℕ ((,)‘(𝐹‘𝑥))) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) ⇒ ⊢ (𝜑 → (vol*‘∪ ran ((,) ∘ 𝐹)) = sup(ran 𝑆, ℝ*, < )) | ||
| Theorem | uniiccvol 25497* | An almost-disjoint union of closed intervals (disjoint interiors) has volume equal to the sum of the volume of the intervals. (This proof does not use countable choice, unlike voliun 25471.) (Contributed by Mario Carneiro, 25-Mar-2015.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → Disj 𝑥 ∈ ℕ ((,)‘(𝐹‘𝑥))) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) ⇒ ⊢ (𝜑 → (vol*‘∪ ran ([,] ∘ 𝐹)) = sup(ran 𝑆, ℝ*, < )) | ||
| Theorem | uniioombllem1 25498* | Lemma for uniioombl 25506. (Contributed by Mario Carneiro, 25-Mar-2015.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → Disj 𝑥 ∈ ℕ ((,)‘(𝐹‘𝑥))) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝐴 = ∪ ran ((,) ∘ 𝐹) & ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐺)) & ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) & ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) ⇒ ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ) | ||
| Theorem | uniioombllem2a 25499* | Lemma for uniioombl 25506. (Contributed by Mario Carneiro, 7-May-2015.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → Disj 𝑥 ∈ ℕ ((,)‘(𝐹‘𝑥))) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝐴 = ∪ ran ((,) ∘ 𝐹) & ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐺)) & ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) & ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) ⇒ ⊢ (((𝜑 ∧ 𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (((,)‘(𝐹‘𝑧)) ∩ ((,)‘(𝐺‘𝐽))) ∈ ran (,)) | ||
| Theorem | uniioombllem2 25500* | Lemma for uniioombl 25506. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by Mario Carneiro, 11-Dec-2016.) (Revised by AV, 13-Sep-2020.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → Disj 𝑥 ∈ ℕ ((,)‘(𝐹‘𝑥))) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝐴 = ∪ ran ((,) ∘ 𝐹) & ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐺)) & ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) & ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) & ⊢ 𝐻 = (𝑧 ∈ ℕ ↦ (((,)‘(𝐹‘𝑧)) ∩ ((,)‘(𝐺‘𝐽)))) & ⊢ 𝐾 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) ⇒ ⊢ ((𝜑 ∧ 𝐽 ∈ ℕ) → seq1( + , (vol* ∘ 𝐻)) ⇝ (vol*‘(((,)‘(𝐺‘𝐽)) ∩ 𝐴))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |