![]() |
Metamath
Proof Explorer Theorem List (p. 255 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | cmsms 25401 | A complete metric space is a metric space. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ (𝐺 ∈ CMetSp → 𝐺 ∈ MetSp) | ||
Theorem | cmspropd 25402 | Property deduction for a complete metric space. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵))) & ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) ⇒ ⊢ (𝜑 → (𝐾 ∈ CMetSp ↔ 𝐿 ∈ CMetSp)) | ||
Theorem | cmssmscld 25403 | The restriction of a metric space is closed if it is complete. (Contributed by AV, 9-Oct-2022.) |
⊢ 𝐾 = (𝑀 ↾s 𝐴) & ⊢ 𝑋 = (Base‘𝑀) & ⊢ 𝐽 = (TopOpen‘𝑀) ⇒ ⊢ ((𝑀 ∈ MetSp ∧ 𝐴 ⊆ 𝑋 ∧ 𝐾 ∈ CMetSp) → 𝐴 ∈ (Clsd‘𝐽)) | ||
Theorem | cmsss 25404 | The restriction of a complete metric space is complete iff it is closed. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝐾 = (𝑀 ↾s 𝐴) & ⊢ 𝑋 = (Base‘𝑀) & ⊢ 𝐽 = (TopOpen‘𝑀) ⇒ ⊢ ((𝑀 ∈ CMetSp ∧ 𝐴 ⊆ 𝑋) → (𝐾 ∈ CMetSp ↔ 𝐴 ∈ (Clsd‘𝐽))) | ||
Theorem | lssbn 25405 | A subspace of a Banach space is a Banach space iff it is closed. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) ⇒ ⊢ ((𝑊 ∈ Ban ∧ 𝑈 ∈ 𝑆) → (𝑋 ∈ Ban ↔ 𝑈 ∈ (Clsd‘𝐽))) | ||
Theorem | cmetcusp1 25406 | If the uniform set of a complete metric space is the uniform structure generated by its metric, then it is a complete uniform space. (Contributed by Thierry Arnoux, 15-Dec-2017.) |
⊢ 𝑋 = (Base‘𝐹) & ⊢ 𝐷 = ((dist‘𝐹) ↾ (𝑋 × 𝑋)) & ⊢ 𝑈 = (UnifSt‘𝐹) ⇒ ⊢ ((𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = (metUnif‘𝐷)) → 𝐹 ∈ CUnifSp) | ||
Theorem | cmetcusp 25407 | The uniform space generated by a complete metric is a complete uniform space. (Contributed by Thierry Arnoux, 5-Dec-2017.) |
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (CMet‘𝑋)) → (toUnifSp‘(metUnif‘𝐷)) ∈ CUnifSp) | ||
Theorem | cncms 25408 | The field of complex numbers is a complete metric space. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ ℂfld ∈ CMetSp | ||
Theorem | cnflduss 25409 | The uniform structure of the complex numbers. (Contributed by Thierry Arnoux, 17-Dec-2017.) (Revised by Thierry Arnoux, 11-Mar-2018.) |
⊢ 𝑈 = (UnifSt‘ℂfld) ⇒ ⊢ 𝑈 = (metUnif‘(abs ∘ − )) | ||
Theorem | cnfldcusp 25410 | The field of complex numbers is a complete uniform space. (Contributed by Thierry Arnoux, 17-Dec-2017.) |
⊢ ℂfld ∈ CUnifSp | ||
Theorem | resscdrg 25411 | The real numbers are a subset of any complete subfield in the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝐹 = (ℂfld ↾s 𝐾) ⇒ ⊢ ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp) → ℝ ⊆ 𝐾) | ||
Theorem | cncdrg 25412 | The only complete subfields of the complex numbers are ℝ and ℂ. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝐹 = (ℂfld ↾s 𝐾) ⇒ ⊢ ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ DivRing ∧ 𝐹 ∈ CMetSp) → 𝐾 ∈ {ℝ, ℂ}) | ||
Theorem | srabn 25413 | The subring algebra over a complete normed ring is a Banach space iff the subring is a closed division ring. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝐴 = ((subringAlg ‘𝑊)‘𝑆) & ⊢ 𝐽 = (TopOpen‘𝑊) ⇒ ⊢ ((𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝐴 ∈ Ban ↔ (𝑆 ∈ (Clsd‘𝐽) ∧ (𝑊 ↾s 𝑆) ∈ DivRing))) | ||
Theorem | rlmbn 25414 | The ring module over a complete normed division ring is a Banach space. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ∧ 𝑅 ∈ CMetSp) → (ringLMod‘𝑅) ∈ Ban) | ||
Theorem | ishl 25415 | The predicate "is a subcomplex Hilbert space". A Hilbert space is a Banach space which is also an inner product space, i.e. whose norm satisfies the parallelogram law. (Contributed by Steve Rodriguez, 28-Apr-2007.) (Revised by Mario Carneiro, 15-Oct-2015.) |
⊢ (𝑊 ∈ ℂHil ↔ (𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil)) | ||
Theorem | hlbn 25416 | Every subcomplex Hilbert space is a Banach space. (Contributed by Steve Rodriguez, 28-Apr-2007.) |
⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ Ban) | ||
Theorem | hlcph 25417 | Every subcomplex Hilbert space is a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil) | ||
Theorem | hlphl 25418 | Every subcomplex Hilbert space is an inner product space (also called a pre-Hilbert space). (Contributed by NM, 28-Apr-2007.) (Revised by Mario Carneiro, 15-Oct-2015.) |
⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ PreHil) | ||
Theorem | hlcms 25419 | Every subcomplex Hilbert space is a complete metric space. (Contributed by Mario Carneiro, 17-Oct-2015.) |
⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ CMetSp) | ||
Theorem | hlprlem 25420 | Lemma for hlpr 25422. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ ℂHil → (𝐾 ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s 𝐾) ∈ DivRing ∧ (ℂfld ↾s 𝐾) ∈ CMetSp)) | ||
Theorem | hlress 25421 | The scalar field of a subcomplex Hilbert space contains ℝ. (Contributed by Mario Carneiro, 8-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ ℂHil → ℝ ⊆ 𝐾) | ||
Theorem | hlpr 25422 | The scalar field of a subcomplex Hilbert space is either ℝ or ℂ. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ ℂHil → 𝐾 ∈ {ℝ, ℂ}) | ||
Theorem | ishl2 25423 | A Hilbert space is a complete subcomplex pre-Hilbert space over ℝ or ℂ. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ ℂHil ↔ (𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ∧ 𝐾 ∈ {ℝ, ℂ})) | ||
Theorem | cphssphl 25424 | A Banach subspace of a subcomplex pre-Hilbert space is a subcomplex Hilbert space. (Contributed by NM, 11-Apr-2008.) (Revised by AV, 25-Sep-2022.) |
⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ Ban) → 𝑋 ∈ ℂHil) | ||
Theorem | cmslssbn 25425 | A complete linear subspace of a normed vector space is a Banach space. We furthermore have to assume that the field of scalars is complete since this is a requirement in the current definition of Banach spaces df-bn 25389. (Contributed by AV, 8-Oct-2022.) |
⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp) ∧ (𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆)) → 𝑋 ∈ Ban) | ||
Theorem | cmscsscms 25426 | A closed subspace of a complete metric space which is also a subcomplex pre-Hilbert space is a complete metric space. Remark: the assumption that the Banach space must be a (subcomplex) pre-Hilbert space is required because the definition of ClSubSp is based on an inner product. If ClSubSp was generalized to arbitrary topological spaces (or at least topological modules), this assumption could be omitted. (Contributed by AV, 8-Oct-2022.) |
⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑆 = (ClSubSp‘𝑊) ⇒ ⊢ (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ CMetSp) | ||
Theorem | bncssbn 25427 | A closed subspace of a Banach space which is also a subcomplex pre-Hilbert space is a Banach space. Remark: the assumption that the Banach space must be a (subcomplex) pre-Hilbert space is required because the definition of ClSubSp is based on an inner product. If ClSubSp was generalized for arbitrary topological spaces, this assuption could be omitted. (Contributed by AV, 8-Oct-2022.) |
⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑆 = (ClSubSp‘𝑊) ⇒ ⊢ (((𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ Ban) | ||
Theorem | cssbn 25428 | A complete subspace of a normed vector space with a complete scalar field is a Banach space. Remark: In contrast to ClSubSp, a complete subspace is defined by "a linear subspace in which all Cauchy sequences converge to a point in the subspace". This is closer to the original, but deprecated definition Cℋ (df-ch 31253) of closed subspaces of a Hilbert space. It may be superseded by cmslssbn 25425. (Contributed by NM, 10-Apr-2008.) (Revised by AV, 6-Oct-2022.) |
⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝐷 = ((dist‘𝑊) ↾ (𝑈 × 𝑈)) ⇒ ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑋 ∈ Ban) | ||
Theorem | csschl 25429 | A complete subspace of a complex pre-Hilbert space is a complex Hilbert space. Remarks: (a) In contrast to ClSubSp, a complete subspace is defined by "a linear subspace in which all Cauchy sequences converge to a point in the subspace". This is closer to the original, but deprecated definition Cℋ (df-ch 31253) of closed subspaces of a Hilbert space. (b) This theorem does not hold for arbitrary subcomplex (pre-)Hilbert spaces, because the scalar field as restriction of the field of the complex numbers need not be closed. (Contributed by NM, 10-Apr-2008.) (Revised by AV, 6-Oct-2022.) |
⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝐷 = ((dist‘𝑊) ↾ (𝑈 × 𝑈)) & ⊢ (Scalar‘𝑊) = ℂfld ⇒ ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → (𝑋 ∈ ℂHil ∧ (Scalar‘𝑋) = ℂfld)) | ||
Theorem | cmslsschl 25430 | A complete linear subspace of a subcomplex Hilbert space is a subcomplex Hilbert space. (Contributed by AV, 8-Oct-2022.) |
⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂHil ∧ 𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ ℂHil) | ||
Theorem | chlcsschl 25431 | A closed subspace of a subcomplex Hilbert space is a subcomplex Hilbert space. (Contributed by NM, 10-Apr-2008.) (Revised by AV, 8-Oct-2022.) |
⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑆 = (ClSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ ℂHil) | ||
Theorem | retopn 25432 | The topology of the real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
⊢ (topGen‘ran (,)) = (TopOpen‘ℝfld) | ||
Theorem | recms 25433 | The real numbers form a complete metric space. (Contributed by Thierry Arnoux, 1-Nov-2017.) |
⊢ ℝfld ∈ CMetSp | ||
Theorem | reust 25434 | The Uniform structure of the real numbers. (Contributed by Thierry Arnoux, 14-Feb-2018.) |
⊢ (UnifSt‘ℝfld) = (metUnif‘((dist‘ℝfld) ↾ (ℝ × ℝ))) | ||
Theorem | recusp 25435 | The real numbers form a complete uniform space. (Contributed by Thierry Arnoux, 17-Dec-2017.) |
⊢ ℝfld ∈ CUnifSp | ||
Syntax | crrx 25436 | Extend class notation with generalized real Euclidean spaces. |
class ℝ^ | ||
Syntax | cehl 25437 | Extend class notation with real Euclidean spaces. |
class 𝔼hil | ||
Definition | df-rrx 25438 | Define the function associating with a set the free real vector space on that set, equipped with the natural inner product and norm. This is the direct sum of copies of the field of real numbers indexed by that set. We call it here a "generalized real Euclidean space", but note that it need not be complete (for instance if the given set is infinite countable). (Contributed by Thierry Arnoux, 16-Jun-2019.) |
⊢ ℝ^ = (𝑖 ∈ V ↦ (toℂPreHil‘(ℝfld freeLMod 𝑖))) | ||
Definition | df-ehl 25439 | Define a function generating the real Euclidean spaces of finite dimension. The case 𝑛 = 0 corresponds to a space of dimension 0, that is, limited to a neutral element (see ehl0 25470). Members of this family of spaces are Hilbert spaces, as shown in - ehlhl . (Contributed by Thierry Arnoux, 16-Jun-2019.) |
⊢ 𝔼hil = (𝑛 ∈ ℕ0 ↦ (ℝ^‘(1...𝑛))) | ||
Theorem | rrxval 25440 | Value of the generalized Euclidean space. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
⊢ 𝐻 = (ℝ^‘𝐼) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼))) | ||
Theorem | rrxbase 25441* | The base of the generalized real Euclidean space is the set of functions with finite support. (Contributed by Thierry Arnoux, 16-Jun-2019.) (Proof shortened by AV, 22-Jul-2019.) |
⊢ 𝐻 = (ℝ^‘𝐼) & ⊢ 𝐵 = (Base‘𝐻) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐵 = {𝑓 ∈ (ℝ ↑m 𝐼) ∣ 𝑓 finSupp 0}) | ||
Theorem | rrxprds 25442 | Expand the definition of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
⊢ 𝐻 = (ℝ^‘𝐼) & ⊢ 𝐵 = (Base‘𝐻) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐻 = (toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵))) | ||
Theorem | rrxip 25443* | The inner product of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
⊢ 𝐻 = (ℝ^‘𝐼) & ⊢ 𝐵 = (Base‘𝐻) ⇒ ⊢ (𝐼 ∈ 𝑉 → (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥) · (𝑔‘𝑥))))) = (·𝑖‘𝐻)) | ||
Theorem | rrxnm 25444* | The norm of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
⊢ 𝐻 = (ℝ^‘𝐼) & ⊢ 𝐵 = (Base‘𝐻) ⇒ ⊢ (𝐼 ∈ 𝑉 → (𝑓 ∈ 𝐵 ↦ (√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)↑2))))) = (norm‘𝐻)) | ||
Theorem | rrxcph 25445 | Generalized Euclidean real spaces are subcomplex pre-Hilbert spaces. (Contributed by Thierry Arnoux, 23-Jun-2019.) (Proof shortened by AV, 22-Jul-2019.) |
⊢ 𝐻 = (ℝ^‘𝐼) & ⊢ 𝐵 = (Base‘𝐻) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐻 ∈ ℂPreHil) | ||
Theorem | rrxds 25446* | The distance over generalized Euclidean spaces. Compare with df-rrn 37786. (Contributed by Thierry Arnoux, 20-Jun-2019.) (Proof shortened by AV, 20-Jul-2019.) |
⊢ 𝐻 = (ℝ^‘𝐼) & ⊢ 𝐵 = (Base‘𝐻) ⇒ ⊢ (𝐼 ∈ 𝑉 → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2))))) = (dist‘𝐻)) | ||
Theorem | rrxvsca 25447 | The scalar product over generalized Euclidean spaces is the componentwise real number multiplication. (Contributed by Thierry Arnoux, 18-Jan-2023.) |
⊢ 𝐻 = (ℝ^‘𝐼) & ⊢ 𝐵 = (Base‘𝐻) & ⊢ ∙ = ( ·𝑠 ‘𝐻) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐽 ∈ 𝐼) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐻)) ⇒ ⊢ (𝜑 → ((𝐴 ∙ 𝑋)‘𝐽) = (𝐴 · (𝑋‘𝐽))) | ||
Theorem | rrxplusgvscavalb 25448* | The result of the addition combined with scalar multiplication in a generalized Euclidean space is defined by its coordinate-wise operations. (Contributed by AV, 21-Jan-2023.) |
⊢ 𝐻 = (ℝ^‘𝐼) & ⊢ 𝐵 = (Base‘𝐻) & ⊢ ∙ = ( ·𝑠 ‘𝐻) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ ✚ = (+g‘𝐻) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝑍 = ((𝐴 ∙ 𝑋) ✚ (𝐶 ∙ 𝑌)) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = ((𝐴 · (𝑋‘𝑖)) + (𝐶 · (𝑌‘𝑖))))) | ||
Theorem | rrxsca 25449 | The field of real numbers is the scalar field of the generalized real Euclidean space. (Contributed by AV, 15-Jan-2023.) |
⊢ 𝐻 = (ℝ^‘𝐼) ⇒ ⊢ (𝐼 ∈ 𝑉 → (Scalar‘𝐻) = ℝfld) | ||
Theorem | rrx0 25450 | The zero ("origin") in a generalized real Euclidean space. (Contributed by AV, 11-Feb-2023.) |
⊢ 𝐻 = (ℝ^‘𝐼) & ⊢ 0 = (𝐼 × {0}) ⇒ ⊢ (𝐼 ∈ 𝑉 → (0g‘𝐻) = 0 ) | ||
Theorem | rrx0el 25451 | The zero ("origin") in a generalized real Euclidean space is an element of its base set. (Contributed by AV, 11-Feb-2023.) |
⊢ 0 = (𝐼 × {0}) & ⊢ 𝑃 = (ℝ ↑m 𝐼) ⇒ ⊢ (𝐼 ∈ 𝑉 → 0 ∈ 𝑃) | ||
Theorem | csbren 25452* | Cauchy-Schwarz-Bunjakovsky inequality for R^n. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 4-Jun-2014.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 (𝐵 · 𝐶)↑2) ≤ (Σ𝑘 ∈ 𝐴 (𝐵↑2) · Σ𝑘 ∈ 𝐴 (𝐶↑2))) | ||
Theorem | trirn 25453* | Triangle inequality in R^n. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 4-Jun-2014.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (√‘Σ𝑘 ∈ 𝐴 ((𝐵 + 𝐶)↑2)) ≤ ((√‘Σ𝑘 ∈ 𝐴 (𝐵↑2)) + (√‘Σ𝑘 ∈ 𝐴 (𝐶↑2)))) | ||
Theorem | rrxf 25454* | Euclidean vectors as functions. (Contributed by Thierry Arnoux, 7-Jul-2019.) |
⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} & ⊢ (𝜑 → 𝐹 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝐹:𝐼⟶ℝ) | ||
Theorem | rrxfsupp 25455* | Euclidean vectors are of finite support. (Contributed by Thierry Arnoux, 7-Jul-2019.) |
⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} & ⊢ (𝜑 → 𝐹 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝐹 supp 0) ∈ Fin) | ||
Theorem | rrxsuppss 25456* | Support of Euclidean vectors. (Contributed by Thierry Arnoux, 7-Jul-2019.) |
⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} & ⊢ (𝜑 → 𝐹 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝐹 supp 0) ⊆ 𝐼) | ||
Theorem | rrxmvallem 25457* | Support of the function used for building the distance . (Contributed by Thierry Arnoux, 30-Jun-2019.) |
⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → ((𝑘 ∈ 𝐼 ↦ (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))) | ||
Theorem | rrxmval 25458* | The value of the Euclidean metric. Compare with rrnmval 37788. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} & ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) | ||
Theorem | rrxmfval 25459* | The value of the Euclidean metric. Compare with rrnval 37787. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} & ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐷 = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑓 supp 0) ∪ (𝑔 supp 0))(((𝑓‘𝑘) − (𝑔‘𝑘))↑2)))) | ||
Theorem | rrxmetlem 25460* | Lemma for rrxmet 25461. (Contributed by Thierry Arnoux, 5-Jul-2019.) |
⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} & ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ 𝑋) & ⊢ (𝜑 → 𝐺 ∈ 𝑋) & ⊢ (𝜑 → 𝐴 ⊆ 𝐼) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐴) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2) = Σ𝑘 ∈ 𝐴 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) | ||
Theorem | rrxmet 25461* | Euclidean space is a metric space. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.) (Revised by Thierry Arnoux, 30-Jun-2019.) |
⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} & ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐷 ∈ (Met‘𝑋)) | ||
Theorem | rrxdstprj1 25462* | The distance between two points in Euclidean space is greater than the distance between the projections onto one coordinate. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Sep-2015.) (Revised by Thierry Arnoux, 7-Jul-2019.) |
⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} & ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) & ⊢ 𝑀 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ (((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → ((𝐹‘𝐴)𝑀(𝐺‘𝐴)) ≤ (𝐹𝐷𝐺)) | ||
Theorem | rrxbasefi 25463 | The base of the generalized real Euclidean space, when the dimension of the space is finite. This justifies the use of (ℝ ↑m 𝑋) for the development of the Lebesgue measure theory for n-dimensional real numbers. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ (𝜑 → 𝑋 ∈ Fin) & ⊢ 𝐻 = (ℝ^‘𝑋) & ⊢ 𝐵 = (Base‘𝐻) ⇒ ⊢ (𝜑 → 𝐵 = (ℝ ↑m 𝑋)) | ||
Theorem | rrxdsfi 25464* | The distance over generalized Euclidean spaces. Finite dimensional case. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ 𝐻 = (ℝ^‘𝐼) & ⊢ 𝐵 = (ℝ ↑m 𝐼) ⇒ ⊢ (𝐼 ∈ Fin → (dist‘𝐻) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑓‘𝑘) − (𝑔‘𝑘))↑2)))) | ||
Theorem | rrxmetfi 25465 | Euclidean space is a metric space. Finite dimensional version. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) ⇒ ⊢ (𝐼 ∈ Fin → 𝐷 ∈ (Met‘(ℝ ↑m 𝐼))) | ||
Theorem | rrxdsfival 25466* | The value of the Euclidean distance function in a generalized real Euclidean space of finite dimension. (Contributed by AV, 15-Jan-2023.) |
⊢ 𝑋 = (ℝ ↑m 𝐼) & ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) ⇒ ⊢ ((𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) | ||
Theorem | ehlval 25467 | Value of the Euclidean space of dimension 𝑁. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
⊢ 𝐸 = (𝔼hil‘𝑁) ⇒ ⊢ (𝑁 ∈ ℕ0 → 𝐸 = (ℝ^‘(1...𝑁))) | ||
Theorem | ehlbase 25468 | The base of the Euclidean space is the set of n-tuples of real numbers. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
⊢ 𝐸 = (𝔼hil‘𝑁) ⇒ ⊢ (𝑁 ∈ ℕ0 → (ℝ ↑m (1...𝑁)) = (Base‘𝐸)) | ||
Theorem | ehl0base 25469 | The base of the Euclidean space of dimension 0 consists only of one element, the empty set. (Contributed by AV, 12-Feb-2023.) |
⊢ 𝐸 = (𝔼hil‘0) ⇒ ⊢ (Base‘𝐸) = {∅} | ||
Theorem | ehl0 25470 | The Euclidean space of dimension 0 consists of the neutral element only. (Contributed by AV, 12-Feb-2023.) |
⊢ 𝐸 = (𝔼hil‘0) & ⊢ 0 = (0g‘𝐸) ⇒ ⊢ (Base‘𝐸) = { 0 } | ||
Theorem | ehleudis 25471* | The Euclidean distance function in a real Euclidean space of finite dimension. (Contributed by AV, 15-Jan-2023.) |
⊢ 𝐼 = (1...𝑁) & ⊢ 𝐸 = (𝔼hil‘𝑁) & ⊢ 𝑋 = (ℝ ↑m 𝐼) & ⊢ 𝐷 = (dist‘𝐸) ⇒ ⊢ (𝑁 ∈ ℕ0 → 𝐷 = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑓‘𝑘) − (𝑔‘𝑘))↑2)))) | ||
Theorem | ehleudisval 25472* | The value of the Euclidean distance function in a real Euclidean space of finite dimension. (Contributed by AV, 15-Jan-2023.) |
⊢ 𝐼 = (1...𝑁) & ⊢ 𝐸 = (𝔼hil‘𝑁) & ⊢ 𝑋 = (ℝ ↑m 𝐼) & ⊢ 𝐷 = (dist‘𝐸) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) | ||
Theorem | ehl1eudis 25473* | The Euclidean distance function in a real Euclidean space of dimension 1. (Contributed by AV, 16-Jan-2023.) |
⊢ 𝐸 = (𝔼hil‘1) & ⊢ 𝑋 = (ℝ ↑m {1}) & ⊢ 𝐷 = (dist‘𝐸) ⇒ ⊢ 𝐷 = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (abs‘((𝑓‘1) − (𝑔‘1)))) | ||
Theorem | ehl1eudisval 25474 | The value of the Euclidean distance function in a real Euclidean space of dimension 1. (Contributed by AV, 16-Jan-2023.) |
⊢ 𝐸 = (𝔼hil‘1) & ⊢ 𝑋 = (ℝ ↑m {1}) & ⊢ 𝐷 = (dist‘𝐸) ⇒ ⊢ ((𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹𝐷𝐺) = (abs‘((𝐹‘1) − (𝐺‘1)))) | ||
Theorem | ehl2eudis 25475* | The Euclidean distance function in a real Euclidean space of dimension 2. (Contributed by AV, 16-Jan-2023.) |
⊢ 𝐸 = (𝔼hil‘2) & ⊢ 𝑋 = (ℝ ↑m {1, 2}) & ⊢ 𝐷 = (dist‘𝐸) ⇒ ⊢ 𝐷 = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2)))) | ||
Theorem | ehl2eudisval 25476 | The value of the Euclidean distance function in a real Euclidean space of dimension 2. (Contributed by AV, 16-Jan-2023.) |
⊢ 𝐸 = (𝔼hil‘2) & ⊢ 𝑋 = (ℝ ↑m {1, 2}) & ⊢ 𝐷 = (dist‘𝐸) ⇒ ⊢ ((𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹𝐷𝐺) = (√‘((((𝐹‘1) − (𝐺‘1))↑2) + (((𝐹‘2) − (𝐺‘2))↑2)))) | ||
Theorem | minveclem1 25477* | Lemma for minvec 25489. The set of all distances from points of 𝑌 to 𝐴 are a nonempty set of nonnegative reals. (Contributed by Mario Carneiro, 8-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 𝑁 = (norm‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) & ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) & ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐽 = (TopOpen‘𝑈) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) ⇒ ⊢ (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) | ||
Theorem | minveclem4c 25478* | Lemma for minvec 25489. The infimum of the distances to 𝐴 is a real number. (Contributed by Mario Carneiro, 16-Jun-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) (Revised by AV, 3-Oct-2020.) |
⊢ 𝑋 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 𝑁 = (norm‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) & ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) & ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐽 = (TopOpen‘𝑈) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) ⇒ ⊢ (𝜑 → 𝑆 ∈ ℝ) | ||
Theorem | minveclem2 25479* | Lemma for minvec 25489. Any two points 𝐾 and 𝐿 in 𝑌 are close to each other if they are close to the infimum of distance to 𝐴. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) (Revised by AV, 3-Oct-2020.) |
⊢ 𝑋 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 𝑁 = (norm‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) & ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) & ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐽 = (TopOpen‘𝑈) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) & ⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵) & ⊢ (𝜑 → 𝐾 ∈ 𝑌) & ⊢ (𝜑 → 𝐿 ∈ 𝑌) & ⊢ (𝜑 → ((𝐴𝐷𝐾)↑2) ≤ ((𝑆↑2) + 𝐵)) & ⊢ (𝜑 → ((𝐴𝐷𝐿)↑2) ≤ ((𝑆↑2) + 𝐵)) ⇒ ⊢ (𝜑 → ((𝐾𝐷𝐿)↑2) ≤ (4 · 𝐵)) | ||
Theorem | minveclem3a 25480* | Lemma for minvec 25489. 𝐷 is a complete metric when restricted to 𝑌. (Contributed by Mario Carneiro, 7-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 𝑁 = (norm‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) & ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) & ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐽 = (TopOpen‘𝑈) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) & ⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) | ||
Theorem | minveclem3b 25481* | Lemma for minvec 25489. The set of vectors within a fixed distance of the infimum forms a filter base. (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by AV, 3-Oct-2020.) |
⊢ 𝑋 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 𝑁 = (norm‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) & ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) & ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐽 = (TopOpen‘𝑈) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) & ⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) & ⊢ 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) ⇒ ⊢ (𝜑 → 𝐹 ∈ (fBas‘𝑌)) | ||
Theorem | minveclem3 25482* | Lemma for minvec 25489. The filter formed by taking elements successively closer to the infimum is Cauchy. (Contributed by Mario Carneiro, 8-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 𝑁 = (norm‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) & ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) & ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐽 = (TopOpen‘𝑈) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) & ⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) & ⊢ 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) ⇒ ⊢ (𝜑 → (𝑌filGen𝐹) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) | ||
Theorem | minveclem4a 25483* | Lemma for minvec 25489. 𝐹 converges to a point 𝑃 in 𝑌. (Contributed by Mario Carneiro, 7-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 𝑁 = (norm‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) & ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) & ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐽 = (TopOpen‘𝑈) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) & ⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) & ⊢ 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) & ⊢ 𝑃 = ∪ (𝐽 fLim (𝑋filGen𝐹)) ⇒ ⊢ (𝜑 → 𝑃 ∈ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌)) | ||
Theorem | minveclem4b 25484* | Lemma for minvec 25489. The convergent point of the Cauchy sequence 𝐹 is a member of the base space. (Contributed by Mario Carneiro, 16-Jun-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 𝑁 = (norm‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) & ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) & ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐽 = (TopOpen‘𝑈) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) & ⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) & ⊢ 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) & ⊢ 𝑃 = ∪ (𝐽 fLim (𝑋filGen𝐹)) ⇒ ⊢ (𝜑 → 𝑃 ∈ 𝑋) | ||
Theorem | minveclem4 25485* | Lemma for minvec 25489. The convergent point of the Cauchy sequence 𝐹 attains the minimum distance, and so is closer to 𝐴 than any other point in 𝑌. (Contributed by Mario Carneiro, 7-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) (Revised by AV, 3-Oct-2020.) |
⊢ 𝑋 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 𝑁 = (norm‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) & ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) & ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐽 = (TopOpen‘𝑈) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) & ⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) & ⊢ 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) & ⊢ 𝑃 = ∪ (𝐽 fLim (𝑋filGen𝐹)) & ⊢ 𝑇 = (((((𝐴𝐷𝑃) + 𝑆) / 2)↑2) − (𝑆↑2)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴 − 𝑥)) ≤ (𝑁‘(𝐴 − 𝑦))) | ||
Theorem | minveclem5 25486* | Lemma for minvec 25489. Discharge the assumptions in minveclem4 25485. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 𝑁 = (norm‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) & ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) & ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐽 = (TopOpen‘𝑈) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) & ⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴 − 𝑥)) ≤ (𝑁‘(𝐴 − 𝑦))) | ||
Theorem | minveclem6 25487* | Lemma for minvec 25489. Any minimal point is less than 𝑆 away from 𝐴. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) (Revised by AV, 3-Oct-2020.) |
⊢ 𝑋 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 𝑁 = (norm‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) & ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) & ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐽 = (TopOpen‘𝑈) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) & ⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴 − 𝑥)) ≤ (𝑁‘(𝐴 − 𝑦)))) | ||
Theorem | minveclem7 25488* | Lemma for minvec 25489. Since any two minimal points are distance zero away from each other, the minimal point is unique. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) |
⊢ 𝑋 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 𝑁 = (norm‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) & ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) & ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐽 = (TopOpen‘𝑈) & ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) & ⊢ 𝑆 = inf(𝑅, ℝ, < ) & ⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴 − 𝑥)) ≤ (𝑁‘(𝐴 − 𝑦))) | ||
Theorem | minvec 25489* | Minimizing vector theorem, or the Hilbert projection theorem. There is exactly one vector in a complete subspace 𝑊 that minimizes the distance to an arbitrary vector 𝐴 in a parent inner product space. Theorem 3.3-1 of [Kreyszig] p. 144, specialized to subspaces instead of convex subsets. (Contributed by NM, 11-Apr-2008.) (Proof shortened by Mario Carneiro, 9-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) (Proof shortened by AV, 3-Oct-2020.) |
⊢ 𝑋 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 𝑁 = (norm‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) & ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) & ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴 − 𝑥)) ≤ (𝑁‘(𝐴 − 𝑦))) | ||
Theorem | pjthlem1 25490* | Lemma for pjth 25492. (Contributed by NM, 10-Oct-1999.) (Revised by Mario Carneiro, 17-Oct-2015.) (Proof shortened by AV, 10-Jul-2022.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝐿 = (LSubSp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ ℂHil) & ⊢ (𝜑 → 𝑈 ∈ 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑈 (𝑁‘𝐴) ≤ (𝑁‘(𝐴 − 𝑥))) & ⊢ 𝑇 = ((𝐴 , 𝐵) / ((𝐵 , 𝐵) + 1)) ⇒ ⊢ (𝜑 → (𝐴 , 𝐵) = 0) | ||
Theorem | pjthlem2 25491 | Lemma for pjth 25492. (Contributed by NM, 10-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (norm‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ , = (·𝑖‘𝑊) & ⊢ 𝐿 = (LSubSp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ ℂHil) & ⊢ (𝜑 → 𝑈 ∈ 𝐿) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝑂 = (ocv‘𝑊) & ⊢ (𝜑 → 𝑈 ∈ (Clsd‘𝐽)) ⇒ ⊢ (𝜑 → 𝐴 ∈ (𝑈 ⊕ (𝑂‘𝑈))) | ||
Theorem | pjth 25492 | Projection Theorem: Any Hilbert space vector 𝐴 can be decomposed uniquely into a member 𝑥 of a closed subspace 𝐻 and a member 𝑦 of the complement of the subspace. Theorem 3.7(i) of [Beran] p. 102 (existence part). (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 14-May-2014.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝑂 = (ocv‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝐿 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝑈 ⊕ (𝑂‘𝑈)) = 𝑉) | ||
Theorem | pjth2 25493 | Projection Theorem with abbreviations: A topologically closed subspace is a projection subspace. (Contributed by Mario Carneiro, 17-Oct-2015.) |
⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝐿 = (LSubSp‘𝑊) & ⊢ 𝐾 = (proj‘𝑊) ⇒ ⊢ ((𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (Clsd‘𝐽)) → 𝑈 ∈ dom 𝐾) | ||
Theorem | cldcss 25494 | Corollary of the Projection Theorem: A topologically closed subspace is algebraically closed in Hilbert space. (Contributed by Mario Carneiro, 17-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝐿 = (LSubSp‘𝑊) & ⊢ 𝐶 = (ClSubSp‘𝑊) ⇒ ⊢ (𝑊 ∈ ℂHil → (𝑈 ∈ 𝐶 ↔ (𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (Clsd‘𝐽)))) | ||
Theorem | cldcss2 25495 | Corollary of the Projection Theorem: A topologically closed subspace is algebraically closed in Hilbert space. (Contributed by Mario Carneiro, 17-Oct-2015.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝐿 = (LSubSp‘𝑊) & ⊢ 𝐶 = (ClSubSp‘𝑊) ⇒ ⊢ (𝑊 ∈ ℂHil → 𝐶 = (𝐿 ∩ (Clsd‘𝐽))) | ||
Theorem | hlhil 25496 | Corollary of the Projection Theorem: A subcomplex Hilbert space is a Hilbert space (in the algebraic sense, meaning that all algebraically closed subspaces have a projection decomposition). (Contributed by Mario Carneiro, 17-Oct-2015.) |
⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ Hil) | ||
Theorem | addcncf 25497* | The addition of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℂ)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝐵)) ∈ (𝑋–cn→ℂ)) | ||
Theorem | subcncf 25498* | The subtraction of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℂ)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 − 𝐵)) ∈ (𝑋–cn→ℂ)) | ||
Theorem | mulcncf 25499* | The multiplication of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 29-Jun-2017.) Avoid ax-mulf 11264. (Revised by GG, 16-Mar-2025.) |
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℂ)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝑋–cn→ℂ)) | ||
Theorem | mulcncfOLD 25500* | Obsolete version of mulcncf 25499 as of 9-Apr-2025. (Contributed by Glauco Siliprandi, 29-Jun-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℂ)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝑋–cn→ℂ)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |