MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plydiveu Structured version   Visualization version   GIF version

Theorem plydiveu 24344
Description: Lemma for plydivalg 24345. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
plydiv.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
plydiv.tm ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
plydiv.rc ((𝜑 ∧ (𝑥𝑆𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆)
plydiv.m1 (𝜑 → -1 ∈ 𝑆)
plydiv.f (𝜑𝐹 ∈ (Poly‘𝑆))
plydiv.g (𝜑𝐺 ∈ (Poly‘𝑆))
plydiv.z (𝜑𝐺 ≠ 0𝑝)
plydiv.r 𝑅 = (𝐹𝑓 − (𝐺𝑓 · 𝑞))
plydiveu.q (𝜑𝑞 ∈ (Poly‘𝑆))
plydiveu.qd (𝜑 → (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
plydiveu.t 𝑇 = (𝐹𝑓 − (𝐺𝑓 · 𝑝))
plydiveu.p (𝜑𝑝 ∈ (Poly‘𝑆))
plydiveu.pd (𝜑 → (𝑇 = 0𝑝 ∨ (deg‘𝑇) < (deg‘𝐺)))
Assertion
Ref Expression
plydiveu (𝜑𝑝 = 𝑞)
Distinct variable groups:   𝑥,𝑦   𝑞,𝑝,𝑥,𝑦,𝐹   𝜑,𝑥,𝑦   𝑥,𝑇,𝑦   𝐺,𝑝,𝑞,𝑥,𝑦   𝑅,𝑝,𝑥,𝑦   𝑆,𝑝,𝑞,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑞,𝑝)   𝑅(𝑞)   𝑇(𝑞,𝑝)

Proof of Theorem plydiveu
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 idd 24 . . . 4 (𝜑 → ((𝑝𝑓𝑞) = 0𝑝 → (𝑝𝑓𝑞) = 0𝑝))
2 plydiveu.q . . . . . . . . . . . . . . . 16 (𝜑𝑞 ∈ (Poly‘𝑆))
3 plydiv.pl . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
4 plydiv.tm . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
5 plydiv.rc . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑥𝑆𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆)
6 plydiv.m1 . . . . . . . . . . . . . . . . 17 (𝜑 → -1 ∈ 𝑆)
7 plydiv.f . . . . . . . . . . . . . . . . 17 (𝜑𝐹 ∈ (Poly‘𝑆))
8 plydiv.g . . . . . . . . . . . . . . . . 17 (𝜑𝐺 ∈ (Poly‘𝑆))
9 plydiv.z . . . . . . . . . . . . . . . . 17 (𝜑𝐺 ≠ 0𝑝)
10 plydiv.r . . . . . . . . . . . . . . . . 17 𝑅 = (𝐹𝑓 − (𝐺𝑓 · 𝑞))
113, 4, 5, 6, 7, 8, 9, 10plydivlem2 24340 . . . . . . . . . . . . . . . 16 ((𝜑𝑞 ∈ (Poly‘𝑆)) → 𝑅 ∈ (Poly‘𝑆))
122, 11mpdan 678 . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ (Poly‘𝑆))
13 plydiveu.p . . . . . . . . . . . . . . . 16 (𝜑𝑝 ∈ (Poly‘𝑆))
14 plydiveu.t . . . . . . . . . . . . . . . . 17 𝑇 = (𝐹𝑓 − (𝐺𝑓 · 𝑝))
153, 4, 5, 6, 7, 8, 9, 14plydivlem2 24340 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ (Poly‘𝑆)) → 𝑇 ∈ (Poly‘𝑆))
1613, 15mpdan 678 . . . . . . . . . . . . . . 15 (𝜑𝑇 ∈ (Poly‘𝑆))
1712, 16, 3, 4, 6plysub 24266 . . . . . . . . . . . . . 14 (𝜑 → (𝑅𝑓𝑇) ∈ (Poly‘𝑆))
18 dgrcl 24280 . . . . . . . . . . . . . 14 ((𝑅𝑓𝑇) ∈ (Poly‘𝑆) → (deg‘(𝑅𝑓𝑇)) ∈ ℕ0)
1917, 18syl 17 . . . . . . . . . . . . 13 (𝜑 → (deg‘(𝑅𝑓𝑇)) ∈ ℕ0)
2019nn0red 11599 . . . . . . . . . . . 12 (𝜑 → (deg‘(𝑅𝑓𝑇)) ∈ ℝ)
21 dgrcl 24280 . . . . . . . . . . . . . . 15 (𝑇 ∈ (Poly‘𝑆) → (deg‘𝑇) ∈ ℕ0)
2216, 21syl 17 . . . . . . . . . . . . . 14 (𝜑 → (deg‘𝑇) ∈ ℕ0)
2322nn0red 11599 . . . . . . . . . . . . 13 (𝜑 → (deg‘𝑇) ∈ ℝ)
24 dgrcl 24280 . . . . . . . . . . . . . . 15 (𝑅 ∈ (Poly‘𝑆) → (deg‘𝑅) ∈ ℕ0)
2512, 24syl 17 . . . . . . . . . . . . . 14 (𝜑 → (deg‘𝑅) ∈ ℕ0)
2625nn0red 11599 . . . . . . . . . . . . 13 (𝜑 → (deg‘𝑅) ∈ ℝ)
2723, 26ifcld 4288 . . . . . . . . . . . 12 (𝜑 → if((deg‘𝑅) ≤ (deg‘𝑇), (deg‘𝑇), (deg‘𝑅)) ∈ ℝ)
28 dgrcl 24280 . . . . . . . . . . . . . 14 (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈ ℕ0)
298, 28syl 17 . . . . . . . . . . . . 13 (𝜑 → (deg‘𝐺) ∈ ℕ0)
3029nn0red 11599 . . . . . . . . . . . 12 (𝜑 → (deg‘𝐺) ∈ ℝ)
31 eqid 2765 . . . . . . . . . . . . . 14 (deg‘𝑅) = (deg‘𝑅)
32 eqid 2765 . . . . . . . . . . . . . 14 (deg‘𝑇) = (deg‘𝑇)
3331, 32dgrsub 24319 . . . . . . . . . . . . 13 ((𝑅 ∈ (Poly‘𝑆) ∧ 𝑇 ∈ (Poly‘𝑆)) → (deg‘(𝑅𝑓𝑇)) ≤ if((deg‘𝑅) ≤ (deg‘𝑇), (deg‘𝑇), (deg‘𝑅)))
3412, 16, 33syl2anc 579 . . . . . . . . . . . 12 (𝜑 → (deg‘(𝑅𝑓𝑇)) ≤ if((deg‘𝑅) ≤ (deg‘𝑇), (deg‘𝑇), (deg‘𝑅)))
35 plydiveu.pd . . . . . . . . . . . . . . 15 (𝜑 → (𝑇 = 0𝑝 ∨ (deg‘𝑇) < (deg‘𝐺)))
36 eqid 2765 . . . . . . . . . . . . . . . . 17 (coeff‘𝑇) = (coeff‘𝑇)
3732, 36dgrlt 24313 . . . . . . . . . . . . . . . 16 ((𝑇 ∈ (Poly‘𝑆) ∧ (deg‘𝐺) ∈ ℕ0) → ((𝑇 = 0𝑝 ∨ (deg‘𝑇) < (deg‘𝐺)) ↔ ((deg‘𝑇) ≤ (deg‘𝐺) ∧ ((coeff‘𝑇)‘(deg‘𝐺)) = 0)))
3816, 29, 37syl2anc 579 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑇 = 0𝑝 ∨ (deg‘𝑇) < (deg‘𝐺)) ↔ ((deg‘𝑇) ≤ (deg‘𝐺) ∧ ((coeff‘𝑇)‘(deg‘𝐺)) = 0)))
3935, 38mpbid 223 . . . . . . . . . . . . . 14 (𝜑 → ((deg‘𝑇) ≤ (deg‘𝐺) ∧ ((coeff‘𝑇)‘(deg‘𝐺)) = 0))
4039simpld 488 . . . . . . . . . . . . 13 (𝜑 → (deg‘𝑇) ≤ (deg‘𝐺))
41 plydiveu.qd . . . . . . . . . . . . . . 15 (𝜑 → (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
42 eqid 2765 . . . . . . . . . . . . . . . . 17 (coeff‘𝑅) = (coeff‘𝑅)
4331, 42dgrlt 24313 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ (Poly‘𝑆) ∧ (deg‘𝐺) ∈ ℕ0) → ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ↔ ((deg‘𝑅) ≤ (deg‘𝐺) ∧ ((coeff‘𝑅)‘(deg‘𝐺)) = 0)))
4412, 29, 43syl2anc 579 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ↔ ((deg‘𝑅) ≤ (deg‘𝐺) ∧ ((coeff‘𝑅)‘(deg‘𝐺)) = 0)))
4541, 44mpbid 223 . . . . . . . . . . . . . 14 (𝜑 → ((deg‘𝑅) ≤ (deg‘𝐺) ∧ ((coeff‘𝑅)‘(deg‘𝐺)) = 0))
4645simpld 488 . . . . . . . . . . . . 13 (𝜑 → (deg‘𝑅) ≤ (deg‘𝐺))
47 breq1 4812 . . . . . . . . . . . . . 14 ((deg‘𝑇) = if((deg‘𝑅) ≤ (deg‘𝑇), (deg‘𝑇), (deg‘𝑅)) → ((deg‘𝑇) ≤ (deg‘𝐺) ↔ if((deg‘𝑅) ≤ (deg‘𝑇), (deg‘𝑇), (deg‘𝑅)) ≤ (deg‘𝐺)))
48 breq1 4812 . . . . . . . . . . . . . 14 ((deg‘𝑅) = if((deg‘𝑅) ≤ (deg‘𝑇), (deg‘𝑇), (deg‘𝑅)) → ((deg‘𝑅) ≤ (deg‘𝐺) ↔ if((deg‘𝑅) ≤ (deg‘𝑇), (deg‘𝑇), (deg‘𝑅)) ≤ (deg‘𝐺)))
4947, 48ifboth 4281 . . . . . . . . . . . . 13 (((deg‘𝑇) ≤ (deg‘𝐺) ∧ (deg‘𝑅) ≤ (deg‘𝐺)) → if((deg‘𝑅) ≤ (deg‘𝑇), (deg‘𝑇), (deg‘𝑅)) ≤ (deg‘𝐺))
5040, 46, 49syl2anc 579 . . . . . . . . . . . 12 (𝜑 → if((deg‘𝑅) ≤ (deg‘𝑇), (deg‘𝑇), (deg‘𝑅)) ≤ (deg‘𝐺))
5120, 27, 30, 34, 50letrd 10448 . . . . . . . . . . 11 (𝜑 → (deg‘(𝑅𝑓𝑇)) ≤ (deg‘𝐺))
5251adantr 472 . . . . . . . . . 10 ((𝜑 ∧ (𝑝𝑓𝑞) ≠ 0𝑝) → (deg‘(𝑅𝑓𝑇)) ≤ (deg‘𝐺))
5313, 2, 3, 4, 6plysub 24266 . . . . . . . . . . . . . 14 (𝜑 → (𝑝𝑓𝑞) ∈ (Poly‘𝑆))
54 dgrcl 24280 . . . . . . . . . . . . . 14 ((𝑝𝑓𝑞) ∈ (Poly‘𝑆) → (deg‘(𝑝𝑓𝑞)) ∈ ℕ0)
5553, 54syl 17 . . . . . . . . . . . . 13 (𝜑 → (deg‘(𝑝𝑓𝑞)) ∈ ℕ0)
56 nn0addge1 11586 . . . . . . . . . . . . 13 (((deg‘𝐺) ∈ ℝ ∧ (deg‘(𝑝𝑓𝑞)) ∈ ℕ0) → (deg‘𝐺) ≤ ((deg‘𝐺) + (deg‘(𝑝𝑓𝑞))))
5730, 55, 56syl2anc 579 . . . . . . . . . . . 12 (𝜑 → (deg‘𝐺) ≤ ((deg‘𝐺) + (deg‘(𝑝𝑓𝑞))))
5857adantr 472 . . . . . . . . . . 11 ((𝜑 ∧ (𝑝𝑓𝑞) ≠ 0𝑝) → (deg‘𝐺) ≤ ((deg‘𝐺) + (deg‘(𝑝𝑓𝑞))))
59 plyf 24245 . . . . . . . . . . . . . . . . . . . 20 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
607, 59syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹:ℂ⟶ℂ)
6160ffvelrnda 6549 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ ℂ) → (𝐹𝑧) ∈ ℂ)
628, 2, 3, 4plymul 24265 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐺𝑓 · 𝑞) ∈ (Poly‘𝑆))
63 plyf 24245 . . . . . . . . . . . . . . . . . . . 20 ((𝐺𝑓 · 𝑞) ∈ (Poly‘𝑆) → (𝐺𝑓 · 𝑞):ℂ⟶ℂ)
6462, 63syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐺𝑓 · 𝑞):ℂ⟶ℂ)
6564ffvelrnda 6549 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ ℂ) → ((𝐺𝑓 · 𝑞)‘𝑧) ∈ ℂ)
668, 13, 3, 4plymul 24265 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐺𝑓 · 𝑝) ∈ (Poly‘𝑆))
67 plyf 24245 . . . . . . . . . . . . . . . . . . . 20 ((𝐺𝑓 · 𝑝) ∈ (Poly‘𝑆) → (𝐺𝑓 · 𝑝):ℂ⟶ℂ)
6866, 67syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐺𝑓 · 𝑝):ℂ⟶ℂ)
6968ffvelrnda 6549 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ ℂ) → ((𝐺𝑓 · 𝑝)‘𝑧) ∈ ℂ)
7061, 65, 69nnncan1d 10680 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ ℂ) → (((𝐹𝑧) − ((𝐺𝑓 · 𝑞)‘𝑧)) − ((𝐹𝑧) − ((𝐺𝑓 · 𝑝)‘𝑧))) = (((𝐺𝑓 · 𝑝)‘𝑧) − ((𝐺𝑓 · 𝑞)‘𝑧)))
7170mpteq2dva 4903 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑧 ∈ ℂ ↦ (((𝐹𝑧) − ((𝐺𝑓 · 𝑞)‘𝑧)) − ((𝐹𝑧) − ((𝐺𝑓 · 𝑝)‘𝑧)))) = (𝑧 ∈ ℂ ↦ (((𝐺𝑓 · 𝑝)‘𝑧) − ((𝐺𝑓 · 𝑞)‘𝑧))))
72 cnex 10270 . . . . . . . . . . . . . . . . . 18 ℂ ∈ V
7372a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → ℂ ∈ V)
7461, 65subcld 10646 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ ℂ) → ((𝐹𝑧) − ((𝐺𝑓 · 𝑞)‘𝑧)) ∈ ℂ)
7561, 69subcld 10646 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ ℂ) → ((𝐹𝑧) − ((𝐺𝑓 · 𝑝)‘𝑧)) ∈ ℂ)
7660feqmptd 6438 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ (𝐹𝑧)))
7764feqmptd 6438 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐺𝑓 · 𝑞) = (𝑧 ∈ ℂ ↦ ((𝐺𝑓 · 𝑞)‘𝑧)))
7873, 61, 65, 76, 77offval2 7112 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹𝑓 − (𝐺𝑓 · 𝑞)) = (𝑧 ∈ ℂ ↦ ((𝐹𝑧) − ((𝐺𝑓 · 𝑞)‘𝑧))))
7910, 78syl5eq 2811 . . . . . . . . . . . . . . . . 17 (𝜑𝑅 = (𝑧 ∈ ℂ ↦ ((𝐹𝑧) − ((𝐺𝑓 · 𝑞)‘𝑧))))
8068feqmptd 6438 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐺𝑓 · 𝑝) = (𝑧 ∈ ℂ ↦ ((𝐺𝑓 · 𝑝)‘𝑧)))
8173, 61, 69, 76, 80offval2 7112 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹𝑓 − (𝐺𝑓 · 𝑝)) = (𝑧 ∈ ℂ ↦ ((𝐹𝑧) − ((𝐺𝑓 · 𝑝)‘𝑧))))
8214, 81syl5eq 2811 . . . . . . . . . . . . . . . . 17 (𝜑𝑇 = (𝑧 ∈ ℂ ↦ ((𝐹𝑧) − ((𝐺𝑓 · 𝑝)‘𝑧))))
8373, 74, 75, 79, 82offval2 7112 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑅𝑓𝑇) = (𝑧 ∈ ℂ ↦ (((𝐹𝑧) − ((𝐺𝑓 · 𝑞)‘𝑧)) − ((𝐹𝑧) − ((𝐺𝑓 · 𝑝)‘𝑧)))))
8473, 69, 65, 80, 77offval2 7112 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐺𝑓 · 𝑝) ∘𝑓 − (𝐺𝑓 · 𝑞)) = (𝑧 ∈ ℂ ↦ (((𝐺𝑓 · 𝑝)‘𝑧) − ((𝐺𝑓 · 𝑞)‘𝑧))))
8571, 83, 843eqtr4d 2809 . . . . . . . . . . . . . . 15 (𝜑 → (𝑅𝑓𝑇) = ((𝐺𝑓 · 𝑝) ∘𝑓 − (𝐺𝑓 · 𝑞)))
86 plyf 24245 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ)
878, 86syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐺:ℂ⟶ℂ)
88 plyf 24245 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ (Poly‘𝑆) → 𝑝:ℂ⟶ℂ)
8913, 88syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑝:ℂ⟶ℂ)
90 plyf 24245 . . . . . . . . . . . . . . . . 17 (𝑞 ∈ (Poly‘𝑆) → 𝑞:ℂ⟶ℂ)
912, 90syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑞:ℂ⟶ℂ)
92 subdi 10717 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 · (𝑦𝑧)) = ((𝑥 · 𝑦) − (𝑥 · 𝑧)))
9392adantl 473 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑥 · (𝑦𝑧)) = ((𝑥 · 𝑦) − (𝑥 · 𝑧)))
9473, 87, 89, 91, 93caofdi 7131 . . . . . . . . . . . . . . 15 (𝜑 → (𝐺𝑓 · (𝑝𝑓𝑞)) = ((𝐺𝑓 · 𝑝) ∘𝑓 − (𝐺𝑓 · 𝑞)))
9585, 94eqtr4d 2802 . . . . . . . . . . . . . 14 (𝜑 → (𝑅𝑓𝑇) = (𝐺𝑓 · (𝑝𝑓𝑞)))
9695fveq2d 6379 . . . . . . . . . . . . 13 (𝜑 → (deg‘(𝑅𝑓𝑇)) = (deg‘(𝐺𝑓 · (𝑝𝑓𝑞))))
9796adantr 472 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑝𝑓𝑞) ≠ 0𝑝) → (deg‘(𝑅𝑓𝑇)) = (deg‘(𝐺𝑓 · (𝑝𝑓𝑞))))
988adantr 472 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑝𝑓𝑞) ≠ 0𝑝) → 𝐺 ∈ (Poly‘𝑆))
999adantr 472 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑝𝑓𝑞) ≠ 0𝑝) → 𝐺 ≠ 0𝑝)
10053adantr 472 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑝𝑓𝑞) ≠ 0𝑝) → (𝑝𝑓𝑞) ∈ (Poly‘𝑆))
101 simpr 477 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑝𝑓𝑞) ≠ 0𝑝) → (𝑝𝑓𝑞) ≠ 0𝑝)
102 eqid 2765 . . . . . . . . . . . . . 14 (deg‘𝐺) = (deg‘𝐺)
103 eqid 2765 . . . . . . . . . . . . . 14 (deg‘(𝑝𝑓𝑞)) = (deg‘(𝑝𝑓𝑞))
104102, 103dgrmul 24317 . . . . . . . . . . . . 13 (((𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) ∧ ((𝑝𝑓𝑞) ∈ (Poly‘𝑆) ∧ (𝑝𝑓𝑞) ≠ 0𝑝)) → (deg‘(𝐺𝑓 · (𝑝𝑓𝑞))) = ((deg‘𝐺) + (deg‘(𝑝𝑓𝑞))))
10598, 99, 100, 101, 104syl22anc 867 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑝𝑓𝑞) ≠ 0𝑝) → (deg‘(𝐺𝑓 · (𝑝𝑓𝑞))) = ((deg‘𝐺) + (deg‘(𝑝𝑓𝑞))))
10697, 105eqtrd 2799 . . . . . . . . . . 11 ((𝜑 ∧ (𝑝𝑓𝑞) ≠ 0𝑝) → (deg‘(𝑅𝑓𝑇)) = ((deg‘𝐺) + (deg‘(𝑝𝑓𝑞))))
10758, 106breqtrrd 4837 . . . . . . . . . 10 ((𝜑 ∧ (𝑝𝑓𝑞) ≠ 0𝑝) → (deg‘𝐺) ≤ (deg‘(𝑅𝑓𝑇)))
10820, 30letri3d 10433 . . . . . . . . . . 11 (𝜑 → ((deg‘(𝑅𝑓𝑇)) = (deg‘𝐺) ↔ ((deg‘(𝑅𝑓𝑇)) ≤ (deg‘𝐺) ∧ (deg‘𝐺) ≤ (deg‘(𝑅𝑓𝑇)))))
109108adantr 472 . . . . . . . . . 10 ((𝜑 ∧ (𝑝𝑓𝑞) ≠ 0𝑝) → ((deg‘(𝑅𝑓𝑇)) = (deg‘𝐺) ↔ ((deg‘(𝑅𝑓𝑇)) ≤ (deg‘𝐺) ∧ (deg‘𝐺) ≤ (deg‘(𝑅𝑓𝑇)))))
11052, 107, 109mpbir2and 704 . . . . . . . . 9 ((𝜑 ∧ (𝑝𝑓𝑞) ≠ 0𝑝) → (deg‘(𝑅𝑓𝑇)) = (deg‘𝐺))
111110fveq2d 6379 . . . . . . . 8 ((𝜑 ∧ (𝑝𝑓𝑞) ≠ 0𝑝) → ((coeff‘(𝑅𝑓𝑇))‘(deg‘(𝑅𝑓𝑇))) = ((coeff‘(𝑅𝑓𝑇))‘(deg‘𝐺)))
11242, 36coesub 24304 . . . . . . . . . . . . 13 ((𝑅 ∈ (Poly‘𝑆) ∧ 𝑇 ∈ (Poly‘𝑆)) → (coeff‘(𝑅𝑓𝑇)) = ((coeff‘𝑅) ∘𝑓 − (coeff‘𝑇)))
11312, 16, 112syl2anc 579 . . . . . . . . . . . 12 (𝜑 → (coeff‘(𝑅𝑓𝑇)) = ((coeff‘𝑅) ∘𝑓 − (coeff‘𝑇)))
114113fveq1d 6377 . . . . . . . . . . 11 (𝜑 → ((coeff‘(𝑅𝑓𝑇))‘(deg‘𝐺)) = (((coeff‘𝑅) ∘𝑓 − (coeff‘𝑇))‘(deg‘𝐺)))
11542coef3 24279 . . . . . . . . . . . . . 14 (𝑅 ∈ (Poly‘𝑆) → (coeff‘𝑅):ℕ0⟶ℂ)
116 ffn 6223 . . . . . . . . . . . . . 14 ((coeff‘𝑅):ℕ0⟶ℂ → (coeff‘𝑅) Fn ℕ0)
11712, 115, 1163syl 18 . . . . . . . . . . . . 13 (𝜑 → (coeff‘𝑅) Fn ℕ0)
11836coef3 24279 . . . . . . . . . . . . . 14 (𝑇 ∈ (Poly‘𝑆) → (coeff‘𝑇):ℕ0⟶ℂ)
119 ffn 6223 . . . . . . . . . . . . . 14 ((coeff‘𝑇):ℕ0⟶ℂ → (coeff‘𝑇) Fn ℕ0)
12016, 118, 1193syl 18 . . . . . . . . . . . . 13 (𝜑 → (coeff‘𝑇) Fn ℕ0)
121 nn0ex 11545 . . . . . . . . . . . . . 14 0 ∈ V
122121a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℕ0 ∈ V)
123 inidm 3982 . . . . . . . . . . . . 13 (ℕ0 ∩ ℕ0) = ℕ0
12445simprd 489 . . . . . . . . . . . . . 14 (𝜑 → ((coeff‘𝑅)‘(deg‘𝐺)) = 0)
125124adantr 472 . . . . . . . . . . . . 13 ((𝜑 ∧ (deg‘𝐺) ∈ ℕ0) → ((coeff‘𝑅)‘(deg‘𝐺)) = 0)
12639simprd 489 . . . . . . . . . . . . . 14 (𝜑 → ((coeff‘𝑇)‘(deg‘𝐺)) = 0)
127126adantr 472 . . . . . . . . . . . . 13 ((𝜑 ∧ (deg‘𝐺) ∈ ℕ0) → ((coeff‘𝑇)‘(deg‘𝐺)) = 0)
128117, 120, 122, 122, 123, 125, 127ofval 7104 . . . . . . . . . . . 12 ((𝜑 ∧ (deg‘𝐺) ∈ ℕ0) → (((coeff‘𝑅) ∘𝑓 − (coeff‘𝑇))‘(deg‘𝐺)) = (0 − 0))
12929, 128mpdan 678 . . . . . . . . . . 11 (𝜑 → (((coeff‘𝑅) ∘𝑓 − (coeff‘𝑇))‘(deg‘𝐺)) = (0 − 0))
130114, 129eqtrd 2799 . . . . . . . . . 10 (𝜑 → ((coeff‘(𝑅𝑓𝑇))‘(deg‘𝐺)) = (0 − 0))
131 0m0e0 11399 . . . . . . . . . 10 (0 − 0) = 0
132130, 131syl6eq 2815 . . . . . . . . 9 (𝜑 → ((coeff‘(𝑅𝑓𝑇))‘(deg‘𝐺)) = 0)
133132adantr 472 . . . . . . . 8 ((𝜑 ∧ (𝑝𝑓𝑞) ≠ 0𝑝) → ((coeff‘(𝑅𝑓𝑇))‘(deg‘𝐺)) = 0)
134111, 133eqtrd 2799 . . . . . . 7 ((𝜑 ∧ (𝑝𝑓𝑞) ≠ 0𝑝) → ((coeff‘(𝑅𝑓𝑇))‘(deg‘(𝑅𝑓𝑇))) = 0)
135 eqid 2765 . . . . . . . . . 10 (deg‘(𝑅𝑓𝑇)) = (deg‘(𝑅𝑓𝑇))
136 eqid 2765 . . . . . . . . . 10 (coeff‘(𝑅𝑓𝑇)) = (coeff‘(𝑅𝑓𝑇))
137135, 136dgreq0 24312 . . . . . . . . 9 ((𝑅𝑓𝑇) ∈ (Poly‘𝑆) → ((𝑅𝑓𝑇) = 0𝑝 ↔ ((coeff‘(𝑅𝑓𝑇))‘(deg‘(𝑅𝑓𝑇))) = 0))
13817, 137syl 17 . . . . . . . 8 (𝜑 → ((𝑅𝑓𝑇) = 0𝑝 ↔ ((coeff‘(𝑅𝑓𝑇))‘(deg‘(𝑅𝑓𝑇))) = 0))
139138biimpar 469 . . . . . . 7 ((𝜑 ∧ ((coeff‘(𝑅𝑓𝑇))‘(deg‘(𝑅𝑓𝑇))) = 0) → (𝑅𝑓𝑇) = 0𝑝)
140134, 139syldan 585 . . . . . 6 ((𝜑 ∧ (𝑝𝑓𝑞) ≠ 0𝑝) → (𝑅𝑓𝑇) = 0𝑝)
141140ex 401 . . . . 5 (𝜑 → ((𝑝𝑓𝑞) ≠ 0𝑝 → (𝑅𝑓𝑇) = 0𝑝))
142 plymul0or 24327 . . . . . . 7 ((𝐺 ∈ (Poly‘𝑆) ∧ (𝑝𝑓𝑞) ∈ (Poly‘𝑆)) → ((𝐺𝑓 · (𝑝𝑓𝑞)) = 0𝑝 ↔ (𝐺 = 0𝑝 ∨ (𝑝𝑓𝑞) = 0𝑝)))
1438, 53, 142syl2anc 579 . . . . . 6 (𝜑 → ((𝐺𝑓 · (𝑝𝑓𝑞)) = 0𝑝 ↔ (𝐺 = 0𝑝 ∨ (𝑝𝑓𝑞) = 0𝑝)))
14495eqeq1d 2767 . . . . . 6 (𝜑 → ((𝑅𝑓𝑇) = 0𝑝 ↔ (𝐺𝑓 · (𝑝𝑓𝑞)) = 0𝑝))
1459neneqd 2942 . . . . . . 7 (𝜑 → ¬ 𝐺 = 0𝑝)
146 biorf 960 . . . . . . 7 𝐺 = 0𝑝 → ((𝑝𝑓𝑞) = 0𝑝 ↔ (𝐺 = 0𝑝 ∨ (𝑝𝑓𝑞) = 0𝑝)))
147145, 146syl 17 . . . . . 6 (𝜑 → ((𝑝𝑓𝑞) = 0𝑝 ↔ (𝐺 = 0𝑝 ∨ (𝑝𝑓𝑞) = 0𝑝)))
148143, 144, 1473bitr4d 302 . . . . 5 (𝜑 → ((𝑅𝑓𝑇) = 0𝑝 ↔ (𝑝𝑓𝑞) = 0𝑝))
149141, 148sylibd 230 . . . 4 (𝜑 → ((𝑝𝑓𝑞) ≠ 0𝑝 → (𝑝𝑓𝑞) = 0𝑝))
1501, 149pm2.61dne 3023 . . 3 (𝜑 → (𝑝𝑓𝑞) = 0𝑝)
151 df-0p 23728 . . 3 0𝑝 = (ℂ × {0})
152150, 151syl6eq 2815 . 2 (𝜑 → (𝑝𝑓𝑞) = (ℂ × {0}))
153 ofsubeq0 11271 . . 3 ((ℂ ∈ V ∧ 𝑝:ℂ⟶ℂ ∧ 𝑞:ℂ⟶ℂ) → ((𝑝𝑓𝑞) = (ℂ × {0}) ↔ 𝑝 = 𝑞))
15473, 89, 91, 153syl3anc 1490 . 2 (𝜑 → ((𝑝𝑓𝑞) = (ℂ × {0}) ↔ 𝑝 = 𝑞))
155152, 154mpbid 223 1 (𝜑𝑝 = 𝑞)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 873  w3a 1107   = wceq 1652  wcel 2155  wne 2937  Vcvv 3350  ifcif 4243  {csn 4334   class class class wbr 4809  cmpt 4888   × cxp 5275   Fn wfn 6063  wf 6064  cfv 6068  (class class class)co 6842  𝑓 cof 7093  cc 10187  cr 10188  0cc0 10189  1c1 10190   + caddc 10192   · cmul 10194   < clt 10328  cle 10329  cmin 10520  -cneg 10521   / cdiv 10938  0cn0 11538  0𝑝c0p 23727  Polycply 24231  coeffccoe 24233  degcdgr 24234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-addf 10268
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-z 11625  df-uz 11887  df-rp 12029  df-fz 12534  df-fzo 12674  df-fl 12801  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14126  df-re 14127  df-im 14128  df-sqrt 14262  df-abs 14263  df-clim 14506  df-rlim 14507  df-sum 14704  df-0p 23728  df-ply 24235  df-coe 24237  df-dgr 24238
This theorem is referenced by:  plydivalg  24345
  Copyright terms: Public domain W3C validator