| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | idd 24 | . . . 4
⊢ (𝜑 → ((𝑝 ∘f − 𝑞) = 0𝑝 →
(𝑝 ∘f
− 𝑞) =
0𝑝)) | 
| 2 |  | plydiveu.q | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑞 ∈ (Poly‘𝑆)) | 
| 3 |  | plydiv.pl | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | 
| 4 |  | plydiv.tm | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) | 
| 5 |  | plydiv.rc | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) | 
| 6 |  | plydiv.m1 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → -1 ∈ 𝑆) | 
| 7 |  | plydiv.f | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) | 
| 8 |  | plydiv.g | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) | 
| 9 |  | plydiv.z | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐺 ≠
0𝑝) | 
| 10 |  | plydiv.r | . . . . . . . . . . . . . . . . 17
⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f ·
𝑞)) | 
| 11 | 3, 4, 5, 6, 7, 8, 9, 10 | plydivlem2 26336 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑞 ∈ (Poly‘𝑆)) → 𝑅 ∈ (Poly‘𝑆)) | 
| 12 | 2, 11 | mpdan 687 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑅 ∈ (Poly‘𝑆)) | 
| 13 |  | plydiveu.p | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑝 ∈ (Poly‘𝑆)) | 
| 14 |  | plydiveu.t | . . . . . . . . . . . . . . . . 17
⊢ 𝑇 = (𝐹 ∘f − (𝐺 ∘f ·
𝑝)) | 
| 15 | 3, 4, 5, 6, 7, 8, 9, 14 | plydivlem2 26336 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑝 ∈ (Poly‘𝑆)) → 𝑇 ∈ (Poly‘𝑆)) | 
| 16 | 13, 15 | mpdan 687 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑇 ∈ (Poly‘𝑆)) | 
| 17 | 12, 16, 3, 4, 6 | plysub 26258 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑅 ∘f − 𝑇) ∈ (Poly‘𝑆)) | 
| 18 |  | dgrcl 26272 | . . . . . . . . . . . . . 14
⊢ ((𝑅 ∘f −
𝑇) ∈ (Poly‘𝑆) → (deg‘(𝑅 ∘f −
𝑇)) ∈
ℕ0) | 
| 19 | 17, 18 | syl 17 | . . . . . . . . . . . . 13
⊢ (𝜑 → (deg‘(𝑅 ∘f −
𝑇)) ∈
ℕ0) | 
| 20 | 19 | nn0red 12588 | . . . . . . . . . . . 12
⊢ (𝜑 → (deg‘(𝑅 ∘f −
𝑇)) ∈
ℝ) | 
| 21 |  | dgrcl 26272 | . . . . . . . . . . . . . . 15
⊢ (𝑇 ∈ (Poly‘𝑆) → (deg‘𝑇) ∈
ℕ0) | 
| 22 | 16, 21 | syl 17 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (deg‘𝑇) ∈
ℕ0) | 
| 23 | 22 | nn0red 12588 | . . . . . . . . . . . . 13
⊢ (𝜑 → (deg‘𝑇) ∈
ℝ) | 
| 24 |  | dgrcl 26272 | . . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ (Poly‘𝑆) → (deg‘𝑅) ∈
ℕ0) | 
| 25 | 12, 24 | syl 17 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (deg‘𝑅) ∈
ℕ0) | 
| 26 | 25 | nn0red 12588 | . . . . . . . . . . . . 13
⊢ (𝜑 → (deg‘𝑅) ∈
ℝ) | 
| 27 | 23, 26 | ifcld 4572 | . . . . . . . . . . . 12
⊢ (𝜑 → if((deg‘𝑅) ≤ (deg‘𝑇), (deg‘𝑇), (deg‘𝑅)) ∈ ℝ) | 
| 28 |  | dgrcl 26272 | . . . . . . . . . . . . . 14
⊢ (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈
ℕ0) | 
| 29 | 8, 28 | syl 17 | . . . . . . . . . . . . 13
⊢ (𝜑 → (deg‘𝐺) ∈
ℕ0) | 
| 30 | 29 | nn0red 12588 | . . . . . . . . . . . 12
⊢ (𝜑 → (deg‘𝐺) ∈
ℝ) | 
| 31 |  | eqid 2737 | . . . . . . . . . . . . . 14
⊢
(deg‘𝑅) =
(deg‘𝑅) | 
| 32 |  | eqid 2737 | . . . . . . . . . . . . . 14
⊢
(deg‘𝑇) =
(deg‘𝑇) | 
| 33 | 31, 32 | dgrsub 26312 | . . . . . . . . . . . . 13
⊢ ((𝑅 ∈ (Poly‘𝑆) ∧ 𝑇 ∈ (Poly‘𝑆)) → (deg‘(𝑅 ∘f − 𝑇)) ≤ if((deg‘𝑅) ≤ (deg‘𝑇), (deg‘𝑇), (deg‘𝑅))) | 
| 34 | 12, 16, 33 | syl2anc 584 | . . . . . . . . . . . 12
⊢ (𝜑 → (deg‘(𝑅 ∘f −
𝑇)) ≤
if((deg‘𝑅) ≤
(deg‘𝑇),
(deg‘𝑇),
(deg‘𝑅))) | 
| 35 |  | plydiveu.pd | . . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑇 = 0𝑝 ∨
(deg‘𝑇) <
(deg‘𝐺))) | 
| 36 |  | eqid 2737 | . . . . . . . . . . . . . . . . 17
⊢
(coeff‘𝑇) =
(coeff‘𝑇) | 
| 37 | 32, 36 | dgrlt 26306 | . . . . . . . . . . . . . . . 16
⊢ ((𝑇 ∈ (Poly‘𝑆) ∧ (deg‘𝐺) ∈ ℕ0)
→ ((𝑇 =
0𝑝 ∨ (deg‘𝑇) < (deg‘𝐺)) ↔ ((deg‘𝑇) ≤ (deg‘𝐺) ∧ ((coeff‘𝑇)‘(deg‘𝐺)) = 0))) | 
| 38 | 16, 29, 37 | syl2anc 584 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑇 = 0𝑝 ∨
(deg‘𝑇) <
(deg‘𝐺)) ↔
((deg‘𝑇) ≤
(deg‘𝐺) ∧
((coeff‘𝑇)‘(deg‘𝐺)) = 0))) | 
| 39 | 35, 38 | mpbid 232 | . . . . . . . . . . . . . 14
⊢ (𝜑 → ((deg‘𝑇) ≤ (deg‘𝐺) ∧ ((coeff‘𝑇)‘(deg‘𝐺)) = 0)) | 
| 40 | 39 | simpld 494 | . . . . . . . . . . . . 13
⊢ (𝜑 → (deg‘𝑇) ≤ (deg‘𝐺)) | 
| 41 |  | plydiveu.qd | . . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺))) | 
| 42 |  | eqid 2737 | . . . . . . . . . . . . . . . . 17
⊢
(coeff‘𝑅) =
(coeff‘𝑅) | 
| 43 | 31, 42 | dgrlt 26306 | . . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ (Poly‘𝑆) ∧ (deg‘𝐺) ∈ ℕ0)
→ ((𝑅 =
0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ↔ ((deg‘𝑅) ≤ (deg‘𝐺) ∧ ((coeff‘𝑅)‘(deg‘𝐺)) = 0))) | 
| 44 | 12, 29, 43 | syl2anc 584 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)) ↔
((deg‘𝑅) ≤
(deg‘𝐺) ∧
((coeff‘𝑅)‘(deg‘𝐺)) = 0))) | 
| 45 | 41, 44 | mpbid 232 | . . . . . . . . . . . . . 14
⊢ (𝜑 → ((deg‘𝑅) ≤ (deg‘𝐺) ∧ ((coeff‘𝑅)‘(deg‘𝐺)) = 0)) | 
| 46 | 45 | simpld 494 | . . . . . . . . . . . . 13
⊢ (𝜑 → (deg‘𝑅) ≤ (deg‘𝐺)) | 
| 47 |  | breq1 5146 | . . . . . . . . . . . . . 14
⊢
((deg‘𝑇) =
if((deg‘𝑅) ≤
(deg‘𝑇),
(deg‘𝑇),
(deg‘𝑅)) →
((deg‘𝑇) ≤
(deg‘𝐺) ↔
if((deg‘𝑅) ≤
(deg‘𝑇),
(deg‘𝑇),
(deg‘𝑅)) ≤
(deg‘𝐺))) | 
| 48 |  | breq1 5146 | . . . . . . . . . . . . . 14
⊢
((deg‘𝑅) =
if((deg‘𝑅) ≤
(deg‘𝑇),
(deg‘𝑇),
(deg‘𝑅)) →
((deg‘𝑅) ≤
(deg‘𝐺) ↔
if((deg‘𝑅) ≤
(deg‘𝑇),
(deg‘𝑇),
(deg‘𝑅)) ≤
(deg‘𝐺))) | 
| 49 | 47, 48 | ifboth 4565 | . . . . . . . . . . . . 13
⊢
(((deg‘𝑇) ≤
(deg‘𝐺) ∧
(deg‘𝑅) ≤
(deg‘𝐺)) →
if((deg‘𝑅) ≤
(deg‘𝑇),
(deg‘𝑇),
(deg‘𝑅)) ≤
(deg‘𝐺)) | 
| 50 | 40, 46, 49 | syl2anc 584 | . . . . . . . . . . . 12
⊢ (𝜑 → if((deg‘𝑅) ≤ (deg‘𝑇), (deg‘𝑇), (deg‘𝑅)) ≤ (deg‘𝐺)) | 
| 51 | 20, 27, 30, 34, 50 | letrd 11418 | . . . . . . . . . . 11
⊢ (𝜑 → (deg‘(𝑅 ∘f −
𝑇)) ≤ (deg‘𝐺)) | 
| 52 | 51 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑝 ∘f − 𝑞) ≠ 0𝑝)
→ (deg‘(𝑅
∘f − 𝑇)) ≤ (deg‘𝐺)) | 
| 53 | 13, 2, 3, 4, 6 | plysub 26258 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑝 ∘f − 𝑞) ∈ (Poly‘𝑆)) | 
| 54 |  | dgrcl 26272 | . . . . . . . . . . . . . 14
⊢ ((𝑝 ∘f −
𝑞) ∈ (Poly‘𝑆) → (deg‘(𝑝 ∘f −
𝑞)) ∈
ℕ0) | 
| 55 | 53, 54 | syl 17 | . . . . . . . . . . . . 13
⊢ (𝜑 → (deg‘(𝑝 ∘f −
𝑞)) ∈
ℕ0) | 
| 56 |  | nn0addge1 12572 | . . . . . . . . . . . . 13
⊢
(((deg‘𝐺)
∈ ℝ ∧ (deg‘(𝑝 ∘f − 𝑞)) ∈ ℕ0)
→ (deg‘𝐺) ≤
((deg‘𝐺) +
(deg‘(𝑝
∘f − 𝑞)))) | 
| 57 | 30, 55, 56 | syl2anc 584 | . . . . . . . . . . . 12
⊢ (𝜑 → (deg‘𝐺) ≤ ((deg‘𝐺) + (deg‘(𝑝 ∘f −
𝑞)))) | 
| 58 | 57 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑝 ∘f − 𝑞) ≠ 0𝑝)
→ (deg‘𝐺) ≤
((deg‘𝐺) +
(deg‘(𝑝
∘f − 𝑞)))) | 
| 59 |  | plyf 26237 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) | 
| 60 | 7, 59 | syl 17 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐹:ℂ⟶ℂ) | 
| 61 | 60 | ffvelcdmda 7104 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (𝐹‘𝑧) ∈ ℂ) | 
| 62 | 8, 2, 3, 4 | plymul 26257 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝐺 ∘f · 𝑞) ∈ (Poly‘𝑆)) | 
| 63 |  | plyf 26237 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺 ∘f ·
𝑞) ∈ (Poly‘𝑆) → (𝐺 ∘f · 𝑞):ℂ⟶ℂ) | 
| 64 | 62, 63 | syl 17 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐺 ∘f · 𝑞):ℂ⟶ℂ) | 
| 65 | 64 | ffvelcdmda 7104 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → ((𝐺 ∘f · 𝑞)‘𝑧) ∈ ℂ) | 
| 66 | 8, 13, 3, 4 | plymul 26257 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝐺 ∘f · 𝑝) ∈ (Poly‘𝑆)) | 
| 67 |  | plyf 26237 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺 ∘f ·
𝑝) ∈ (Poly‘𝑆) → (𝐺 ∘f · 𝑝):ℂ⟶ℂ) | 
| 68 | 66, 67 | syl 17 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐺 ∘f · 𝑝):ℂ⟶ℂ) | 
| 69 | 68 | ffvelcdmda 7104 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → ((𝐺 ∘f · 𝑝)‘𝑧) ∈ ℂ) | 
| 70 | 61, 65, 69 | nnncan1d 11654 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (((𝐹‘𝑧) − ((𝐺 ∘f · 𝑞)‘𝑧)) − ((𝐹‘𝑧) − ((𝐺 ∘f · 𝑝)‘𝑧))) = (((𝐺 ∘f · 𝑝)‘𝑧) − ((𝐺 ∘f · 𝑞)‘𝑧))) | 
| 71 | 70 | mpteq2dva 5242 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑧 ∈ ℂ ↦ (((𝐹‘𝑧) − ((𝐺 ∘f · 𝑞)‘𝑧)) − ((𝐹‘𝑧) − ((𝐺 ∘f · 𝑝)‘𝑧)))) = (𝑧 ∈ ℂ ↦ (((𝐺 ∘f · 𝑝)‘𝑧) − ((𝐺 ∘f · 𝑞)‘𝑧)))) | 
| 72 |  | cnex 11236 | . . . . . . . . . . . . . . . . . 18
⊢ ℂ
∈ V | 
| 73 | 72 | a1i 11 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ℂ ∈
V) | 
| 74 | 61, 65 | subcld 11620 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → ((𝐹‘𝑧) − ((𝐺 ∘f · 𝑞)‘𝑧)) ∈ ℂ) | 
| 75 | 61, 69 | subcld 11620 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → ((𝐹‘𝑧) − ((𝐺 ∘f · 𝑝)‘𝑧)) ∈ ℂ) | 
| 76 | 60 | feqmptd 6977 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ (𝐹‘𝑧))) | 
| 77 | 64 | feqmptd 6977 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐺 ∘f · 𝑞) = (𝑧 ∈ ℂ ↦ ((𝐺 ∘f · 𝑞)‘𝑧))) | 
| 78 | 73, 61, 65, 76, 77 | offval2 7717 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐹 ∘f − (𝐺 ∘f ·
𝑞)) = (𝑧 ∈ ℂ ↦ ((𝐹‘𝑧) − ((𝐺 ∘f · 𝑞)‘𝑧)))) | 
| 79 | 10, 78 | eqtrid 2789 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑅 = (𝑧 ∈ ℂ ↦ ((𝐹‘𝑧) − ((𝐺 ∘f · 𝑞)‘𝑧)))) | 
| 80 | 68 | feqmptd 6977 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐺 ∘f · 𝑝) = (𝑧 ∈ ℂ ↦ ((𝐺 ∘f · 𝑝)‘𝑧))) | 
| 81 | 73, 61, 69, 76, 80 | offval2 7717 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐹 ∘f − (𝐺 ∘f ·
𝑝)) = (𝑧 ∈ ℂ ↦ ((𝐹‘𝑧) − ((𝐺 ∘f · 𝑝)‘𝑧)))) | 
| 82 | 14, 81 | eqtrid 2789 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑇 = (𝑧 ∈ ℂ ↦ ((𝐹‘𝑧) − ((𝐺 ∘f · 𝑝)‘𝑧)))) | 
| 83 | 73, 74, 75, 79, 82 | offval2 7717 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑅 ∘f − 𝑇) = (𝑧 ∈ ℂ ↦ (((𝐹‘𝑧) − ((𝐺 ∘f · 𝑞)‘𝑧)) − ((𝐹‘𝑧) − ((𝐺 ∘f · 𝑝)‘𝑧))))) | 
| 84 | 73, 69, 65, 80, 77 | offval2 7717 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐺 ∘f · 𝑝) ∘f −
(𝐺 ∘f
· 𝑞)) = (𝑧 ∈ ℂ ↦ (((𝐺 ∘f ·
𝑝)‘𝑧) − ((𝐺 ∘f · 𝑞)‘𝑧)))) | 
| 85 | 71, 83, 84 | 3eqtr4d 2787 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑅 ∘f − 𝑇) = ((𝐺 ∘f · 𝑝) ∘f −
(𝐺 ∘f
· 𝑞))) | 
| 86 |  | plyf 26237 | . . . . . . . . . . . . . . . . 17
⊢ (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ) | 
| 87 | 8, 86 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐺:ℂ⟶ℂ) | 
| 88 |  | plyf 26237 | . . . . . . . . . . . . . . . . 17
⊢ (𝑝 ∈ (Poly‘𝑆) → 𝑝:ℂ⟶ℂ) | 
| 89 | 13, 88 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑝:ℂ⟶ℂ) | 
| 90 |  | plyf 26237 | . . . . . . . . . . . . . . . . 17
⊢ (𝑞 ∈ (Poly‘𝑆) → 𝑞:ℂ⟶ℂ) | 
| 91 | 2, 90 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑞:ℂ⟶ℂ) | 
| 92 |  | subdi 11696 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 · (𝑦 − 𝑧)) = ((𝑥 · 𝑦) − (𝑥 · 𝑧))) | 
| 93 | 92 | adantl 481 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑥 · (𝑦 − 𝑧)) = ((𝑥 · 𝑦) − (𝑥 · 𝑧))) | 
| 94 | 73, 87, 89, 91, 93 | caofdi 7739 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐺 ∘f · (𝑝 ∘f −
𝑞)) = ((𝐺 ∘f · 𝑝) ∘f −
(𝐺 ∘f
· 𝑞))) | 
| 95 | 85, 94 | eqtr4d 2780 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑅 ∘f − 𝑇) = (𝐺 ∘f · (𝑝 ∘f −
𝑞))) | 
| 96 | 95 | fveq2d 6910 | . . . . . . . . . . . . 13
⊢ (𝜑 → (deg‘(𝑅 ∘f −
𝑇)) = (deg‘(𝐺 ∘f ·
(𝑝 ∘f
− 𝑞)))) | 
| 97 | 96 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑝 ∘f − 𝑞) ≠ 0𝑝)
→ (deg‘(𝑅
∘f − 𝑇)) = (deg‘(𝐺 ∘f · (𝑝 ∘f −
𝑞)))) | 
| 98 | 8 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑝 ∘f − 𝑞) ≠ 0𝑝)
→ 𝐺 ∈
(Poly‘𝑆)) | 
| 99 | 9 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑝 ∘f − 𝑞) ≠ 0𝑝)
→ 𝐺 ≠
0𝑝) | 
| 100 | 53 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑝 ∘f − 𝑞) ≠ 0𝑝)
→ (𝑝
∘f − 𝑞) ∈ (Poly‘𝑆)) | 
| 101 |  | simpr 484 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑝 ∘f − 𝑞) ≠ 0𝑝)
→ (𝑝
∘f − 𝑞) ≠
0𝑝) | 
| 102 |  | eqid 2737 | . . . . . . . . . . . . . 14
⊢
(deg‘𝐺) =
(deg‘𝐺) | 
| 103 |  | eqid 2737 | . . . . . . . . . . . . . 14
⊢
(deg‘(𝑝
∘f − 𝑞)) = (deg‘(𝑝 ∘f − 𝑞)) | 
| 104 | 102, 103 | dgrmul 26310 | . . . . . . . . . . . . 13
⊢ (((𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) ∧ ((𝑝 ∘f −
𝑞) ∈ (Poly‘𝑆) ∧ (𝑝 ∘f − 𝑞) ≠ 0𝑝))
→ (deg‘(𝐺
∘f · (𝑝 ∘f − 𝑞))) = ((deg‘𝐺) + (deg‘(𝑝 ∘f −
𝑞)))) | 
| 105 | 98, 99, 100, 101, 104 | syl22anc 839 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑝 ∘f − 𝑞) ≠ 0𝑝)
→ (deg‘(𝐺
∘f · (𝑝 ∘f − 𝑞))) = ((deg‘𝐺) + (deg‘(𝑝 ∘f −
𝑞)))) | 
| 106 | 97, 105 | eqtrd 2777 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑝 ∘f − 𝑞) ≠ 0𝑝)
→ (deg‘(𝑅
∘f − 𝑇)) = ((deg‘𝐺) + (deg‘(𝑝 ∘f − 𝑞)))) | 
| 107 | 58, 106 | breqtrrd 5171 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑝 ∘f − 𝑞) ≠ 0𝑝)
→ (deg‘𝐺) ≤
(deg‘(𝑅
∘f − 𝑇))) | 
| 108 | 20, 30 | letri3d 11403 | . . . . . . . . . . 11
⊢ (𝜑 → ((deg‘(𝑅 ∘f −
𝑇)) = (deg‘𝐺) ↔ ((deg‘(𝑅 ∘f −
𝑇)) ≤ (deg‘𝐺) ∧ (deg‘𝐺) ≤ (deg‘(𝑅 ∘f −
𝑇))))) | 
| 109 | 108 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑝 ∘f − 𝑞) ≠ 0𝑝)
→ ((deg‘(𝑅
∘f − 𝑇)) = (deg‘𝐺) ↔ ((deg‘(𝑅 ∘f − 𝑇)) ≤ (deg‘𝐺) ∧ (deg‘𝐺) ≤ (deg‘(𝑅 ∘f −
𝑇))))) | 
| 110 | 52, 107, 109 | mpbir2and 713 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑝 ∘f − 𝑞) ≠ 0𝑝)
→ (deg‘(𝑅
∘f − 𝑇)) = (deg‘𝐺)) | 
| 111 | 110 | fveq2d 6910 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑝 ∘f − 𝑞) ≠ 0𝑝)
→ ((coeff‘(𝑅
∘f − 𝑇))‘(deg‘(𝑅 ∘f − 𝑇))) = ((coeff‘(𝑅 ∘f −
𝑇))‘(deg‘𝐺))) | 
| 112 | 42, 36 | coesub 26296 | . . . . . . . . . . . . 13
⊢ ((𝑅 ∈ (Poly‘𝑆) ∧ 𝑇 ∈ (Poly‘𝑆)) → (coeff‘(𝑅 ∘f − 𝑇)) = ((coeff‘𝑅) ∘f −
(coeff‘𝑇))) | 
| 113 | 12, 16, 112 | syl2anc 584 | . . . . . . . . . . . 12
⊢ (𝜑 → (coeff‘(𝑅 ∘f −
𝑇)) = ((coeff‘𝑅) ∘f −
(coeff‘𝑇))) | 
| 114 | 113 | fveq1d 6908 | . . . . . . . . . . 11
⊢ (𝜑 → ((coeff‘(𝑅 ∘f −
𝑇))‘(deg‘𝐺)) = (((coeff‘𝑅) ∘f −
(coeff‘𝑇))‘(deg‘𝐺))) | 
| 115 | 42 | coef3 26271 | . . . . . . . . . . . . . 14
⊢ (𝑅 ∈ (Poly‘𝑆) → (coeff‘𝑅):ℕ0⟶ℂ) | 
| 116 |  | ffn 6736 | . . . . . . . . . . . . . 14
⊢
((coeff‘𝑅):ℕ0⟶ℂ →
(coeff‘𝑅) Fn
ℕ0) | 
| 117 | 12, 115, 116 | 3syl 18 | . . . . . . . . . . . . 13
⊢ (𝜑 → (coeff‘𝑅) Fn
ℕ0) | 
| 118 | 36 | coef3 26271 | . . . . . . . . . . . . . 14
⊢ (𝑇 ∈ (Poly‘𝑆) → (coeff‘𝑇):ℕ0⟶ℂ) | 
| 119 |  | ffn 6736 | . . . . . . . . . . . . . 14
⊢
((coeff‘𝑇):ℕ0⟶ℂ →
(coeff‘𝑇) Fn
ℕ0) | 
| 120 | 16, 118, 119 | 3syl 18 | . . . . . . . . . . . . 13
⊢ (𝜑 → (coeff‘𝑇) Fn
ℕ0) | 
| 121 |  | nn0ex 12532 | . . . . . . . . . . . . . 14
⊢
ℕ0 ∈ V | 
| 122 | 121 | a1i 11 | . . . . . . . . . . . . 13
⊢ (𝜑 → ℕ0 ∈
V) | 
| 123 |  | inidm 4227 | . . . . . . . . . . . . 13
⊢
(ℕ0 ∩ ℕ0) =
ℕ0 | 
| 124 | 45 | simprd 495 | . . . . . . . . . . . . . 14
⊢ (𝜑 → ((coeff‘𝑅)‘(deg‘𝐺)) = 0) | 
| 125 | 124 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (deg‘𝐺) ∈ ℕ0)
→ ((coeff‘𝑅)‘(deg‘𝐺)) = 0) | 
| 126 | 39 | simprd 495 | . . . . . . . . . . . . . 14
⊢ (𝜑 → ((coeff‘𝑇)‘(deg‘𝐺)) = 0) | 
| 127 | 126 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (deg‘𝐺) ∈ ℕ0)
→ ((coeff‘𝑇)‘(deg‘𝐺)) = 0) | 
| 128 | 117, 120,
122, 122, 123, 125, 127 | ofval 7708 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (deg‘𝐺) ∈ ℕ0)
→ (((coeff‘𝑅)
∘f − (coeff‘𝑇))‘(deg‘𝐺)) = (0 − 0)) | 
| 129 | 29, 128 | mpdan 687 | . . . . . . . . . . 11
⊢ (𝜑 → (((coeff‘𝑅) ∘f −
(coeff‘𝑇))‘(deg‘𝐺)) = (0 − 0)) | 
| 130 | 114, 129 | eqtrd 2777 | . . . . . . . . . 10
⊢ (𝜑 → ((coeff‘(𝑅 ∘f −
𝑇))‘(deg‘𝐺)) = (0 −
0)) | 
| 131 |  | 0m0e0 12386 | . . . . . . . . . 10
⊢ (0
− 0) = 0 | 
| 132 | 130, 131 | eqtrdi 2793 | . . . . . . . . 9
⊢ (𝜑 → ((coeff‘(𝑅 ∘f −
𝑇))‘(deg‘𝐺)) = 0) | 
| 133 | 132 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑝 ∘f − 𝑞) ≠ 0𝑝)
→ ((coeff‘(𝑅
∘f − 𝑇))‘(deg‘𝐺)) = 0) | 
| 134 | 111, 133 | eqtrd 2777 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑝 ∘f − 𝑞) ≠ 0𝑝)
→ ((coeff‘(𝑅
∘f − 𝑇))‘(deg‘(𝑅 ∘f − 𝑇))) = 0) | 
| 135 |  | eqid 2737 | . . . . . . . . . 10
⊢
(deg‘(𝑅
∘f − 𝑇)) = (deg‘(𝑅 ∘f − 𝑇)) | 
| 136 |  | eqid 2737 | . . . . . . . . . 10
⊢
(coeff‘(𝑅
∘f − 𝑇)) = (coeff‘(𝑅 ∘f − 𝑇)) | 
| 137 | 135, 136 | dgreq0 26305 | . . . . . . . . 9
⊢ ((𝑅 ∘f −
𝑇) ∈ (Poly‘𝑆) → ((𝑅 ∘f − 𝑇) = 0𝑝 ↔
((coeff‘(𝑅
∘f − 𝑇))‘(deg‘(𝑅 ∘f − 𝑇))) = 0)) | 
| 138 | 17, 137 | syl 17 | . . . . . . . 8
⊢ (𝜑 → ((𝑅 ∘f − 𝑇) = 0𝑝 ↔
((coeff‘(𝑅
∘f − 𝑇))‘(deg‘(𝑅 ∘f − 𝑇))) = 0)) | 
| 139 | 138 | biimpar 477 | . . . . . . 7
⊢ ((𝜑 ∧ ((coeff‘(𝑅 ∘f −
𝑇))‘(deg‘(𝑅 ∘f −
𝑇))) = 0) → (𝑅 ∘f −
𝑇) =
0𝑝) | 
| 140 | 134, 139 | syldan 591 | . . . . . 6
⊢ ((𝜑 ∧ (𝑝 ∘f − 𝑞) ≠ 0𝑝)
→ (𝑅
∘f − 𝑇) = 0𝑝) | 
| 141 | 140 | ex 412 | . . . . 5
⊢ (𝜑 → ((𝑝 ∘f − 𝑞) ≠ 0𝑝
→ (𝑅
∘f − 𝑇) = 0𝑝)) | 
| 142 |  | plymul0or 26322 | . . . . . . 7
⊢ ((𝐺 ∈ (Poly‘𝑆) ∧ (𝑝 ∘f − 𝑞) ∈ (Poly‘𝑆)) → ((𝐺 ∘f · (𝑝 ∘f −
𝑞)) = 0𝑝
↔ (𝐺 =
0𝑝 ∨ (𝑝 ∘f − 𝑞) =
0𝑝))) | 
| 143 | 8, 53, 142 | syl2anc 584 | . . . . . 6
⊢ (𝜑 → ((𝐺 ∘f · (𝑝 ∘f −
𝑞)) = 0𝑝
↔ (𝐺 =
0𝑝 ∨ (𝑝 ∘f − 𝑞) =
0𝑝))) | 
| 144 | 95 | eqeq1d 2739 | . . . . . 6
⊢ (𝜑 → ((𝑅 ∘f − 𝑇) = 0𝑝 ↔
(𝐺 ∘f
· (𝑝
∘f − 𝑞)) = 0𝑝)) | 
| 145 | 9 | neneqd 2945 | . . . . . . 7
⊢ (𝜑 → ¬ 𝐺 = 0𝑝) | 
| 146 |  | biorf 937 | . . . . . . 7
⊢ (¬
𝐺 = 0𝑝
→ ((𝑝
∘f − 𝑞) = 0𝑝 ↔ (𝐺 = 0𝑝 ∨
(𝑝 ∘f
− 𝑞) =
0𝑝))) | 
| 147 | 145, 146 | syl 17 | . . . . . 6
⊢ (𝜑 → ((𝑝 ∘f − 𝑞) = 0𝑝 ↔
(𝐺 = 0𝑝
∨ (𝑝 ∘f
− 𝑞) =
0𝑝))) | 
| 148 | 143, 144,
147 | 3bitr4d 311 | . . . . 5
⊢ (𝜑 → ((𝑅 ∘f − 𝑇) = 0𝑝 ↔
(𝑝 ∘f
− 𝑞) =
0𝑝)) | 
| 149 | 141, 148 | sylibd 239 | . . . 4
⊢ (𝜑 → ((𝑝 ∘f − 𝑞) ≠ 0𝑝
→ (𝑝
∘f − 𝑞) = 0𝑝)) | 
| 150 | 1, 149 | pm2.61dne 3028 | . . 3
⊢ (𝜑 → (𝑝 ∘f − 𝑞) =
0𝑝) | 
| 151 |  | df-0p 25705 | . . 3
⊢
0𝑝 = (ℂ × {0}) | 
| 152 | 150, 151 | eqtrdi 2793 | . 2
⊢ (𝜑 → (𝑝 ∘f − 𝑞) = (ℂ ×
{0})) | 
| 153 |  | ofsubeq0 12263 | . . 3
⊢ ((ℂ
∈ V ∧ 𝑝:ℂ⟶ℂ ∧ 𝑞:ℂ⟶ℂ) →
((𝑝 ∘f
− 𝑞) = (ℂ
× {0}) ↔ 𝑝 =
𝑞)) | 
| 154 | 72, 89, 91, 153 | mp3an2i 1468 | . 2
⊢ (𝜑 → ((𝑝 ∘f − 𝑞) = (ℂ × {0}) ↔
𝑝 = 𝑞)) | 
| 155 | 152, 154 | mpbid 232 | 1
⊢ (𝜑 → 𝑝 = 𝑞) |