Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ply0 | Structured version Visualization version GIF version |
Description: The zero function is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.) |
Ref | Expression |
---|---|
ply0 | ⊢ (𝑆 ⊆ ℂ → 0𝑝 ∈ (Poly‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-0p 24383 | . . 3 ⊢ 0𝑝 = (ℂ × {0}) | |
2 | id 22 | . . . . 5 ⊢ (𝑆 ⊆ ℂ → 𝑆 ⊆ ℂ) | |
3 | 0cnd 10685 | . . . . . 6 ⊢ (𝑆 ⊆ ℂ → 0 ∈ ℂ) | |
4 | 3 | snssd 4702 | . . . . 5 ⊢ (𝑆 ⊆ ℂ → {0} ⊆ ℂ) |
5 | 2, 4 | unssd 4093 | . . . 4 ⊢ (𝑆 ⊆ ℂ → (𝑆 ∪ {0}) ⊆ ℂ) |
6 | ssun2 4080 | . . . . 5 ⊢ {0} ⊆ (𝑆 ∪ {0}) | |
7 | c0ex 10686 | . . . . . 6 ⊢ 0 ∈ V | |
8 | 7 | snss 4679 | . . . . 5 ⊢ (0 ∈ (𝑆 ∪ {0}) ↔ {0} ⊆ (𝑆 ∪ {0})) |
9 | 6, 8 | mpbir 234 | . . . 4 ⊢ 0 ∈ (𝑆 ∪ {0}) |
10 | plyconst 24915 | . . . 4 ⊢ (((𝑆 ∪ {0}) ⊆ ℂ ∧ 0 ∈ (𝑆 ∪ {0})) → (ℂ × {0}) ∈ (Poly‘(𝑆 ∪ {0}))) | |
11 | 5, 9, 10 | sylancl 589 | . . 3 ⊢ (𝑆 ⊆ ℂ → (ℂ × {0}) ∈ (Poly‘(𝑆 ∪ {0}))) |
12 | 1, 11 | eqeltrid 2856 | . 2 ⊢ (𝑆 ⊆ ℂ → 0𝑝 ∈ (Poly‘(𝑆 ∪ {0}))) |
13 | plyun0 24906 | . 2 ⊢ (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆) | |
14 | 12, 13 | eleqtrdi 2862 | 1 ⊢ (𝑆 ⊆ ℂ → 0𝑝 ∈ (Poly‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2111 ∪ cun 3858 ⊆ wss 3860 {csn 4525 × cxp 5526 ‘cfv 6340 ℂcc 10586 0cc0 10588 0𝑝c0p 24382 Polycply 24893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-inf2 9150 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 ax-pre-sup 10666 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-se 5488 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-isom 6349 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-1st 7699 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-er 8305 df-map 8424 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-sup 8952 df-oi 9020 df-card 9414 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-div 11349 df-nn 11688 df-2 11750 df-3 11751 df-n0 11948 df-z 12034 df-uz 12296 df-rp 12444 df-fz 12953 df-fzo 13096 df-seq 13432 df-exp 13493 df-hash 13754 df-cj 14519 df-re 14520 df-im 14521 df-sqrt 14655 df-abs 14656 df-clim 14906 df-sum 15104 df-0p 24383 df-ply 24897 |
This theorem is referenced by: coe0 24965 plydivlem3 25003 |
Copyright terms: Public domain | W3C validator |