Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ply0 | Structured version Visualization version GIF version |
Description: The zero function is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.) |
Ref | Expression |
---|---|
ply0 | ⊢ (𝑆 ⊆ ℂ → 0𝑝 ∈ (Poly‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-0p 24843 | . . 3 ⊢ 0𝑝 = (ℂ × {0}) | |
2 | id 22 | . . . . 5 ⊢ (𝑆 ⊆ ℂ → 𝑆 ⊆ ℂ) | |
3 | 0cnd 10977 | . . . . . 6 ⊢ (𝑆 ⊆ ℂ → 0 ∈ ℂ) | |
4 | 3 | snssd 4743 | . . . . 5 ⊢ (𝑆 ⊆ ℂ → {0} ⊆ ℂ) |
5 | 2, 4 | unssd 4121 | . . . 4 ⊢ (𝑆 ⊆ ℂ → (𝑆 ∪ {0}) ⊆ ℂ) |
6 | ssun2 4108 | . . . . 5 ⊢ {0} ⊆ (𝑆 ∪ {0}) | |
7 | c0ex 10978 | . . . . . 6 ⊢ 0 ∈ V | |
8 | 7 | snss 4720 | . . . . 5 ⊢ (0 ∈ (𝑆 ∪ {0}) ↔ {0} ⊆ (𝑆 ∪ {0})) |
9 | 6, 8 | mpbir 230 | . . . 4 ⊢ 0 ∈ (𝑆 ∪ {0}) |
10 | plyconst 25376 | . . . 4 ⊢ (((𝑆 ∪ {0}) ⊆ ℂ ∧ 0 ∈ (𝑆 ∪ {0})) → (ℂ × {0}) ∈ (Poly‘(𝑆 ∪ {0}))) | |
11 | 5, 9, 10 | sylancl 586 | . . 3 ⊢ (𝑆 ⊆ ℂ → (ℂ × {0}) ∈ (Poly‘(𝑆 ∪ {0}))) |
12 | 1, 11 | eqeltrid 2844 | . 2 ⊢ (𝑆 ⊆ ℂ → 0𝑝 ∈ (Poly‘(𝑆 ∪ {0}))) |
13 | plyun0 25367 | . 2 ⊢ (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆) | |
14 | 12, 13 | eleqtrdi 2850 | 1 ⊢ (𝑆 ⊆ ℂ → 0𝑝 ∈ (Poly‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 ∪ cun 3886 ⊆ wss 3888 {csn 4562 × cxp 5588 ‘cfv 6437 ℂcc 10878 0cc0 10880 0𝑝c0p 24842 Polycply 25354 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-rep 5210 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-inf2 9408 ax-cnex 10936 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 ax-pre-sup 10958 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rmo 3072 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-int 4881 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-isom 6446 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-om 7722 df-1st 7840 df-2nd 7841 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-1o 8306 df-er 8507 df-map 8626 df-en 8743 df-dom 8744 df-sdom 8745 df-fin 8746 df-sup 9210 df-oi 9278 df-card 9706 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-div 11642 df-nn 11983 df-2 12045 df-3 12046 df-n0 12243 df-z 12329 df-uz 12592 df-rp 12740 df-fz 13249 df-fzo 13392 df-seq 13731 df-exp 13792 df-hash 14054 df-cj 14819 df-re 14820 df-im 14821 df-sqrt 14955 df-abs 14956 df-clim 15206 df-sum 15407 df-0p 24843 df-ply 25358 |
This theorem is referenced by: coe0 25426 plydivlem3 25464 |
Copyright terms: Public domain | W3C validator |