MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply0 Structured version   Visualization version   GIF version

Theorem ply0 26248
Description: The zero function is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.)
Assertion
Ref Expression
ply0 (𝑆 ⊆ ℂ → 0𝑝 ∈ (Poly‘𝑆))

Proof of Theorem ply0
StepHypRef Expression
1 df-0p 25706 . . 3 0𝑝 = (ℂ × {0})
2 id 22 . . . . 5 (𝑆 ⊆ ℂ → 𝑆 ⊆ ℂ)
3 0cnd 11255 . . . . . 6 (𝑆 ⊆ ℂ → 0 ∈ ℂ)
43snssd 4808 . . . . 5 (𝑆 ⊆ ℂ → {0} ⊆ ℂ)
52, 4unssd 4191 . . . 4 (𝑆 ⊆ ℂ → (𝑆 ∪ {0}) ⊆ ℂ)
6 ssun2 4178 . . . . 5 {0} ⊆ (𝑆 ∪ {0})
7 c0ex 11256 . . . . . 6 0 ∈ V
87snss 4784 . . . . 5 (0 ∈ (𝑆 ∪ {0}) ↔ {0} ⊆ (𝑆 ∪ {0}))
96, 8mpbir 231 . . . 4 0 ∈ (𝑆 ∪ {0})
10 plyconst 26246 . . . 4 (((𝑆 ∪ {0}) ⊆ ℂ ∧ 0 ∈ (𝑆 ∪ {0})) → (ℂ × {0}) ∈ (Poly‘(𝑆 ∪ {0})))
115, 9, 10sylancl 586 . . 3 (𝑆 ⊆ ℂ → (ℂ × {0}) ∈ (Poly‘(𝑆 ∪ {0})))
121, 11eqeltrid 2844 . 2 (𝑆 ⊆ ℂ → 0𝑝 ∈ (Poly‘(𝑆 ∪ {0})))
13 plyun0 26237 . 2 (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆)
1412, 13eleqtrdi 2850 1 (𝑆 ⊆ ℂ → 0𝑝 ∈ (Poly‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  cun 3948  wss 3950  {csn 4625   × cxp 5682  cfv 6560  cc 11154  0cc0 11156  0𝑝c0p 25705  Polycply 26224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-n0 12529  df-z 12616  df-uz 12880  df-rp 13036  df-fz 13549  df-fzo 13696  df-seq 14044  df-exp 14104  df-hash 14371  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-clim 15525  df-sum 15724  df-0p 25706  df-ply 26228
This theorem is referenced by:  coe0  26296  plydivlem3  26338
  Copyright terms: Public domain W3C validator