Step | Hyp | Ref
| Expression |
1 | | simplr 769 |
. . . . . . . . 9
⊢ (((𝐷 ⊆ ℂ ∧ ¬
𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ)
∧ (𝑝 ↾ 𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎 ↾ 𝐷) = 𝐹))) → ¬ 𝐷 ∈ Fin) |
2 | | simpll 767 |
. . . . . . . . . . . . . 14
⊢ (((𝐷 ⊆ ℂ ∧ ¬
𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ)
∧ (𝑝 ↾ 𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎 ↾ 𝐷) = 𝐹))) → 𝐷 ⊆ ℂ) |
3 | 2 | sseld 3900 |
. . . . . . . . . . . . 13
⊢ (((𝐷 ⊆ ℂ ∧ ¬
𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ)
∧ (𝑝 ↾ 𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎 ↾ 𝐷) = 𝐹))) → (𝑏 ∈ 𝐷 → 𝑏 ∈ ℂ)) |
4 | | simprll 779 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐷 ⊆ ℂ ∧ ¬
𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ)
∧ (𝑝 ↾ 𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎 ↾ 𝐷) = 𝐹))) → 𝑝 ∈
(Poly‘ℂ)) |
5 | | plyf 25092 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑝 ∈ (Poly‘ℂ)
→ 𝑝:ℂ⟶ℂ) |
6 | 4, 5 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐷 ⊆ ℂ ∧ ¬
𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ)
∧ (𝑝 ↾ 𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎 ↾ 𝐷) = 𝐹))) → 𝑝:ℂ⟶ℂ) |
7 | 6 | ffnd 6546 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐷 ⊆ ℂ ∧ ¬
𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ)
∧ (𝑝 ↾ 𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎 ↾ 𝐷) = 𝐹))) → 𝑝 Fn ℂ) |
8 | 7 | adantr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐷 ⊆ ℂ ∧ ¬
𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ)
∧ (𝑝 ↾ 𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎 ↾ 𝐷) = 𝐹))) ∧ 𝑏 ∈ 𝐷) → 𝑝 Fn ℂ) |
9 | | simprrl 781 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐷 ⊆ ℂ ∧ ¬
𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ)
∧ (𝑝 ↾ 𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎 ↾ 𝐷) = 𝐹))) → 𝑎 ∈
(Poly‘ℂ)) |
10 | | plyf 25092 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 ∈ (Poly‘ℂ)
→ 𝑎:ℂ⟶ℂ) |
11 | 9, 10 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐷 ⊆ ℂ ∧ ¬
𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ)
∧ (𝑝 ↾ 𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎 ↾ 𝐷) = 𝐹))) → 𝑎:ℂ⟶ℂ) |
12 | 11 | ffnd 6546 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐷 ⊆ ℂ ∧ ¬
𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ)
∧ (𝑝 ↾ 𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎 ↾ 𝐷) = 𝐹))) → 𝑎 Fn ℂ) |
13 | 12 | adantr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐷 ⊆ ℂ ∧ ¬
𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ)
∧ (𝑝 ↾ 𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎 ↾ 𝐷) = 𝐹))) ∧ 𝑏 ∈ 𝐷) → 𝑎 Fn ℂ) |
14 | | cnex 10810 |
. . . . . . . . . . . . . . . . 17
⊢ ℂ
∈ V |
15 | 14 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐷 ⊆ ℂ ∧ ¬
𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ)
∧ (𝑝 ↾ 𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎 ↾ 𝐷) = 𝐹))) ∧ 𝑏 ∈ 𝐷) → ℂ ∈ V) |
16 | 2 | sselda 3901 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐷 ⊆ ℂ ∧ ¬
𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ)
∧ (𝑝 ↾ 𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎 ↾ 𝐷) = 𝐹))) ∧ 𝑏 ∈ 𝐷) → 𝑏 ∈ ℂ) |
17 | | fnfvof 7485 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑝 Fn ℂ ∧ 𝑎 Fn ℂ) ∧ (ℂ
∈ V ∧ 𝑏 ∈
ℂ)) → ((𝑝
∘f − 𝑎)‘𝑏) = ((𝑝‘𝑏) − (𝑎‘𝑏))) |
18 | 8, 13, 15, 16, 17 | syl22anc 839 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐷 ⊆ ℂ ∧ ¬
𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ)
∧ (𝑝 ↾ 𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎 ↾ 𝐷) = 𝐹))) ∧ 𝑏 ∈ 𝐷) → ((𝑝 ∘f − 𝑎)‘𝑏) = ((𝑝‘𝑏) − (𝑎‘𝑏))) |
19 | 6 | adantr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐷 ⊆ ℂ ∧ ¬
𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ)
∧ (𝑝 ↾ 𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎 ↾ 𝐷) = 𝐹))) ∧ 𝑏 ∈ 𝐷) → 𝑝:ℂ⟶ℂ) |
20 | 19, 16 | ffvelrnd 6905 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐷 ⊆ ℂ ∧ ¬
𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ)
∧ (𝑝 ↾ 𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎 ↾ 𝐷) = 𝐹))) ∧ 𝑏 ∈ 𝐷) → (𝑝‘𝑏) ∈ ℂ) |
21 | | simprlr 780 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐷 ⊆ ℂ ∧ ¬
𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ)
∧ (𝑝 ↾ 𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎 ↾ 𝐷) = 𝐹))) → (𝑝 ↾ 𝐷) = 𝐹) |
22 | | simprrr 782 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐷 ⊆ ℂ ∧ ¬
𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ)
∧ (𝑝 ↾ 𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎 ↾ 𝐷) = 𝐹))) → (𝑎 ↾ 𝐷) = 𝐹) |
23 | 21, 22 | eqtr4d 2780 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐷 ⊆ ℂ ∧ ¬
𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ)
∧ (𝑝 ↾ 𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎 ↾ 𝐷) = 𝐹))) → (𝑝 ↾ 𝐷) = (𝑎 ↾ 𝐷)) |
24 | 23 | adantr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐷 ⊆ ℂ ∧ ¬
𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ)
∧ (𝑝 ↾ 𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎 ↾ 𝐷) = 𝐹))) ∧ 𝑏 ∈ 𝐷) → (𝑝 ↾ 𝐷) = (𝑎 ↾ 𝐷)) |
25 | 24 | fveq1d 6719 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐷 ⊆ ℂ ∧ ¬
𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ)
∧ (𝑝 ↾ 𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎 ↾ 𝐷) = 𝐹))) ∧ 𝑏 ∈ 𝐷) → ((𝑝 ↾ 𝐷)‘𝑏) = ((𝑎 ↾ 𝐷)‘𝑏)) |
26 | | fvres 6736 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 ∈ 𝐷 → ((𝑝 ↾ 𝐷)‘𝑏) = (𝑝‘𝑏)) |
27 | 26 | adantl 485 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐷 ⊆ ℂ ∧ ¬
𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ)
∧ (𝑝 ↾ 𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎 ↾ 𝐷) = 𝐹))) ∧ 𝑏 ∈ 𝐷) → ((𝑝 ↾ 𝐷)‘𝑏) = (𝑝‘𝑏)) |
28 | | fvres 6736 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 ∈ 𝐷 → ((𝑎 ↾ 𝐷)‘𝑏) = (𝑎‘𝑏)) |
29 | 28 | adantl 485 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐷 ⊆ ℂ ∧ ¬
𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ)
∧ (𝑝 ↾ 𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎 ↾ 𝐷) = 𝐹))) ∧ 𝑏 ∈ 𝐷) → ((𝑎 ↾ 𝐷)‘𝑏) = (𝑎‘𝑏)) |
30 | 25, 27, 29 | 3eqtr3d 2785 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐷 ⊆ ℂ ∧ ¬
𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ)
∧ (𝑝 ↾ 𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎 ↾ 𝐷) = 𝐹))) ∧ 𝑏 ∈ 𝐷) → (𝑝‘𝑏) = (𝑎‘𝑏)) |
31 | 20, 30 | subeq0bd 11258 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐷 ⊆ ℂ ∧ ¬
𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ)
∧ (𝑝 ↾ 𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎 ↾ 𝐷) = 𝐹))) ∧ 𝑏 ∈ 𝐷) → ((𝑝‘𝑏) − (𝑎‘𝑏)) = 0) |
32 | 18, 31 | eqtrd 2777 |
. . . . . . . . . . . . . 14
⊢ ((((𝐷 ⊆ ℂ ∧ ¬
𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ)
∧ (𝑝 ↾ 𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎 ↾ 𝐷) = 𝐹))) ∧ 𝑏 ∈ 𝐷) → ((𝑝 ∘f − 𝑎)‘𝑏) = 0) |
33 | 32 | ex 416 |
. . . . . . . . . . . . 13
⊢ (((𝐷 ⊆ ℂ ∧ ¬
𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ)
∧ (𝑝 ↾ 𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎 ↾ 𝐷) = 𝐹))) → (𝑏 ∈ 𝐷 → ((𝑝 ∘f − 𝑎)‘𝑏) = 0)) |
34 | 3, 33 | jcad 516 |
. . . . . . . . . . . 12
⊢ (((𝐷 ⊆ ℂ ∧ ¬
𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ)
∧ (𝑝 ↾ 𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎 ↾ 𝐷) = 𝐹))) → (𝑏 ∈ 𝐷 → (𝑏 ∈ ℂ ∧ ((𝑝 ∘f − 𝑎)‘𝑏) = 0))) |
35 | | plysubcl 25116 |
. . . . . . . . . . . . . 14
⊢ ((𝑝 ∈ (Poly‘ℂ)
∧ 𝑎 ∈
(Poly‘ℂ)) → (𝑝 ∘f − 𝑎) ∈
(Poly‘ℂ)) |
36 | 4, 9, 35 | syl2anc 587 |
. . . . . . . . . . . . 13
⊢ (((𝐷 ⊆ ℂ ∧ ¬
𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ)
∧ (𝑝 ↾ 𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎 ↾ 𝐷) = 𝐹))) → (𝑝 ∘f − 𝑎) ∈
(Poly‘ℂ)) |
37 | | plyf 25092 |
. . . . . . . . . . . . 13
⊢ ((𝑝 ∘f −
𝑎) ∈
(Poly‘ℂ) → (𝑝 ∘f − 𝑎):ℂ⟶ℂ) |
38 | | ffn 6545 |
. . . . . . . . . . . . 13
⊢ ((𝑝 ∘f −
𝑎):ℂ⟶ℂ
→ (𝑝
∘f − 𝑎) Fn ℂ) |
39 | | fniniseg 6880 |
. . . . . . . . . . . . 13
⊢ ((𝑝 ∘f −
𝑎) Fn ℂ → (𝑏 ∈ (◡(𝑝 ∘f − 𝑎) “ {0}) ↔ (𝑏 ∈ ℂ ∧ ((𝑝 ∘f −
𝑎)‘𝑏) = 0))) |
40 | 36, 37, 38, 39 | 4syl 19 |
. . . . . . . . . . . 12
⊢ (((𝐷 ⊆ ℂ ∧ ¬
𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ)
∧ (𝑝 ↾ 𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎 ↾ 𝐷) = 𝐹))) → (𝑏 ∈ (◡(𝑝 ∘f − 𝑎) “ {0}) ↔ (𝑏 ∈ ℂ ∧ ((𝑝 ∘f −
𝑎)‘𝑏) = 0))) |
41 | 34, 40 | sylibrd 262 |
. . . . . . . . . . 11
⊢ (((𝐷 ⊆ ℂ ∧ ¬
𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ)
∧ (𝑝 ↾ 𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎 ↾ 𝐷) = 𝐹))) → (𝑏 ∈ 𝐷 → 𝑏 ∈ (◡(𝑝 ∘f − 𝑎) “
{0}))) |
42 | 41 | ssrdv 3907 |
. . . . . . . . . 10
⊢ (((𝐷 ⊆ ℂ ∧ ¬
𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ)
∧ (𝑝 ↾ 𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎 ↾ 𝐷) = 𝐹))) → 𝐷 ⊆ (◡(𝑝 ∘f − 𝑎) “ {0})) |
43 | | ssfi 8851 |
. . . . . . . . . . 11
⊢ (((◡(𝑝 ∘f − 𝑎) “ {0}) ∈ Fin ∧
𝐷 ⊆ (◡(𝑝 ∘f − 𝑎) “ {0})) → 𝐷 ∈ Fin) |
44 | 43 | expcom 417 |
. . . . . . . . . 10
⊢ (𝐷 ⊆ (◡(𝑝 ∘f − 𝑎) “ {0}) → ((◡(𝑝 ∘f − 𝑎) “ {0}) ∈ Fin →
𝐷 ∈
Fin)) |
45 | 42, 44 | syl 17 |
. . . . . . . . 9
⊢ (((𝐷 ⊆ ℂ ∧ ¬
𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ)
∧ (𝑝 ↾ 𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎 ↾ 𝐷) = 𝐹))) → ((◡(𝑝 ∘f − 𝑎) “ {0}) ∈ Fin →
𝐷 ∈
Fin)) |
46 | 1, 45 | mtod 201 |
. . . . . . . 8
⊢ (((𝐷 ⊆ ℂ ∧ ¬
𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ)
∧ (𝑝 ↾ 𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎 ↾ 𝐷) = 𝐹))) → ¬ (◡(𝑝 ∘f − 𝑎) “ {0}) ∈
Fin) |
47 | | neqne 2948 |
. . . . . . . . . . 11
⊢ (¬
(𝑝 ∘f
− 𝑎) =
0𝑝 → (𝑝 ∘f − 𝑎) ≠
0𝑝) |
48 | | eqid 2737 |
. . . . . . . . . . . 12
⊢ (◡(𝑝 ∘f − 𝑎) “ {0}) = (◡(𝑝 ∘f − 𝑎) “ {0}) |
49 | 48 | fta1 25201 |
. . . . . . . . . . 11
⊢ (((𝑝 ∘f −
𝑎) ∈
(Poly‘ℂ) ∧ (𝑝 ∘f − 𝑎) ≠ 0𝑝)
→ ((◡(𝑝 ∘f − 𝑎) “ {0}) ∈ Fin ∧
(♯‘(◡(𝑝 ∘f − 𝑎) “ {0})) ≤
(deg‘(𝑝
∘f − 𝑎)))) |
50 | 36, 47, 49 | syl2an 599 |
. . . . . . . . . 10
⊢ ((((𝐷 ⊆ ℂ ∧ ¬
𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ)
∧ (𝑝 ↾ 𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎 ↾ 𝐷) = 𝐹))) ∧ ¬ (𝑝 ∘f − 𝑎) = 0𝑝)
→ ((◡(𝑝 ∘f − 𝑎) “ {0}) ∈ Fin ∧
(♯‘(◡(𝑝 ∘f − 𝑎) “ {0})) ≤
(deg‘(𝑝
∘f − 𝑎)))) |
51 | 50 | simpld 498 |
. . . . . . . . 9
⊢ ((((𝐷 ⊆ ℂ ∧ ¬
𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ)
∧ (𝑝 ↾ 𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎 ↾ 𝐷) = 𝐹))) ∧ ¬ (𝑝 ∘f − 𝑎) = 0𝑝)
→ (◡(𝑝 ∘f − 𝑎) “ {0}) ∈
Fin) |
52 | 51 | ex 416 |
. . . . . . . 8
⊢ (((𝐷 ⊆ ℂ ∧ ¬
𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ)
∧ (𝑝 ↾ 𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎 ↾ 𝐷) = 𝐹))) → (¬ (𝑝 ∘f − 𝑎) = 0𝑝 →
(◡(𝑝 ∘f − 𝑎) “ {0}) ∈
Fin)) |
53 | 46, 52 | mt3d 150 |
. . . . . . 7
⊢ (((𝐷 ⊆ ℂ ∧ ¬
𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ)
∧ (𝑝 ↾ 𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎 ↾ 𝐷) = 𝐹))) → (𝑝 ∘f − 𝑎) =
0𝑝) |
54 | | df-0p 24567 |
. . . . . . 7
⊢
0𝑝 = (ℂ × {0}) |
55 | 53, 54 | eqtrdi 2794 |
. . . . . 6
⊢ (((𝐷 ⊆ ℂ ∧ ¬
𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ)
∧ (𝑝 ↾ 𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎 ↾ 𝐷) = 𝐹))) → (𝑝 ∘f − 𝑎) = (ℂ ×
{0})) |
56 | | ofsubeq0 11827 |
. . . . . . 7
⊢ ((ℂ
∈ V ∧ 𝑝:ℂ⟶ℂ ∧ 𝑎:ℂ⟶ℂ) →
((𝑝 ∘f
− 𝑎) = (ℂ
× {0}) ↔ 𝑝 =
𝑎)) |
57 | 14, 6, 11, 56 | mp3an2i 1468 |
. . . . . 6
⊢ (((𝐷 ⊆ ℂ ∧ ¬
𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ)
∧ (𝑝 ↾ 𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎 ↾ 𝐷) = 𝐹))) → ((𝑝 ∘f − 𝑎) = (ℂ × {0}) ↔
𝑝 = 𝑎)) |
58 | 55, 57 | mpbid 235 |
. . . . 5
⊢ (((𝐷 ⊆ ℂ ∧ ¬
𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ)
∧ (𝑝 ↾ 𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎 ↾ 𝐷) = 𝐹))) → 𝑝 = 𝑎) |
59 | 58 | ex 416 |
. . . 4
⊢ ((𝐷 ⊆ ℂ ∧ ¬
𝐷 ∈ Fin) →
(((𝑝 ∈
(Poly‘ℂ) ∧ (𝑝 ↾ 𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎 ↾ 𝐷) = 𝐹)) → 𝑝 = 𝑎)) |
60 | 59 | alrimivv 1936 |
. . 3
⊢ ((𝐷 ⊆ ℂ ∧ ¬
𝐷 ∈ Fin) →
∀𝑝∀𝑎(((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝 ↾ 𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎 ↾ 𝐷) = 𝐹)) → 𝑝 = 𝑎)) |
61 | | eleq1w 2820 |
. . . . 5
⊢ (𝑝 = 𝑎 → (𝑝 ∈ (Poly‘ℂ) ↔ 𝑎 ∈
(Poly‘ℂ))) |
62 | | reseq1 5845 |
. . . . . 6
⊢ (𝑝 = 𝑎 → (𝑝 ↾ 𝐷) = (𝑎 ↾ 𝐷)) |
63 | 62 | eqeq1d 2739 |
. . . . 5
⊢ (𝑝 = 𝑎 → ((𝑝 ↾ 𝐷) = 𝐹 ↔ (𝑎 ↾ 𝐷) = 𝐹)) |
64 | 61, 63 | anbi12d 634 |
. . . 4
⊢ (𝑝 = 𝑎 → ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝 ↾ 𝐷) = 𝐹) ↔ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎 ↾ 𝐷) = 𝐹))) |
65 | 64 | mo4 2565 |
. . 3
⊢
(∃*𝑝(𝑝 ∈ (Poly‘ℂ)
∧ (𝑝 ↾ 𝐷) = 𝐹) ↔ ∀𝑝∀𝑎(((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝 ↾ 𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎 ↾ 𝐷) = 𝐹)) → 𝑝 = 𝑎)) |
66 | 60, 65 | sylibr 237 |
. 2
⊢ ((𝐷 ⊆ ℂ ∧ ¬
𝐷 ∈ Fin) →
∃*𝑝(𝑝 ∈ (Poly‘ℂ)
∧ (𝑝 ↾ 𝐷) = 𝐹)) |
67 | | plyssc 25094 |
. . . . 5
⊢
(Poly‘𝑆)
⊆ (Poly‘ℂ) |
68 | 67 | sseli 3896 |
. . . 4
⊢ (𝑝 ∈ (Poly‘𝑆) → 𝑝 ∈
(Poly‘ℂ)) |
69 | 68 | anim1i 618 |
. . 3
⊢ ((𝑝 ∈ (Poly‘𝑆) ∧ (𝑝 ↾ 𝐷) = 𝐹) → (𝑝 ∈ (Poly‘ℂ) ∧ (𝑝 ↾ 𝐷) = 𝐹)) |
70 | 69 | moimi 2544 |
. 2
⊢
(∃*𝑝(𝑝 ∈ (Poly‘ℂ)
∧ (𝑝 ↾ 𝐷) = 𝐹) → ∃*𝑝(𝑝 ∈ (Poly‘𝑆) ∧ (𝑝 ↾ 𝐷) = 𝐹)) |
71 | 66, 70 | syl 17 |
1
⊢ ((𝐷 ⊆ ℂ ∧ ¬
𝐷 ∈ Fin) →
∃*𝑝(𝑝 ∈ (Poly‘𝑆) ∧ (𝑝 ↾ 𝐷) = 𝐹)) |