MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyexmo Structured version   Visualization version   GIF version

Theorem plyexmo 26293
Description: An infinite set of values can be extended to a polynomial in at most one way. (Contributed by Stefan O'Rear, 14-Nov-2014.)
Assertion
Ref Expression
plyexmo ((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) → ∃*𝑝(𝑝 ∈ (Poly‘𝑆) ∧ (𝑝𝐷) = 𝐹))
Distinct variable groups:   𝑆,𝑝   𝐹,𝑝   𝐷,𝑝

Proof of Theorem plyexmo
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 767 . . . . . . . . 9 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → ¬ 𝐷 ∈ Fin)
2 simpll 765 . . . . . . . . . . . . . 14 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → 𝐷 ⊆ ℂ)
32sseld 3975 . . . . . . . . . . . . 13 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑏𝐷𝑏 ∈ ℂ))
4 simprll 777 . . . . . . . . . . . . . . . . . . 19 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → 𝑝 ∈ (Poly‘ℂ))
5 plyf 26177 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ (Poly‘ℂ) → 𝑝:ℂ⟶ℂ)
64, 5syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → 𝑝:ℂ⟶ℂ)
76ffnd 6724 . . . . . . . . . . . . . . . . 17 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → 𝑝 Fn ℂ)
87adantr 479 . . . . . . . . . . . . . . . 16 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → 𝑝 Fn ℂ)
9 simprrl 779 . . . . . . . . . . . . . . . . . . 19 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → 𝑎 ∈ (Poly‘ℂ))
10 plyf 26177 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ (Poly‘ℂ) → 𝑎:ℂ⟶ℂ)
119, 10syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → 𝑎:ℂ⟶ℂ)
1211ffnd 6724 . . . . . . . . . . . . . . . . 17 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → 𝑎 Fn ℂ)
1312adantr 479 . . . . . . . . . . . . . . . 16 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → 𝑎 Fn ℂ)
14 cnex 11221 . . . . . . . . . . . . . . . . 17 ℂ ∈ V
1514a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → ℂ ∈ V)
162sselda 3976 . . . . . . . . . . . . . . . 16 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → 𝑏 ∈ ℂ)
17 fnfvof 7702 . . . . . . . . . . . . . . . 16 (((𝑝 Fn ℂ ∧ 𝑎 Fn ℂ) ∧ (ℂ ∈ V ∧ 𝑏 ∈ ℂ)) → ((𝑝f𝑎)‘𝑏) = ((𝑝𝑏) − (𝑎𝑏)))
188, 13, 15, 16, 17syl22anc 837 . . . . . . . . . . . . . . 15 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → ((𝑝f𝑎)‘𝑏) = ((𝑝𝑏) − (𝑎𝑏)))
196adantr 479 . . . . . . . . . . . . . . . . 17 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → 𝑝:ℂ⟶ℂ)
2019, 16ffvelcdmd 7094 . . . . . . . . . . . . . . . 16 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → (𝑝𝑏) ∈ ℂ)
21 simprlr 778 . . . . . . . . . . . . . . . . . . . 20 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑝𝐷) = 𝐹)
22 simprrr 780 . . . . . . . . . . . . . . . . . . . 20 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑎𝐷) = 𝐹)
2321, 22eqtr4d 2768 . . . . . . . . . . . . . . . . . . 19 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑝𝐷) = (𝑎𝐷))
2423adantr 479 . . . . . . . . . . . . . . . . . 18 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → (𝑝𝐷) = (𝑎𝐷))
2524fveq1d 6898 . . . . . . . . . . . . . . . . 17 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → ((𝑝𝐷)‘𝑏) = ((𝑎𝐷)‘𝑏))
26 fvres 6915 . . . . . . . . . . . . . . . . . 18 (𝑏𝐷 → ((𝑝𝐷)‘𝑏) = (𝑝𝑏))
2726adantl 480 . . . . . . . . . . . . . . . . 17 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → ((𝑝𝐷)‘𝑏) = (𝑝𝑏))
28 fvres 6915 . . . . . . . . . . . . . . . . . 18 (𝑏𝐷 → ((𝑎𝐷)‘𝑏) = (𝑎𝑏))
2928adantl 480 . . . . . . . . . . . . . . . . 17 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → ((𝑎𝐷)‘𝑏) = (𝑎𝑏))
3025, 27, 293eqtr3d 2773 . . . . . . . . . . . . . . . 16 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → (𝑝𝑏) = (𝑎𝑏))
3120, 30subeq0bd 11672 . . . . . . . . . . . . . . 15 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → ((𝑝𝑏) − (𝑎𝑏)) = 0)
3218, 31eqtrd 2765 . . . . . . . . . . . . . 14 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → ((𝑝f𝑎)‘𝑏) = 0)
3332ex 411 . . . . . . . . . . . . 13 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑏𝐷 → ((𝑝f𝑎)‘𝑏) = 0))
343, 33jcad 511 . . . . . . . . . . . 12 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑏𝐷 → (𝑏 ∈ ℂ ∧ ((𝑝f𝑎)‘𝑏) = 0)))
35 plysubcl 26201 . . . . . . . . . . . . . 14 ((𝑝 ∈ (Poly‘ℂ) ∧ 𝑎 ∈ (Poly‘ℂ)) → (𝑝f𝑎) ∈ (Poly‘ℂ))
364, 9, 35syl2anc 582 . . . . . . . . . . . . 13 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑝f𝑎) ∈ (Poly‘ℂ))
37 plyf 26177 . . . . . . . . . . . . 13 ((𝑝f𝑎) ∈ (Poly‘ℂ) → (𝑝f𝑎):ℂ⟶ℂ)
38 ffn 6723 . . . . . . . . . . . . 13 ((𝑝f𝑎):ℂ⟶ℂ → (𝑝f𝑎) Fn ℂ)
39 fniniseg 7068 . . . . . . . . . . . . 13 ((𝑝f𝑎) Fn ℂ → (𝑏 ∈ ((𝑝f𝑎) “ {0}) ↔ (𝑏 ∈ ℂ ∧ ((𝑝f𝑎)‘𝑏) = 0)))
4036, 37, 38, 394syl 19 . . . . . . . . . . . 12 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑏 ∈ ((𝑝f𝑎) “ {0}) ↔ (𝑏 ∈ ℂ ∧ ((𝑝f𝑎)‘𝑏) = 0)))
4134, 40sylibrd 258 . . . . . . . . . . 11 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑏𝐷𝑏 ∈ ((𝑝f𝑎) “ {0})))
4241ssrdv 3982 . . . . . . . . . 10 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → 𝐷 ⊆ ((𝑝f𝑎) “ {0}))
43 ssfi 9198 . . . . . . . . . . 11 ((((𝑝f𝑎) “ {0}) ∈ Fin ∧ 𝐷 ⊆ ((𝑝f𝑎) “ {0})) → 𝐷 ∈ Fin)
4443expcom 412 . . . . . . . . . 10 (𝐷 ⊆ ((𝑝f𝑎) “ {0}) → (((𝑝f𝑎) “ {0}) ∈ Fin → 𝐷 ∈ Fin))
4542, 44syl 17 . . . . . . . . 9 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (((𝑝f𝑎) “ {0}) ∈ Fin → 𝐷 ∈ Fin))
461, 45mtod 197 . . . . . . . 8 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → ¬ ((𝑝f𝑎) “ {0}) ∈ Fin)
47 neqne 2937 . . . . . . . . . . 11 (¬ (𝑝f𝑎) = 0𝑝 → (𝑝f𝑎) ≠ 0𝑝)
48 eqid 2725 . . . . . . . . . . . 12 ((𝑝f𝑎) “ {0}) = ((𝑝f𝑎) “ {0})
4948fta1 26288 . . . . . . . . . . 11 (((𝑝f𝑎) ∈ (Poly‘ℂ) ∧ (𝑝f𝑎) ≠ 0𝑝) → (((𝑝f𝑎) “ {0}) ∈ Fin ∧ (♯‘((𝑝f𝑎) “ {0})) ≤ (deg‘(𝑝f𝑎))))
5036, 47, 49syl2an 594 . . . . . . . . . 10 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ ¬ (𝑝f𝑎) = 0𝑝) → (((𝑝f𝑎) “ {0}) ∈ Fin ∧ (♯‘((𝑝f𝑎) “ {0})) ≤ (deg‘(𝑝f𝑎))))
5150simpld 493 . . . . . . . . 9 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ ¬ (𝑝f𝑎) = 0𝑝) → ((𝑝f𝑎) “ {0}) ∈ Fin)
5251ex 411 . . . . . . . 8 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (¬ (𝑝f𝑎) = 0𝑝 → ((𝑝f𝑎) “ {0}) ∈ Fin))
5346, 52mt3d 148 . . . . . . 7 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑝f𝑎) = 0𝑝)
54 df-0p 25643 . . . . . . 7 0𝑝 = (ℂ × {0})
5553, 54eqtrdi 2781 . . . . . 6 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑝f𝑎) = (ℂ × {0}))
56 ofsubeq0 12242 . . . . . . 7 ((ℂ ∈ V ∧ 𝑝:ℂ⟶ℂ ∧ 𝑎:ℂ⟶ℂ) → ((𝑝f𝑎) = (ℂ × {0}) ↔ 𝑝 = 𝑎))
5714, 6, 11, 56mp3an2i 1462 . . . . . 6 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → ((𝑝f𝑎) = (ℂ × {0}) ↔ 𝑝 = 𝑎))
5855, 57mpbid 231 . . . . 5 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → 𝑝 = 𝑎)
5958ex 411 . . . 4 ((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) → (((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹)) → 𝑝 = 𝑎))
6059alrimivv 1923 . . 3 ((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) → ∀𝑝𝑎(((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹)) → 𝑝 = 𝑎))
61 eleq1w 2808 . . . . 5 (𝑝 = 𝑎 → (𝑝 ∈ (Poly‘ℂ) ↔ 𝑎 ∈ (Poly‘ℂ)))
62 reseq1 5979 . . . . . 6 (𝑝 = 𝑎 → (𝑝𝐷) = (𝑎𝐷))
6362eqeq1d 2727 . . . . 5 (𝑝 = 𝑎 → ((𝑝𝐷) = 𝐹 ↔ (𝑎𝐷) = 𝐹))
6461, 63anbi12d 630 . . . 4 (𝑝 = 𝑎 → ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ↔ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹)))
6564mo4 2554 . . 3 (∃*𝑝(𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ↔ ∀𝑝𝑎(((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹)) → 𝑝 = 𝑎))
6660, 65sylibr 233 . 2 ((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) → ∃*𝑝(𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹))
67 plyssc 26179 . . . . 5 (Poly‘𝑆) ⊆ (Poly‘ℂ)
6867sseli 3972 . . . 4 (𝑝 ∈ (Poly‘𝑆) → 𝑝 ∈ (Poly‘ℂ))
6968anim1i 613 . . 3 ((𝑝 ∈ (Poly‘𝑆) ∧ (𝑝𝐷) = 𝐹) → (𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹))
7069moimi 2533 . 2 (∃*𝑝(𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) → ∃*𝑝(𝑝 ∈ (Poly‘𝑆) ∧ (𝑝𝐷) = 𝐹))
7166, 70syl 17 1 ((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) → ∃*𝑝(𝑝 ∈ (Poly‘𝑆) ∧ (𝑝𝐷) = 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wal 1531   = wceq 1533  wcel 2098  ∃*wmo 2526  wne 2929  Vcvv 3461  wss 3944  {csn 4630   class class class wbr 5149   × cxp 5676  ccnv 5677  cres 5680  cima 5681   Fn wfn 6544  wf 6545  cfv 6549  (class class class)co 7419  f cof 7683  Fincfn 8964  cc 11138  0cc0 11140  cle 11281  cmin 11476  chash 14325  0𝑝c0p 25642  Polycply 26163  degcdgr 26166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-oadd 8491  df-er 8725  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9467  df-inf 9468  df-oi 9535  df-dju 9926  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-n0 12506  df-xnn0 12578  df-z 12592  df-uz 12856  df-rp 13010  df-fz 13520  df-fzo 13663  df-fl 13793  df-seq 14003  df-exp 14063  df-hash 14326  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-clim 15468  df-rlim 15469  df-sum 15669  df-0p 25643  df-ply 26167  df-idp 26168  df-coe 26169  df-dgr 26170  df-quot 26271
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator