MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyexmo Structured version   Visualization version   GIF version

Theorem plyexmo 24909
Description: An infinite set of values can be extended to a polynomial in at most one way. (Contributed by Stefan O'Rear, 14-Nov-2014.)
Assertion
Ref Expression
plyexmo ((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) → ∃*𝑝(𝑝 ∈ (Poly‘𝑆) ∧ (𝑝𝐷) = 𝐹))
Distinct variable groups:   𝑆,𝑝   𝐹,𝑝   𝐷,𝑝

Proof of Theorem plyexmo
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . . . . . . 9 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → ¬ 𝐷 ∈ Fin)
2 simpll 766 . . . . . . . . . . . . . 14 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → 𝐷 ⊆ ℂ)
32sseld 3914 . . . . . . . . . . . . 13 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑏𝐷𝑏 ∈ ℂ))
4 simprll 778 . . . . . . . . . . . . . . . . . . 19 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → 𝑝 ∈ (Poly‘ℂ))
5 plyf 24795 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ (Poly‘ℂ) → 𝑝:ℂ⟶ℂ)
64, 5syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → 𝑝:ℂ⟶ℂ)
76ffnd 6488 . . . . . . . . . . . . . . . . 17 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → 𝑝 Fn ℂ)
87adantr 484 . . . . . . . . . . . . . . . 16 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → 𝑝 Fn ℂ)
9 simprrl 780 . . . . . . . . . . . . . . . . . . 19 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → 𝑎 ∈ (Poly‘ℂ))
10 plyf 24795 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ (Poly‘ℂ) → 𝑎:ℂ⟶ℂ)
119, 10syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → 𝑎:ℂ⟶ℂ)
1211ffnd 6488 . . . . . . . . . . . . . . . . 17 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → 𝑎 Fn ℂ)
1312adantr 484 . . . . . . . . . . . . . . . 16 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → 𝑎 Fn ℂ)
14 cnex 10607 . . . . . . . . . . . . . . . . 17 ℂ ∈ V
1514a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → ℂ ∈ V)
162sselda 3915 . . . . . . . . . . . . . . . 16 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → 𝑏 ∈ ℂ)
17 fnfvof 7403 . . . . . . . . . . . . . . . 16 (((𝑝 Fn ℂ ∧ 𝑎 Fn ℂ) ∧ (ℂ ∈ V ∧ 𝑏 ∈ ℂ)) → ((𝑝f𝑎)‘𝑏) = ((𝑝𝑏) − (𝑎𝑏)))
188, 13, 15, 16, 17syl22anc 837 . . . . . . . . . . . . . . 15 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → ((𝑝f𝑎)‘𝑏) = ((𝑝𝑏) − (𝑎𝑏)))
196adantr 484 . . . . . . . . . . . . . . . . 17 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → 𝑝:ℂ⟶ℂ)
2019, 16ffvelrnd 6829 . . . . . . . . . . . . . . . 16 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → (𝑝𝑏) ∈ ℂ)
21 simprlr 779 . . . . . . . . . . . . . . . . . . . 20 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑝𝐷) = 𝐹)
22 simprrr 781 . . . . . . . . . . . . . . . . . . . 20 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑎𝐷) = 𝐹)
2321, 22eqtr4d 2836 . . . . . . . . . . . . . . . . . . 19 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑝𝐷) = (𝑎𝐷))
2423adantr 484 . . . . . . . . . . . . . . . . . 18 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → (𝑝𝐷) = (𝑎𝐷))
2524fveq1d 6647 . . . . . . . . . . . . . . . . 17 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → ((𝑝𝐷)‘𝑏) = ((𝑎𝐷)‘𝑏))
26 fvres 6664 . . . . . . . . . . . . . . . . . 18 (𝑏𝐷 → ((𝑝𝐷)‘𝑏) = (𝑝𝑏))
2726adantl 485 . . . . . . . . . . . . . . . . 17 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → ((𝑝𝐷)‘𝑏) = (𝑝𝑏))
28 fvres 6664 . . . . . . . . . . . . . . . . . 18 (𝑏𝐷 → ((𝑎𝐷)‘𝑏) = (𝑎𝑏))
2928adantl 485 . . . . . . . . . . . . . . . . 17 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → ((𝑎𝐷)‘𝑏) = (𝑎𝑏))
3025, 27, 293eqtr3d 2841 . . . . . . . . . . . . . . . 16 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → (𝑝𝑏) = (𝑎𝑏))
3120, 30subeq0bd 11055 . . . . . . . . . . . . . . 15 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → ((𝑝𝑏) − (𝑎𝑏)) = 0)
3218, 31eqtrd 2833 . . . . . . . . . . . . . 14 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → ((𝑝f𝑎)‘𝑏) = 0)
3332ex 416 . . . . . . . . . . . . 13 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑏𝐷 → ((𝑝f𝑎)‘𝑏) = 0))
343, 33jcad 516 . . . . . . . . . . . 12 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑏𝐷 → (𝑏 ∈ ℂ ∧ ((𝑝f𝑎)‘𝑏) = 0)))
35 plysubcl 24819 . . . . . . . . . . . . . 14 ((𝑝 ∈ (Poly‘ℂ) ∧ 𝑎 ∈ (Poly‘ℂ)) → (𝑝f𝑎) ∈ (Poly‘ℂ))
364, 9, 35syl2anc 587 . . . . . . . . . . . . 13 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑝f𝑎) ∈ (Poly‘ℂ))
37 plyf 24795 . . . . . . . . . . . . 13 ((𝑝f𝑎) ∈ (Poly‘ℂ) → (𝑝f𝑎):ℂ⟶ℂ)
38 ffn 6487 . . . . . . . . . . . . 13 ((𝑝f𝑎):ℂ⟶ℂ → (𝑝f𝑎) Fn ℂ)
39 fniniseg 6807 . . . . . . . . . . . . 13 ((𝑝f𝑎) Fn ℂ → (𝑏 ∈ ((𝑝f𝑎) “ {0}) ↔ (𝑏 ∈ ℂ ∧ ((𝑝f𝑎)‘𝑏) = 0)))
4036, 37, 38, 394syl 19 . . . . . . . . . . . 12 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑏 ∈ ((𝑝f𝑎) “ {0}) ↔ (𝑏 ∈ ℂ ∧ ((𝑝f𝑎)‘𝑏) = 0)))
4134, 40sylibrd 262 . . . . . . . . . . 11 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑏𝐷𝑏 ∈ ((𝑝f𝑎) “ {0})))
4241ssrdv 3921 . . . . . . . . . 10 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → 𝐷 ⊆ ((𝑝f𝑎) “ {0}))
43 ssfi 8722 . . . . . . . . . . 11 ((((𝑝f𝑎) “ {0}) ∈ Fin ∧ 𝐷 ⊆ ((𝑝f𝑎) “ {0})) → 𝐷 ∈ Fin)
4443expcom 417 . . . . . . . . . 10 (𝐷 ⊆ ((𝑝f𝑎) “ {0}) → (((𝑝f𝑎) “ {0}) ∈ Fin → 𝐷 ∈ Fin))
4542, 44syl 17 . . . . . . . . 9 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (((𝑝f𝑎) “ {0}) ∈ Fin → 𝐷 ∈ Fin))
461, 45mtod 201 . . . . . . . 8 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → ¬ ((𝑝f𝑎) “ {0}) ∈ Fin)
47 neqne 2995 . . . . . . . . . . 11 (¬ (𝑝f𝑎) = 0𝑝 → (𝑝f𝑎) ≠ 0𝑝)
48 eqid 2798 . . . . . . . . . . . 12 ((𝑝f𝑎) “ {0}) = ((𝑝f𝑎) “ {0})
4948fta1 24904 . . . . . . . . . . 11 (((𝑝f𝑎) ∈ (Poly‘ℂ) ∧ (𝑝f𝑎) ≠ 0𝑝) → (((𝑝f𝑎) “ {0}) ∈ Fin ∧ (♯‘((𝑝f𝑎) “ {0})) ≤ (deg‘(𝑝f𝑎))))
5036, 47, 49syl2an 598 . . . . . . . . . 10 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ ¬ (𝑝f𝑎) = 0𝑝) → (((𝑝f𝑎) “ {0}) ∈ Fin ∧ (♯‘((𝑝f𝑎) “ {0})) ≤ (deg‘(𝑝f𝑎))))
5150simpld 498 . . . . . . . . 9 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ ¬ (𝑝f𝑎) = 0𝑝) → ((𝑝f𝑎) “ {0}) ∈ Fin)
5251ex 416 . . . . . . . 8 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (¬ (𝑝f𝑎) = 0𝑝 → ((𝑝f𝑎) “ {0}) ∈ Fin))
5346, 52mt3d 150 . . . . . . 7 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑝f𝑎) = 0𝑝)
54 df-0p 24274 . . . . . . 7 0𝑝 = (ℂ × {0})
5553, 54eqtrdi 2849 . . . . . 6 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑝f𝑎) = (ℂ × {0}))
56 ofsubeq0 11622 . . . . . . 7 ((ℂ ∈ V ∧ 𝑝:ℂ⟶ℂ ∧ 𝑎:ℂ⟶ℂ) → ((𝑝f𝑎) = (ℂ × {0}) ↔ 𝑝 = 𝑎))
5714, 6, 11, 56mp3an2i 1463 . . . . . 6 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → ((𝑝f𝑎) = (ℂ × {0}) ↔ 𝑝 = 𝑎))
5855, 57mpbid 235 . . . . 5 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → 𝑝 = 𝑎)
5958ex 416 . . . 4 ((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) → (((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹)) → 𝑝 = 𝑎))
6059alrimivv 1929 . . 3 ((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) → ∀𝑝𝑎(((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹)) → 𝑝 = 𝑎))
61 eleq1w 2872 . . . . 5 (𝑝 = 𝑎 → (𝑝 ∈ (Poly‘ℂ) ↔ 𝑎 ∈ (Poly‘ℂ)))
62 reseq1 5812 . . . . . 6 (𝑝 = 𝑎 → (𝑝𝐷) = (𝑎𝐷))
6362eqeq1d 2800 . . . . 5 (𝑝 = 𝑎 → ((𝑝𝐷) = 𝐹 ↔ (𝑎𝐷) = 𝐹))
6461, 63anbi12d 633 . . . 4 (𝑝 = 𝑎 → ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ↔ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹)))
6564mo4 2625 . . 3 (∃*𝑝(𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ↔ ∀𝑝𝑎(((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹)) → 𝑝 = 𝑎))
6660, 65sylibr 237 . 2 ((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) → ∃*𝑝(𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹))
67 plyssc 24797 . . . . 5 (Poly‘𝑆) ⊆ (Poly‘ℂ)
6867sseli 3911 . . . 4 (𝑝 ∈ (Poly‘𝑆) → 𝑝 ∈ (Poly‘ℂ))
6968anim1i 617 . . 3 ((𝑝 ∈ (Poly‘𝑆) ∧ (𝑝𝐷) = 𝐹) → (𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹))
7069moimi 2603 . 2 (∃*𝑝(𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) → ∃*𝑝(𝑝 ∈ (Poly‘𝑆) ∧ (𝑝𝐷) = 𝐹))
7166, 70syl 17 1 ((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) → ∃*𝑝(𝑝 ∈ (Poly‘𝑆) ∧ (𝑝𝐷) = 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wal 1536   = wceq 1538  wcel 2111  ∃*wmo 2596  wne 2987  Vcvv 3441  wss 3881  {csn 4525   class class class wbr 5030   × cxp 5517  ccnv 5518  cres 5521  cima 5522   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  f cof 7387  Fincfn 8492  cc 10524  0cc0 10526  cle 10665  cmin 10859  chash 13686  0𝑝c0p 24273  Polycply 24781  degcdgr 24784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035  df-0p 24274  df-ply 24785  df-idp 24786  df-coe 24787  df-dgr 24788  df-quot 24887
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator