MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyexmo Structured version   Visualization version   GIF version

Theorem plyexmo 26248
Description: An infinite set of values can be extended to a polynomial in at most one way. (Contributed by Stefan O'Rear, 14-Nov-2014.)
Assertion
Ref Expression
plyexmo ((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) → ∃*𝑝(𝑝 ∈ (Poly‘𝑆) ∧ (𝑝𝐷) = 𝐹))
Distinct variable groups:   𝑆,𝑝   𝐹,𝑝   𝐷,𝑝

Proof of Theorem plyexmo
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . . . . . . 9 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → ¬ 𝐷 ∈ Fin)
2 simpll 766 . . . . . . . . . . . . . 14 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → 𝐷 ⊆ ℂ)
32sseld 3928 . . . . . . . . . . . . 13 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑏𝐷𝑏 ∈ ℂ))
4 simprll 778 . . . . . . . . . . . . . . . . . . 19 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → 𝑝 ∈ (Poly‘ℂ))
5 plyf 26130 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ (Poly‘ℂ) → 𝑝:ℂ⟶ℂ)
64, 5syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → 𝑝:ℂ⟶ℂ)
76ffnd 6652 . . . . . . . . . . . . . . . . 17 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → 𝑝 Fn ℂ)
87adantr 480 . . . . . . . . . . . . . . . 16 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → 𝑝 Fn ℂ)
9 simprrl 780 . . . . . . . . . . . . . . . . . . 19 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → 𝑎 ∈ (Poly‘ℂ))
10 plyf 26130 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ (Poly‘ℂ) → 𝑎:ℂ⟶ℂ)
119, 10syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → 𝑎:ℂ⟶ℂ)
1211ffnd 6652 . . . . . . . . . . . . . . . . 17 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → 𝑎 Fn ℂ)
1312adantr 480 . . . . . . . . . . . . . . . 16 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → 𝑎 Fn ℂ)
14 cnex 11087 . . . . . . . . . . . . . . . . 17 ℂ ∈ V
1514a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → ℂ ∈ V)
162sselda 3929 . . . . . . . . . . . . . . . 16 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → 𝑏 ∈ ℂ)
17 fnfvof 7627 . . . . . . . . . . . . . . . 16 (((𝑝 Fn ℂ ∧ 𝑎 Fn ℂ) ∧ (ℂ ∈ V ∧ 𝑏 ∈ ℂ)) → ((𝑝f𝑎)‘𝑏) = ((𝑝𝑏) − (𝑎𝑏)))
188, 13, 15, 16, 17syl22anc 838 . . . . . . . . . . . . . . 15 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → ((𝑝f𝑎)‘𝑏) = ((𝑝𝑏) − (𝑎𝑏)))
196adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → 𝑝:ℂ⟶ℂ)
2019, 16ffvelcdmd 7018 . . . . . . . . . . . . . . . 16 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → (𝑝𝑏) ∈ ℂ)
21 simprlr 779 . . . . . . . . . . . . . . . . . . . 20 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑝𝐷) = 𝐹)
22 simprrr 781 . . . . . . . . . . . . . . . . . . . 20 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑎𝐷) = 𝐹)
2321, 22eqtr4d 2769 . . . . . . . . . . . . . . . . . . 19 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑝𝐷) = (𝑎𝐷))
2423adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → (𝑝𝐷) = (𝑎𝐷))
2524fveq1d 6824 . . . . . . . . . . . . . . . . 17 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → ((𝑝𝐷)‘𝑏) = ((𝑎𝐷)‘𝑏))
26 fvres 6841 . . . . . . . . . . . . . . . . . 18 (𝑏𝐷 → ((𝑝𝐷)‘𝑏) = (𝑝𝑏))
2726adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → ((𝑝𝐷)‘𝑏) = (𝑝𝑏))
28 fvres 6841 . . . . . . . . . . . . . . . . . 18 (𝑏𝐷 → ((𝑎𝐷)‘𝑏) = (𝑎𝑏))
2928adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → ((𝑎𝐷)‘𝑏) = (𝑎𝑏))
3025, 27, 293eqtr3d 2774 . . . . . . . . . . . . . . . 16 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → (𝑝𝑏) = (𝑎𝑏))
3120, 30subeq0bd 11543 . . . . . . . . . . . . . . 15 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → ((𝑝𝑏) − (𝑎𝑏)) = 0)
3218, 31eqtrd 2766 . . . . . . . . . . . . . 14 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → ((𝑝f𝑎)‘𝑏) = 0)
3332ex 412 . . . . . . . . . . . . 13 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑏𝐷 → ((𝑝f𝑎)‘𝑏) = 0))
343, 33jcad 512 . . . . . . . . . . . 12 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑏𝐷 → (𝑏 ∈ ℂ ∧ ((𝑝f𝑎)‘𝑏) = 0)))
35 plysubcl 26154 . . . . . . . . . . . . . 14 ((𝑝 ∈ (Poly‘ℂ) ∧ 𝑎 ∈ (Poly‘ℂ)) → (𝑝f𝑎) ∈ (Poly‘ℂ))
364, 9, 35syl2anc 584 . . . . . . . . . . . . 13 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑝f𝑎) ∈ (Poly‘ℂ))
37 plyf 26130 . . . . . . . . . . . . 13 ((𝑝f𝑎) ∈ (Poly‘ℂ) → (𝑝f𝑎):ℂ⟶ℂ)
38 ffn 6651 . . . . . . . . . . . . 13 ((𝑝f𝑎):ℂ⟶ℂ → (𝑝f𝑎) Fn ℂ)
39 fniniseg 6993 . . . . . . . . . . . . 13 ((𝑝f𝑎) Fn ℂ → (𝑏 ∈ ((𝑝f𝑎) “ {0}) ↔ (𝑏 ∈ ℂ ∧ ((𝑝f𝑎)‘𝑏) = 0)))
4036, 37, 38, 394syl 19 . . . . . . . . . . . 12 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑏 ∈ ((𝑝f𝑎) “ {0}) ↔ (𝑏 ∈ ℂ ∧ ((𝑝f𝑎)‘𝑏) = 0)))
4134, 40sylibrd 259 . . . . . . . . . . 11 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑏𝐷𝑏 ∈ ((𝑝f𝑎) “ {0})))
4241ssrdv 3935 . . . . . . . . . 10 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → 𝐷 ⊆ ((𝑝f𝑎) “ {0}))
43 ssfi 9082 . . . . . . . . . . 11 ((((𝑝f𝑎) “ {0}) ∈ Fin ∧ 𝐷 ⊆ ((𝑝f𝑎) “ {0})) → 𝐷 ∈ Fin)
4443expcom 413 . . . . . . . . . 10 (𝐷 ⊆ ((𝑝f𝑎) “ {0}) → (((𝑝f𝑎) “ {0}) ∈ Fin → 𝐷 ∈ Fin))
4542, 44syl 17 . . . . . . . . 9 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (((𝑝f𝑎) “ {0}) ∈ Fin → 𝐷 ∈ Fin))
461, 45mtod 198 . . . . . . . 8 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → ¬ ((𝑝f𝑎) “ {0}) ∈ Fin)
47 neqne 2936 . . . . . . . . . . 11 (¬ (𝑝f𝑎) = 0𝑝 → (𝑝f𝑎) ≠ 0𝑝)
48 eqid 2731 . . . . . . . . . . . 12 ((𝑝f𝑎) “ {0}) = ((𝑝f𝑎) “ {0})
4948fta1 26243 . . . . . . . . . . 11 (((𝑝f𝑎) ∈ (Poly‘ℂ) ∧ (𝑝f𝑎) ≠ 0𝑝) → (((𝑝f𝑎) “ {0}) ∈ Fin ∧ (♯‘((𝑝f𝑎) “ {0})) ≤ (deg‘(𝑝f𝑎))))
5036, 47, 49syl2an 596 . . . . . . . . . 10 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ ¬ (𝑝f𝑎) = 0𝑝) → (((𝑝f𝑎) “ {0}) ∈ Fin ∧ (♯‘((𝑝f𝑎) “ {0})) ≤ (deg‘(𝑝f𝑎))))
5150simpld 494 . . . . . . . . 9 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ ¬ (𝑝f𝑎) = 0𝑝) → ((𝑝f𝑎) “ {0}) ∈ Fin)
5251ex 412 . . . . . . . 8 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (¬ (𝑝f𝑎) = 0𝑝 → ((𝑝f𝑎) “ {0}) ∈ Fin))
5346, 52mt3d 148 . . . . . . 7 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑝f𝑎) = 0𝑝)
54 df-0p 25598 . . . . . . 7 0𝑝 = (ℂ × {0})
5553, 54eqtrdi 2782 . . . . . 6 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑝f𝑎) = (ℂ × {0}))
56 ofsubeq0 12122 . . . . . . 7 ((ℂ ∈ V ∧ 𝑝:ℂ⟶ℂ ∧ 𝑎:ℂ⟶ℂ) → ((𝑝f𝑎) = (ℂ × {0}) ↔ 𝑝 = 𝑎))
5714, 6, 11, 56mp3an2i 1468 . . . . . 6 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → ((𝑝f𝑎) = (ℂ × {0}) ↔ 𝑝 = 𝑎))
5855, 57mpbid 232 . . . . 5 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → 𝑝 = 𝑎)
5958ex 412 . . . 4 ((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) → (((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹)) → 𝑝 = 𝑎))
6059alrimivv 1929 . . 3 ((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) → ∀𝑝𝑎(((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹)) → 𝑝 = 𝑎))
61 eleq1w 2814 . . . . 5 (𝑝 = 𝑎 → (𝑝 ∈ (Poly‘ℂ) ↔ 𝑎 ∈ (Poly‘ℂ)))
62 reseq1 5921 . . . . . 6 (𝑝 = 𝑎 → (𝑝𝐷) = (𝑎𝐷))
6362eqeq1d 2733 . . . . 5 (𝑝 = 𝑎 → ((𝑝𝐷) = 𝐹 ↔ (𝑎𝐷) = 𝐹))
6461, 63anbi12d 632 . . . 4 (𝑝 = 𝑎 → ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ↔ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹)))
6564mo4 2561 . . 3 (∃*𝑝(𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ↔ ∀𝑝𝑎(((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹)) → 𝑝 = 𝑎))
6660, 65sylibr 234 . 2 ((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) → ∃*𝑝(𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹))
67 plyssc 26132 . . . . 5 (Poly‘𝑆) ⊆ (Poly‘ℂ)
6867sseli 3925 . . . 4 (𝑝 ∈ (Poly‘𝑆) → 𝑝 ∈ (Poly‘ℂ))
6968anim1i 615 . . 3 ((𝑝 ∈ (Poly‘𝑆) ∧ (𝑝𝐷) = 𝐹) → (𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹))
7069moimi 2540 . 2 (∃*𝑝(𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) → ∃*𝑝(𝑝 ∈ (Poly‘𝑆) ∧ (𝑝𝐷) = 𝐹))
7166, 70syl 17 1 ((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) → ∃*𝑝(𝑝 ∈ (Poly‘𝑆) ∧ (𝑝𝐷) = 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wcel 2111  ∃*wmo 2533  wne 2928  Vcvv 3436  wss 3897  {csn 4573   class class class wbr 5089   × cxp 5612  ccnv 5613  cres 5616  cima 5617   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  f cof 7608  Fincfn 8869  cc 11004  0cc0 11006  cle 11147  cmin 11344  chash 14237  0𝑝c0p 25597  Polycply 26116  degcdgr 26119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-0p 25598  df-ply 26120  df-idp 26121  df-coe 26122  df-dgr 26123  df-quot 26226
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator