MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyexmo Structured version   Visualization version   GIF version

Theorem plyexmo 24902
Description: An infinite set of values can be extended to a polynomial in at most one way. (Contributed by Stefan O'Rear, 14-Nov-2014.)
Assertion
Ref Expression
plyexmo ((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) → ∃*𝑝(𝑝 ∈ (Poly‘𝑆) ∧ (𝑝𝐷) = 𝐹))
Distinct variable groups:   𝑆,𝑝   𝐹,𝑝   𝐷,𝑝

Proof of Theorem plyexmo
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 767 . . . . . . . . 9 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → ¬ 𝐷 ∈ Fin)
2 simpll 765 . . . . . . . . . . . . . 14 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → 𝐷 ⊆ ℂ)
32sseld 3966 . . . . . . . . . . . . 13 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑏𝐷𝑏 ∈ ℂ))
4 simprll 777 . . . . . . . . . . . . . . . . . . 19 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → 𝑝 ∈ (Poly‘ℂ))
5 plyf 24788 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ (Poly‘ℂ) → 𝑝:ℂ⟶ℂ)
64, 5syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → 𝑝:ℂ⟶ℂ)
76ffnd 6515 . . . . . . . . . . . . . . . . 17 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → 𝑝 Fn ℂ)
87adantr 483 . . . . . . . . . . . . . . . 16 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → 𝑝 Fn ℂ)
9 simprrl 779 . . . . . . . . . . . . . . . . . . 19 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → 𝑎 ∈ (Poly‘ℂ))
10 plyf 24788 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ (Poly‘ℂ) → 𝑎:ℂ⟶ℂ)
119, 10syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → 𝑎:ℂ⟶ℂ)
1211ffnd 6515 . . . . . . . . . . . . . . . . 17 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → 𝑎 Fn ℂ)
1312adantr 483 . . . . . . . . . . . . . . . 16 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → 𝑎 Fn ℂ)
14 cnex 10618 . . . . . . . . . . . . . . . . 17 ℂ ∈ V
1514a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → ℂ ∈ V)
162sselda 3967 . . . . . . . . . . . . . . . 16 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → 𝑏 ∈ ℂ)
17 fnfvof 7423 . . . . . . . . . . . . . . . 16 (((𝑝 Fn ℂ ∧ 𝑎 Fn ℂ) ∧ (ℂ ∈ V ∧ 𝑏 ∈ ℂ)) → ((𝑝f𝑎)‘𝑏) = ((𝑝𝑏) − (𝑎𝑏)))
188, 13, 15, 16, 17syl22anc 836 . . . . . . . . . . . . . . 15 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → ((𝑝f𝑎)‘𝑏) = ((𝑝𝑏) − (𝑎𝑏)))
196adantr 483 . . . . . . . . . . . . . . . . 17 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → 𝑝:ℂ⟶ℂ)
2019, 16ffvelrnd 6852 . . . . . . . . . . . . . . . 16 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → (𝑝𝑏) ∈ ℂ)
21 simprlr 778 . . . . . . . . . . . . . . . . . . . 20 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑝𝐷) = 𝐹)
22 simprrr 780 . . . . . . . . . . . . . . . . . . . 20 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑎𝐷) = 𝐹)
2321, 22eqtr4d 2859 . . . . . . . . . . . . . . . . . . 19 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑝𝐷) = (𝑎𝐷))
2423adantr 483 . . . . . . . . . . . . . . . . . 18 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → (𝑝𝐷) = (𝑎𝐷))
2524fveq1d 6672 . . . . . . . . . . . . . . . . 17 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → ((𝑝𝐷)‘𝑏) = ((𝑎𝐷)‘𝑏))
26 fvres 6689 . . . . . . . . . . . . . . . . . 18 (𝑏𝐷 → ((𝑝𝐷)‘𝑏) = (𝑝𝑏))
2726adantl 484 . . . . . . . . . . . . . . . . 17 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → ((𝑝𝐷)‘𝑏) = (𝑝𝑏))
28 fvres 6689 . . . . . . . . . . . . . . . . . 18 (𝑏𝐷 → ((𝑎𝐷)‘𝑏) = (𝑎𝑏))
2928adantl 484 . . . . . . . . . . . . . . . . 17 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → ((𝑎𝐷)‘𝑏) = (𝑎𝑏))
3025, 27, 293eqtr3d 2864 . . . . . . . . . . . . . . . 16 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → (𝑝𝑏) = (𝑎𝑏))
3120, 30subeq0bd 11066 . . . . . . . . . . . . . . 15 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → ((𝑝𝑏) − (𝑎𝑏)) = 0)
3218, 31eqtrd 2856 . . . . . . . . . . . . . 14 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → ((𝑝f𝑎)‘𝑏) = 0)
3332ex 415 . . . . . . . . . . . . 13 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑏𝐷 → ((𝑝f𝑎)‘𝑏) = 0))
343, 33jcad 515 . . . . . . . . . . . 12 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑏𝐷 → (𝑏 ∈ ℂ ∧ ((𝑝f𝑎)‘𝑏) = 0)))
35 plysubcl 24812 . . . . . . . . . . . . . 14 ((𝑝 ∈ (Poly‘ℂ) ∧ 𝑎 ∈ (Poly‘ℂ)) → (𝑝f𝑎) ∈ (Poly‘ℂ))
364, 9, 35syl2anc 586 . . . . . . . . . . . . 13 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑝f𝑎) ∈ (Poly‘ℂ))
37 plyf 24788 . . . . . . . . . . . . 13 ((𝑝f𝑎) ∈ (Poly‘ℂ) → (𝑝f𝑎):ℂ⟶ℂ)
38 ffn 6514 . . . . . . . . . . . . 13 ((𝑝f𝑎):ℂ⟶ℂ → (𝑝f𝑎) Fn ℂ)
39 fniniseg 6830 . . . . . . . . . . . . 13 ((𝑝f𝑎) Fn ℂ → (𝑏 ∈ ((𝑝f𝑎) “ {0}) ↔ (𝑏 ∈ ℂ ∧ ((𝑝f𝑎)‘𝑏) = 0)))
4036, 37, 38, 394syl 19 . . . . . . . . . . . 12 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑏 ∈ ((𝑝f𝑎) “ {0}) ↔ (𝑏 ∈ ℂ ∧ ((𝑝f𝑎)‘𝑏) = 0)))
4134, 40sylibrd 261 . . . . . . . . . . 11 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑏𝐷𝑏 ∈ ((𝑝f𝑎) “ {0})))
4241ssrdv 3973 . . . . . . . . . 10 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → 𝐷 ⊆ ((𝑝f𝑎) “ {0}))
43 ssfi 8738 . . . . . . . . . . 11 ((((𝑝f𝑎) “ {0}) ∈ Fin ∧ 𝐷 ⊆ ((𝑝f𝑎) “ {0})) → 𝐷 ∈ Fin)
4443expcom 416 . . . . . . . . . 10 (𝐷 ⊆ ((𝑝f𝑎) “ {0}) → (((𝑝f𝑎) “ {0}) ∈ Fin → 𝐷 ∈ Fin))
4542, 44syl 17 . . . . . . . . 9 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (((𝑝f𝑎) “ {0}) ∈ Fin → 𝐷 ∈ Fin))
461, 45mtod 200 . . . . . . . 8 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → ¬ ((𝑝f𝑎) “ {0}) ∈ Fin)
47 neqne 3024 . . . . . . . . . . 11 (¬ (𝑝f𝑎) = 0𝑝 → (𝑝f𝑎) ≠ 0𝑝)
48 eqid 2821 . . . . . . . . . . . 12 ((𝑝f𝑎) “ {0}) = ((𝑝f𝑎) “ {0})
4948fta1 24897 . . . . . . . . . . 11 (((𝑝f𝑎) ∈ (Poly‘ℂ) ∧ (𝑝f𝑎) ≠ 0𝑝) → (((𝑝f𝑎) “ {0}) ∈ Fin ∧ (♯‘((𝑝f𝑎) “ {0})) ≤ (deg‘(𝑝f𝑎))))
5036, 47, 49syl2an 597 . . . . . . . . . 10 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ ¬ (𝑝f𝑎) = 0𝑝) → (((𝑝f𝑎) “ {0}) ∈ Fin ∧ (♯‘((𝑝f𝑎) “ {0})) ≤ (deg‘(𝑝f𝑎))))
5150simpld 497 . . . . . . . . 9 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ ¬ (𝑝f𝑎) = 0𝑝) → ((𝑝f𝑎) “ {0}) ∈ Fin)
5251ex 415 . . . . . . . 8 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (¬ (𝑝f𝑎) = 0𝑝 → ((𝑝f𝑎) “ {0}) ∈ Fin))
5346, 52mt3d 150 . . . . . . 7 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑝f𝑎) = 0𝑝)
54 df-0p 24271 . . . . . . 7 0𝑝 = (ℂ × {0})
5553, 54syl6eq 2872 . . . . . 6 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑝f𝑎) = (ℂ × {0}))
56 ofsubeq0 11635 . . . . . . 7 ((ℂ ∈ V ∧ 𝑝:ℂ⟶ℂ ∧ 𝑎:ℂ⟶ℂ) → ((𝑝f𝑎) = (ℂ × {0}) ↔ 𝑝 = 𝑎))
5714, 6, 11, 56mp3an2i 1462 . . . . . 6 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → ((𝑝f𝑎) = (ℂ × {0}) ↔ 𝑝 = 𝑎))
5855, 57mpbid 234 . . . . 5 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → 𝑝 = 𝑎)
5958ex 415 . . . 4 ((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) → (((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹)) → 𝑝 = 𝑎))
6059alrimivv 1929 . . 3 ((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) → ∀𝑝𝑎(((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹)) → 𝑝 = 𝑎))
61 eleq1w 2895 . . . . 5 (𝑝 = 𝑎 → (𝑝 ∈ (Poly‘ℂ) ↔ 𝑎 ∈ (Poly‘ℂ)))
62 reseq1 5847 . . . . . 6 (𝑝 = 𝑎 → (𝑝𝐷) = (𝑎𝐷))
6362eqeq1d 2823 . . . . 5 (𝑝 = 𝑎 → ((𝑝𝐷) = 𝐹 ↔ (𝑎𝐷) = 𝐹))
6461, 63anbi12d 632 . . . 4 (𝑝 = 𝑎 → ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ↔ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹)))
6564mo4 2650 . . 3 (∃*𝑝(𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ↔ ∀𝑝𝑎(((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹)) → 𝑝 = 𝑎))
6660, 65sylibr 236 . 2 ((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) → ∃*𝑝(𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹))
67 plyssc 24790 . . . . 5 (Poly‘𝑆) ⊆ (Poly‘ℂ)
6867sseli 3963 . . . 4 (𝑝 ∈ (Poly‘𝑆) → 𝑝 ∈ (Poly‘ℂ))
6968anim1i 616 . . 3 ((𝑝 ∈ (Poly‘𝑆) ∧ (𝑝𝐷) = 𝐹) → (𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹))
7069moimi 2627 . 2 (∃*𝑝(𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) → ∃*𝑝(𝑝 ∈ (Poly‘𝑆) ∧ (𝑝𝐷) = 𝐹))
7166, 70syl 17 1 ((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) → ∃*𝑝(𝑝 ∈ (Poly‘𝑆) ∧ (𝑝𝐷) = 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wal 1535   = wceq 1537  wcel 2114  ∃*wmo 2620  wne 3016  Vcvv 3494  wss 3936  {csn 4567   class class class wbr 5066   × cxp 5553  ccnv 5554  cres 5557  cima 5558   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  f cof 7407  Fincfn 8509  cc 10535  0cc0 10537  cle 10676  cmin 10870  chash 13691  0𝑝c0p 24270  Polycply 24774  degcdgr 24777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-xnn0 11969  df-z 11983  df-uz 12245  df-rp 12391  df-fz 12894  df-fzo 13035  df-fl 13163  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-rlim 14846  df-sum 15043  df-0p 24271  df-ply 24778  df-idp 24779  df-coe 24780  df-dgr 24781  df-quot 24880
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator