MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyexmo Structured version   Visualization version   GIF version

Theorem plyexmo 24278
Description: An infinite set of values can be extended to a polynomial in at most one way. (Contributed by Stefan O'Rear, 14-Nov-2014.)
Assertion
Ref Expression
plyexmo ((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) → ∃*𝑝(𝑝 ∈ (Poly‘𝑆) ∧ (𝑝𝐷) = 𝐹))
Distinct variable groups:   𝑆,𝑝   𝐹,𝑝   𝐷,𝑝

Proof of Theorem plyexmo
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 776 . . . . . . . . 9 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → ¬ 𝐷 ∈ Fin)
2 simpll 774 . . . . . . . . . . . . . 14 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → 𝐷 ⊆ ℂ)
32sseld 3794 . . . . . . . . . . . . 13 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑏𝐷𝑏 ∈ ℂ))
4 simprll 788 . . . . . . . . . . . . . . . . . . 19 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → 𝑝 ∈ (Poly‘ℂ))
5 plyf 24164 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ (Poly‘ℂ) → 𝑝:ℂ⟶ℂ)
64, 5syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → 𝑝:ℂ⟶ℂ)
7 ffn 6253 . . . . . . . . . . . . . . . . . 18 (𝑝:ℂ⟶ℂ → 𝑝 Fn ℂ)
86, 7syl 17 . . . . . . . . . . . . . . . . 17 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → 𝑝 Fn ℂ)
98adantr 468 . . . . . . . . . . . . . . . 16 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → 𝑝 Fn ℂ)
10 simprrl 790 . . . . . . . . . . . . . . . . . . 19 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → 𝑎 ∈ (Poly‘ℂ))
11 plyf 24164 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ (Poly‘ℂ) → 𝑎:ℂ⟶ℂ)
1210, 11syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → 𝑎:ℂ⟶ℂ)
13 ffn 6253 . . . . . . . . . . . . . . . . . 18 (𝑎:ℂ⟶ℂ → 𝑎 Fn ℂ)
1412, 13syl 17 . . . . . . . . . . . . . . . . 17 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → 𝑎 Fn ℂ)
1514adantr 468 . . . . . . . . . . . . . . . 16 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → 𝑎 Fn ℂ)
16 cnex 10299 . . . . . . . . . . . . . . . . 17 ℂ ∈ V
1716a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → ℂ ∈ V)
182sselda 3795 . . . . . . . . . . . . . . . 16 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → 𝑏 ∈ ℂ)
19 fnfvof 7138 . . . . . . . . . . . . . . . 16 (((𝑝 Fn ℂ ∧ 𝑎 Fn ℂ) ∧ (ℂ ∈ V ∧ 𝑏 ∈ ℂ)) → ((𝑝𝑓𝑎)‘𝑏) = ((𝑝𝑏) − (𝑎𝑏)))
209, 15, 17, 18, 19syl22anc 858 . . . . . . . . . . . . . . 15 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → ((𝑝𝑓𝑎)‘𝑏) = ((𝑝𝑏) − (𝑎𝑏)))
216adantr 468 . . . . . . . . . . . . . . . . 17 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → 𝑝:ℂ⟶ℂ)
2221, 18ffvelrnd 6579 . . . . . . . . . . . . . . . 16 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → (𝑝𝑏) ∈ ℂ)
23 simprlr 789 . . . . . . . . . . . . . . . . . . . 20 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑝𝐷) = 𝐹)
24 simprrr 791 . . . . . . . . . . . . . . . . . . . 20 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑎𝐷) = 𝐹)
2523, 24eqtr4d 2842 . . . . . . . . . . . . . . . . . . 19 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑝𝐷) = (𝑎𝐷))
2625adantr 468 . . . . . . . . . . . . . . . . . 18 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → (𝑝𝐷) = (𝑎𝐷))
2726fveq1d 6407 . . . . . . . . . . . . . . . . 17 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → ((𝑝𝐷)‘𝑏) = ((𝑎𝐷)‘𝑏))
28 fvres 6424 . . . . . . . . . . . . . . . . . 18 (𝑏𝐷 → ((𝑝𝐷)‘𝑏) = (𝑝𝑏))
2928adantl 469 . . . . . . . . . . . . . . . . 17 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → ((𝑝𝐷)‘𝑏) = (𝑝𝑏))
30 fvres 6424 . . . . . . . . . . . . . . . . . 18 (𝑏𝐷 → ((𝑎𝐷)‘𝑏) = (𝑎𝑏))
3130adantl 469 . . . . . . . . . . . . . . . . 17 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → ((𝑎𝐷)‘𝑏) = (𝑎𝑏))
3227, 29, 313eqtr3d 2847 . . . . . . . . . . . . . . . 16 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → (𝑝𝑏) = (𝑎𝑏))
3322, 32subeq0bd 10738 . . . . . . . . . . . . . . 15 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → ((𝑝𝑏) − (𝑎𝑏)) = 0)
3420, 33eqtrd 2839 . . . . . . . . . . . . . 14 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ 𝑏𝐷) → ((𝑝𝑓𝑎)‘𝑏) = 0)
3534ex 399 . . . . . . . . . . . . 13 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑏𝐷 → ((𝑝𝑓𝑎)‘𝑏) = 0))
363, 35jcad 504 . . . . . . . . . . . 12 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑏𝐷 → (𝑏 ∈ ℂ ∧ ((𝑝𝑓𝑎)‘𝑏) = 0)))
37 plysubcl 24188 . . . . . . . . . . . . . 14 ((𝑝 ∈ (Poly‘ℂ) ∧ 𝑎 ∈ (Poly‘ℂ)) → (𝑝𝑓𝑎) ∈ (Poly‘ℂ))
384, 10, 37syl2anc 575 . . . . . . . . . . . . 13 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑝𝑓𝑎) ∈ (Poly‘ℂ))
39 plyf 24164 . . . . . . . . . . . . 13 ((𝑝𝑓𝑎) ∈ (Poly‘ℂ) → (𝑝𝑓𝑎):ℂ⟶ℂ)
40 ffn 6253 . . . . . . . . . . . . 13 ((𝑝𝑓𝑎):ℂ⟶ℂ → (𝑝𝑓𝑎) Fn ℂ)
41 fniniseg 6557 . . . . . . . . . . . . 13 ((𝑝𝑓𝑎) Fn ℂ → (𝑏 ∈ ((𝑝𝑓𝑎) “ {0}) ↔ (𝑏 ∈ ℂ ∧ ((𝑝𝑓𝑎)‘𝑏) = 0)))
4238, 39, 40, 414syl 19 . . . . . . . . . . . 12 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑏 ∈ ((𝑝𝑓𝑎) “ {0}) ↔ (𝑏 ∈ ℂ ∧ ((𝑝𝑓𝑎)‘𝑏) = 0)))
4336, 42sylibrd 250 . . . . . . . . . . 11 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑏𝐷𝑏 ∈ ((𝑝𝑓𝑎) “ {0})))
4443ssrdv 3801 . . . . . . . . . 10 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → 𝐷 ⊆ ((𝑝𝑓𝑎) “ {0}))
45 ssfi 8416 . . . . . . . . . . 11 ((((𝑝𝑓𝑎) “ {0}) ∈ Fin ∧ 𝐷 ⊆ ((𝑝𝑓𝑎) “ {0})) → 𝐷 ∈ Fin)
4645expcom 400 . . . . . . . . . 10 (𝐷 ⊆ ((𝑝𝑓𝑎) “ {0}) → (((𝑝𝑓𝑎) “ {0}) ∈ Fin → 𝐷 ∈ Fin))
4744, 46syl 17 . . . . . . . . 9 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (((𝑝𝑓𝑎) “ {0}) ∈ Fin → 𝐷 ∈ Fin))
481, 47mtod 189 . . . . . . . 8 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → ¬ ((𝑝𝑓𝑎) “ {0}) ∈ Fin)
49 df-ne 2978 . . . . . . . . . . . 12 ((𝑝𝑓𝑎) ≠ 0𝑝 ↔ ¬ (𝑝𝑓𝑎) = 0𝑝)
5049biimpri 219 . . . . . . . . . . 11 (¬ (𝑝𝑓𝑎) = 0𝑝 → (𝑝𝑓𝑎) ≠ 0𝑝)
51 eqid 2805 . . . . . . . . . . . 12 ((𝑝𝑓𝑎) “ {0}) = ((𝑝𝑓𝑎) “ {0})
5251fta1 24273 . . . . . . . . . . 11 (((𝑝𝑓𝑎) ∈ (Poly‘ℂ) ∧ (𝑝𝑓𝑎) ≠ 0𝑝) → (((𝑝𝑓𝑎) “ {0}) ∈ Fin ∧ (♯‘((𝑝𝑓𝑎) “ {0})) ≤ (deg‘(𝑝𝑓𝑎))))
5338, 50, 52syl2an 585 . . . . . . . . . 10 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ ¬ (𝑝𝑓𝑎) = 0𝑝) → (((𝑝𝑓𝑎) “ {0}) ∈ Fin ∧ (♯‘((𝑝𝑓𝑎) “ {0})) ≤ (deg‘(𝑝𝑓𝑎))))
5453simpld 484 . . . . . . . . 9 ((((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) ∧ ¬ (𝑝𝑓𝑎) = 0𝑝) → ((𝑝𝑓𝑎) “ {0}) ∈ Fin)
5554ex 399 . . . . . . . 8 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (¬ (𝑝𝑓𝑎) = 0𝑝 → ((𝑝𝑓𝑎) “ {0}) ∈ Fin))
5648, 55mt3d 142 . . . . . . 7 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑝𝑓𝑎) = 0𝑝)
57 df-0p 23647 . . . . . . 7 0𝑝 = (ℂ × {0})
5856, 57syl6eq 2855 . . . . . 6 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → (𝑝𝑓𝑎) = (ℂ × {0}))
5916a1i 11 . . . . . . 7 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → ℂ ∈ V)
60 ofsubeq0 11299 . . . . . . 7 ((ℂ ∈ V ∧ 𝑝:ℂ⟶ℂ ∧ 𝑎:ℂ⟶ℂ) → ((𝑝𝑓𝑎) = (ℂ × {0}) ↔ 𝑝 = 𝑎))
6159, 6, 12, 60syl3anc 1483 . . . . . 6 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → ((𝑝𝑓𝑎) = (ℂ × {0}) ↔ 𝑝 = 𝑎))
6258, 61mpbid 223 . . . . 5 (((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) ∧ ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹))) → 𝑝 = 𝑎)
6362ex 399 . . . 4 ((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) → (((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹)) → 𝑝 = 𝑎))
6463alrimivv 2021 . . 3 ((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) → ∀𝑝𝑎(((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹)) → 𝑝 = 𝑎))
65 eleq1w 2867 . . . . 5 (𝑝 = 𝑎 → (𝑝 ∈ (Poly‘ℂ) ↔ 𝑎 ∈ (Poly‘ℂ)))
66 reseq1 5588 . . . . . 6 (𝑝 = 𝑎 → (𝑝𝐷) = (𝑎𝐷))
6766eqeq1d 2807 . . . . 5 (𝑝 = 𝑎 → ((𝑝𝐷) = 𝐹 ↔ (𝑎𝐷) = 𝐹))
6865, 67anbi12d 618 . . . 4 (𝑝 = 𝑎 → ((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ↔ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹)))
6968mo4 2680 . . 3 (∃*𝑝(𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ↔ ∀𝑝𝑎(((𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) ∧ (𝑎 ∈ (Poly‘ℂ) ∧ (𝑎𝐷) = 𝐹)) → 𝑝 = 𝑎))
7064, 69sylibr 225 . 2 ((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) → ∃*𝑝(𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹))
71 plyssc 24166 . . . . 5 (Poly‘𝑆) ⊆ (Poly‘ℂ)
7271sseli 3791 . . . 4 (𝑝 ∈ (Poly‘𝑆) → 𝑝 ∈ (Poly‘ℂ))
7372anim1i 604 . . 3 ((𝑝 ∈ (Poly‘𝑆) ∧ (𝑝𝐷) = 𝐹) → (𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹))
7473moimi 2683 . 2 (∃*𝑝(𝑝 ∈ (Poly‘ℂ) ∧ (𝑝𝐷) = 𝐹) → ∃*𝑝(𝑝 ∈ (Poly‘𝑆) ∧ (𝑝𝐷) = 𝐹))
7570, 74syl 17 1 ((𝐷 ⊆ ℂ ∧ ¬ 𝐷 ∈ Fin) → ∃*𝑝(𝑝 ∈ (Poly‘𝑆) ∧ (𝑝𝐷) = 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wal 1635   = wceq 1637  wcel 2158  ∃*wmo 2633  wne 2977  Vcvv 3390  wss 3766  {csn 4367   class class class wbr 4840   × cxp 5306  ccnv 5307  cres 5310  cima 5311   Fn wfn 6093  wf 6094  cfv 6098  (class class class)co 6871  𝑓 cof 7122  Fincfn 8189  cc 10216  0cc0 10218  cle 10357  cmin 10548  chash 13333  0𝑝c0p 23646  Polycply 24150  degcdgr 24153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1880  ax-4 1897  ax-5 2004  ax-6 2070  ax-7 2106  ax-8 2160  ax-9 2167  ax-10 2187  ax-11 2203  ax-12 2216  ax-13 2422  ax-ext 2784  ax-rep 4960  ax-sep 4971  ax-nul 4980  ax-pow 5032  ax-pr 5093  ax-un 7176  ax-inf2 8782  ax-cnex 10274  ax-resscn 10275  ax-1cn 10276  ax-icn 10277  ax-addcl 10278  ax-addrcl 10279  ax-mulcl 10280  ax-mulrcl 10281  ax-mulcom 10282  ax-addass 10283  ax-mulass 10284  ax-distr 10285  ax-i2m1 10286  ax-1ne0 10287  ax-1rid 10288  ax-rnegex 10289  ax-rrecex 10290  ax-cnre 10291  ax-pre-lttri 10292  ax-pre-lttrn 10293  ax-pre-ltadd 10294  ax-pre-mulgt0 10295  ax-pre-sup 10296  ax-addf 10297
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1865  df-sb 2063  df-eu 2636  df-mo 2637  df-clab 2792  df-cleq 2798  df-clel 2801  df-nfc 2936  df-ne 2978  df-nel 3081  df-ral 3100  df-rex 3101  df-reu 3102  df-rmo 3103  df-rab 3104  df-v 3392  df-sbc 3631  df-csb 3726  df-dif 3769  df-un 3771  df-in 3773  df-ss 3780  df-pss 3782  df-nul 4114  df-if 4277  df-pw 4350  df-sn 4368  df-pr 4370  df-tp 4372  df-op 4374  df-uni 4627  df-int 4666  df-iun 4710  df-br 4841  df-opab 4903  df-mpt 4920  df-tr 4943  df-id 5216  df-eprel 5221  df-po 5229  df-so 5230  df-fr 5267  df-se 5268  df-we 5269  df-xp 5314  df-rel 5315  df-cnv 5316  df-co 5317  df-dm 5318  df-rn 5319  df-res 5320  df-ima 5321  df-pred 5890  df-ord 5936  df-on 5937  df-lim 5938  df-suc 5939  df-iota 6061  df-fun 6100  df-fn 6101  df-f 6102  df-f1 6103  df-fo 6104  df-f1o 6105  df-fv 6106  df-isom 6107  df-riota 6832  df-ov 6874  df-oprab 6875  df-mpt2 6876  df-of 7124  df-om 7293  df-1st 7395  df-2nd 7396  df-wrecs 7639  df-recs 7701  df-rdg 7739  df-1o 7793  df-oadd 7797  df-er 7976  df-map 8091  df-pm 8092  df-en 8190  df-dom 8191  df-sdom 8192  df-fin 8193  df-sup 8584  df-inf 8585  df-oi 8651  df-card 9045  df-cda 9272  df-pnf 10358  df-mnf 10359  df-xr 10360  df-ltxr 10361  df-le 10362  df-sub 10550  df-neg 10551  df-div 10967  df-nn 11303  df-2 11360  df-3 11361  df-n0 11556  df-xnn0 11626  df-z 11640  df-uz 11901  df-rp 12043  df-fz 12546  df-fzo 12686  df-fl 12813  df-seq 13021  df-exp 13080  df-hash 13334  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-clim 14438  df-rlim 14439  df-sum 14636  df-0p 23647  df-ply 24154  df-idp 24155  df-coe 24156  df-dgr 24157  df-quot 24256
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator