Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj571 Structured version   Visualization version   GIF version

Theorem bnj571 34942
Description: Technical lemma for bnj852 34957. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj571.3 𝐷 = (ω ∖ {∅})
bnj571.16 𝐺 = (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
bnj571.17 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
bnj571.18 (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
bnj571.19 (𝜂 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
bnj571.20 (𝜁 ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 = suc 𝑖))
bnj571.22 𝐵 = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)
bnj571.23 𝐶 = 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)
bnj571.24 𝐾 = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)
bnj571.25 𝐿 = 𝑦 ∈ (𝐺𝑝) pred(𝑦, 𝐴, 𝑅)
bnj571.26 𝐺 = (𝑓 ∪ {⟨𝑚, 𝐶⟩})
bnj571.29 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
bnj571.30 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj571.38 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝐺 Fn 𝑛)
bnj571.21 (𝜌 ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 ≠ suc 𝑖))
bnj571.40 ((𝑅 FrSe 𝐴𝜏𝜂) → 𝐺 Fn 𝑛)
bnj571.33 (𝜓″ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)))
Assertion
Ref Expression
bnj571 ((𝑅 FrSe 𝐴𝜏𝜂) → 𝜓″)
Distinct variable groups:   𝐴,𝑖,𝑝,𝑦   𝑦,𝐺   𝑅,𝑖,𝑝,𝑦   𝜂,𝑖   𝑓,𝑖,𝑝,𝑦   𝑖,𝑚,𝑝   𝑖,𝜑′,𝑝
Allowed substitution hints:   𝜏(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜂(𝑥,𝑦,𝑓,𝑚,𝑛,𝑝)   𝜁(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜎(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜌(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐴(𝑥,𝑓,𝑚,𝑛)   𝐵(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐶(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐷(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝑅(𝑥,𝑓,𝑚,𝑛)   𝐺(𝑥,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐾(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐿(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜑′(𝑥,𝑦,𝑓,𝑚,𝑛)   𝜓′(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜓″(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)

Proof of Theorem bnj571
StepHypRef Expression
1 nfv 1914 . . . 4 𝑖 𝑅 FrSe 𝐴
2 bnj571.17 . . . . 5 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
3 nfv 1914 . . . . . 6 𝑖 𝑓 Fn 𝑚
4 nfv 1914 . . . . . 6 𝑖𝜑′
5 bnj571.30 . . . . . . 7 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
6 nfra1 3270 . . . . . . 7 𝑖𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
75, 6nfxfr 1853 . . . . . 6 𝑖𝜓′
83, 4, 7nf3an 1901 . . . . 5 𝑖(𝑓 Fn 𝑚𝜑′𝜓′)
92, 8nfxfr 1853 . . . 4 𝑖𝜏
10 nfv 1914 . . . 4 𝑖𝜂
111, 9, 10nf3an 1901 . . 3 𝑖(𝑅 FrSe 𝐴𝜏𝜂)
12 df-bnj17 34723 . . . . . . . . 9 ((𝑅 FrSe 𝐴𝜏𝜂𝜁) ↔ ((𝑅 FrSe 𝐴𝜏𝜂) ∧ 𝜁))
13 3anass 1094 . . . . . . . . . 10 (((𝑅 FrSe 𝐴𝜏𝜂) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝑚 = suc 𝑖) ↔ ((𝑅 FrSe 𝐴𝜏𝜂) ∧ ((𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝑚 = suc 𝑖)))
14 3anrot 1099 . . . . . . . . . 10 ((𝑚 = suc 𝑖 ∧ (𝑅 FrSe 𝐴𝜏𝜂) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑛)) ↔ ((𝑅 FrSe 𝐴𝜏𝜂) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝑚 = suc 𝑖))
15 bnj571.20 . . . . . . . . . . . 12 (𝜁 ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 = suc 𝑖))
16 df-3an 1088 . . . . . . . . . . . 12 ((𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 = suc 𝑖) ↔ ((𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝑚 = suc 𝑖))
1715, 16bitri 275 . . . . . . . . . . 11 (𝜁 ↔ ((𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝑚 = suc 𝑖))
1817anbi2i 623 . . . . . . . . . 10 (((𝑅 FrSe 𝐴𝜏𝜂) ∧ 𝜁) ↔ ((𝑅 FrSe 𝐴𝜏𝜂) ∧ ((𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝑚 = suc 𝑖)))
1913, 14, 183bitr4ri 304 . . . . . . . . 9 (((𝑅 FrSe 𝐴𝜏𝜂) ∧ 𝜁) ↔ (𝑚 = suc 𝑖 ∧ (𝑅 FrSe 𝐴𝜏𝜂) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑛)))
2012, 19bitri 275 . . . . . . . 8 ((𝑅 FrSe 𝐴𝜏𝜂𝜁) ↔ (𝑚 = suc 𝑖 ∧ (𝑅 FrSe 𝐴𝜏𝜂) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑛)))
21 bnj571.3 . . . . . . . . 9 𝐷 = (ω ∖ {∅})
22 bnj571.16 . . . . . . . . 9 𝐺 = (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
23 bnj571.18 . . . . . . . . 9 (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
24 bnj571.19 . . . . . . . . 9 (𝜂 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
25 bnj571.22 . . . . . . . . 9 𝐵 = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)
26 bnj571.23 . . . . . . . . 9 𝐶 = 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)
27 bnj571.24 . . . . . . . . 9 𝐾 = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)
28 bnj571.25 . . . . . . . . 9 𝐿 = 𝑦 ∈ (𝐺𝑝) pred(𝑦, 𝐴, 𝑅)
29 bnj571.26 . . . . . . . . 9 𝐺 = (𝑓 ∪ {⟨𝑚, 𝐶⟩})
30 bnj571.29 . . . . . . . . 9 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
31 bnj571.38 . . . . . . . . 9 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝐺 Fn 𝑛)
3221, 22, 2, 23, 24, 15, 25, 26, 27, 28, 29, 30, 5, 31bnj558 34938 . . . . . . . 8 ((𝑅 FrSe 𝐴𝜏𝜂𝜁) → (𝐺‘suc 𝑖) = 𝐾)
3320, 32sylbir 235 . . . . . . 7 ((𝑚 = suc 𝑖 ∧ (𝑅 FrSe 𝐴𝜏𝜂) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑛)) → (𝐺‘suc 𝑖) = 𝐾)
34333expib 1122 . . . . . 6 (𝑚 = suc 𝑖 → (((𝑅 FrSe 𝐴𝜏𝜂) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑛)) → (𝐺‘suc 𝑖) = 𝐾))
35 df-bnj17 34723 . . . . . . . . 9 ((𝑅 FrSe 𝐴𝜏𝜂𝜌) ↔ ((𝑅 FrSe 𝐴𝜏𝜂) ∧ 𝜌))
36 3anass 1094 . . . . . . . . . 10 (((𝑅 FrSe 𝐴𝜏𝜂) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝑚 ≠ suc 𝑖) ↔ ((𝑅 FrSe 𝐴𝜏𝜂) ∧ ((𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝑚 ≠ suc 𝑖)))
37 3anrot 1099 . . . . . . . . . 10 ((𝑚 ≠ suc 𝑖 ∧ (𝑅 FrSe 𝐴𝜏𝜂) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑛)) ↔ ((𝑅 FrSe 𝐴𝜏𝜂) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝑚 ≠ suc 𝑖))
38 bnj571.21 . . . . . . . . . . . 12 (𝜌 ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 ≠ suc 𝑖))
39 df-3an 1088 . . . . . . . . . . . 12 ((𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 ≠ suc 𝑖) ↔ ((𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝑚 ≠ suc 𝑖))
4038, 39bitri 275 . . . . . . . . . . 11 (𝜌 ↔ ((𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝑚 ≠ suc 𝑖))
4140anbi2i 623 . . . . . . . . . 10 (((𝑅 FrSe 𝐴𝜏𝜂) ∧ 𝜌) ↔ ((𝑅 FrSe 𝐴𝜏𝜂) ∧ ((𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝑚 ≠ suc 𝑖)))
4236, 37, 413bitr4ri 304 . . . . . . . . 9 (((𝑅 FrSe 𝐴𝜏𝜂) ∧ 𝜌) ↔ (𝑚 ≠ suc 𝑖 ∧ (𝑅 FrSe 𝐴𝜏𝜂) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑛)))
4335, 42bitri 275 . . . . . . . 8 ((𝑅 FrSe 𝐴𝜏𝜂𝜌) ↔ (𝑚 ≠ suc 𝑖 ∧ (𝑅 FrSe 𝐴𝜏𝜂) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑛)))
44 bnj571.40 . . . . . . . . 9 ((𝑅 FrSe 𝐴𝜏𝜂) → 𝐺 Fn 𝑛)
4521, 2, 24, 38, 27, 22, 44, 5bnj570 34941 . . . . . . . 8 ((𝑅 FrSe 𝐴𝜏𝜂𝜌) → (𝐺‘suc 𝑖) = 𝐾)
4643, 45sylbir 235 . . . . . . 7 ((𝑚 ≠ suc 𝑖 ∧ (𝑅 FrSe 𝐴𝜏𝜂) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑛)) → (𝐺‘suc 𝑖) = 𝐾)
47463expib 1122 . . . . . 6 (𝑚 ≠ suc 𝑖 → (((𝑅 FrSe 𝐴𝜏𝜂) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑛)) → (𝐺‘suc 𝑖) = 𝐾))
4834, 47pm2.61ine 3016 . . . . 5 (((𝑅 FrSe 𝐴𝜏𝜂) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑛)) → (𝐺‘suc 𝑖) = 𝐾)
4948, 27eqtrdi 2787 . . . 4 (((𝑅 FrSe 𝐴𝜏𝜂) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑛)) → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
5049exp32 420 . . 3 ((𝑅 FrSe 𝐴𝜏𝜂) → (𝑖 ∈ ω → (suc 𝑖𝑛 → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))))
5111, 50alrimi 2214 . 2 ((𝑅 FrSe 𝐴𝜏𝜂) → ∀𝑖(𝑖 ∈ ω → (suc 𝑖𝑛 → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))))
52 bnj571.33 . . 3 (𝜓″ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)))
5352bnj946 34810 . 2 (𝜓″ ↔ ∀𝑖(𝑖 ∈ ω → (suc 𝑖𝑛 → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))))
5451, 53sylibr 234 1 ((𝑅 FrSe 𝐴𝜏𝜂) → 𝜓″)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  wne 2933  wral 3052  cdif 3928  cun 3929  c0 4313  {csn 4606  cop 4612   ciun 4972  suc csuc 6359   Fn wfn 6531  cfv 6536  ωcom 7866  w-bnj17 34722   predc-bnj14 34724   FrSe w-bnj15 34728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734  ax-reg 9611
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-res 5671  df-ord 6360  df-on 6361  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-fv 6544  df-om 7867  df-bnj17 34723
This theorem is referenced by:  bnj600  34955  bnj908  34967
  Copyright terms: Public domain W3C validator