Proof of Theorem bnj571
Step | Hyp | Ref
| Expression |
1 | | nfv 1915 |
. . . 4
⊢
Ⅎ𝑖 𝑅 FrSe 𝐴 |
2 | | bnj571.17 |
. . . . 5
⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) |
3 | | nfv 1915 |
. . . . . 6
⊢
Ⅎ𝑖 𝑓 Fn 𝑚 |
4 | | nfv 1915 |
. . . . . 6
⊢
Ⅎ𝑖𝜑′ |
5 | | bnj571.30 |
. . . . . . 7
⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑚 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
6 | | nfra1 3147 |
. . . . . . 7
⊢
Ⅎ𝑖∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑚 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
7 | 5, 6 | nfxfr 1854 |
. . . . . 6
⊢
Ⅎ𝑖𝜓′ |
8 | 3, 4, 7 | nf3an 1902 |
. . . . 5
⊢
Ⅎ𝑖(𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′) |
9 | 2, 8 | nfxfr 1854 |
. . . 4
⊢
Ⅎ𝑖𝜏 |
10 | | nfv 1915 |
. . . 4
⊢
Ⅎ𝑖𝜂 |
11 | 1, 9, 10 | nf3an 1902 |
. . 3
⊢
Ⅎ𝑖(𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) |
12 | | df-bnj17 32185 |
. . . . . . . . 9
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜁) ↔ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) ∧ 𝜁)) |
13 | | 3anass 1092 |
. . . . . . . . . 10
⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛) ∧ 𝑚 = suc 𝑖) ↔ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) ∧ ((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛) ∧ 𝑚 = suc 𝑖))) |
14 | | 3anrot 1097 |
. . . . . . . . . 10
⊢ ((𝑚 = suc 𝑖 ∧ (𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛) ∧ 𝑚 = suc 𝑖)) |
15 | | bnj571.20 |
. . . . . . . . . . . 12
⊢ (𝜁 ↔ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 = suc 𝑖)) |
16 | | df-3an 1086 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 = suc 𝑖) ↔ ((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛) ∧ 𝑚 = suc 𝑖)) |
17 | 15, 16 | bitri 278 |
. . . . . . . . . . 11
⊢ (𝜁 ↔ ((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛) ∧ 𝑚 = suc 𝑖)) |
18 | 17 | anbi2i 625 |
. . . . . . . . . 10
⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) ∧ 𝜁) ↔ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) ∧ ((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛) ∧ 𝑚 = suc 𝑖))) |
19 | 13, 14, 18 | 3bitr4ri 307 |
. . . . . . . . 9
⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) ∧ 𝜁) ↔ (𝑚 = suc 𝑖 ∧ (𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛))) |
20 | 12, 19 | bitri 278 |
. . . . . . . 8
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜁) ↔ (𝑚 = suc 𝑖 ∧ (𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛))) |
21 | | bnj571.3 |
. . . . . . . . 9
⊢ 𝐷 = (ω ∖
{∅}) |
22 | | bnj571.16 |
. . . . . . . . 9
⊢ 𝐺 = (𝑓 ∪ {〈𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)〉}) |
23 | | bnj571.18 |
. . . . . . . . 9
⊢ (𝜎 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) |
24 | | bnj571.19 |
. . . . . . . . 9
⊢ (𝜂 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝)) |
25 | | bnj571.22 |
. . . . . . . . 9
⊢ 𝐵 = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) |
26 | | bnj571.23 |
. . . . . . . . 9
⊢ 𝐶 = ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) |
27 | | bnj571.24 |
. . . . . . . . 9
⊢ 𝐾 = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅) |
28 | | bnj571.25 |
. . . . . . . . 9
⊢ 𝐿 = ∪ 𝑦 ∈ (𝐺‘𝑝) pred(𝑦, 𝐴, 𝑅) |
29 | | bnj571.26 |
. . . . . . . . 9
⊢ 𝐺 = (𝑓 ∪ {〈𝑚, 𝐶〉}) |
30 | | bnj571.29 |
. . . . . . . . 9
⊢ (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
31 | | bnj571.38 |
. . . . . . . . 9
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → 𝐺 Fn 𝑛) |
32 | 21, 22, 2, 23, 24, 15, 25, 26, 27, 28, 29, 30, 5, 31 | bnj558 32402 |
. . . . . . . 8
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜁) → (𝐺‘suc 𝑖) = 𝐾) |
33 | 20, 32 | sylbir 238 |
. . . . . . 7
⊢ ((𝑚 = suc 𝑖 ∧ (𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛)) → (𝐺‘suc 𝑖) = 𝐾) |
34 | 33 | 3expib 1119 |
. . . . . 6
⊢ (𝑚 = suc 𝑖 → (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛)) → (𝐺‘suc 𝑖) = 𝐾)) |
35 | | df-bnj17 32185 |
. . . . . . . . 9
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜌) ↔ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) ∧ 𝜌)) |
36 | | 3anass 1092 |
. . . . . . . . . 10
⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛) ∧ 𝑚 ≠ suc 𝑖) ↔ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) ∧ ((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛) ∧ 𝑚 ≠ suc 𝑖))) |
37 | | 3anrot 1097 |
. . . . . . . . . 10
⊢ ((𝑚 ≠ suc 𝑖 ∧ (𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛) ∧ 𝑚 ≠ suc 𝑖)) |
38 | | bnj571.21 |
. . . . . . . . . . . 12
⊢ (𝜌 ↔ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 ≠ suc 𝑖)) |
39 | | df-3an 1086 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 ≠ suc 𝑖) ↔ ((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛) ∧ 𝑚 ≠ suc 𝑖)) |
40 | 38, 39 | bitri 278 |
. . . . . . . . . . 11
⊢ (𝜌 ↔ ((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛) ∧ 𝑚 ≠ suc 𝑖)) |
41 | 40 | anbi2i 625 |
. . . . . . . . . 10
⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) ∧ 𝜌) ↔ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) ∧ ((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛) ∧ 𝑚 ≠ suc 𝑖))) |
42 | 36, 37, 41 | 3bitr4ri 307 |
. . . . . . . . 9
⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) ∧ 𝜌) ↔ (𝑚 ≠ suc 𝑖 ∧ (𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛))) |
43 | 35, 42 | bitri 278 |
. . . . . . . 8
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜌) ↔ (𝑚 ≠ suc 𝑖 ∧ (𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛))) |
44 | | bnj571.40 |
. . . . . . . . 9
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) → 𝐺 Fn 𝑛) |
45 | 21, 2, 24, 38, 27, 22, 44, 5 | bnj570 32405 |
. . . . . . . 8
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜌) → (𝐺‘suc 𝑖) = 𝐾) |
46 | 43, 45 | sylbir 238 |
. . . . . . 7
⊢ ((𝑚 ≠ suc 𝑖 ∧ (𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛)) → (𝐺‘suc 𝑖) = 𝐾) |
47 | 46 | 3expib 1119 |
. . . . . 6
⊢ (𝑚 ≠ suc 𝑖 → (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛)) → (𝐺‘suc 𝑖) = 𝐾)) |
48 | 34, 47 | pm2.61ine 3034 |
. . . . 5
⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛)) → (𝐺‘suc 𝑖) = 𝐾) |
49 | 48, 27 | eqtrdi 2809 |
. . . 4
⊢ (((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛)) → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
50 | 49 | exp32 424 |
. . 3
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) → (𝑖 ∈ ω → (suc 𝑖 ∈ 𝑛 → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
51 | 11, 50 | alrimi 2211 |
. 2
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) → ∀𝑖(𝑖 ∈ ω → (suc 𝑖 ∈ 𝑛 → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
52 | | bnj571.33 |
. . 3
⊢ (𝜓″ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
53 | 52 | bnj946 32274 |
. 2
⊢ (𝜓″ ↔ ∀𝑖(𝑖 ∈ ω → (suc 𝑖 ∈ 𝑛 → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
54 | 51, 53 | sylibr 237 |
1
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) → 𝜓″) |