MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpco Structured version   Visualization version   GIF version

Theorem xpco 6241
Description: Composition of two Cartesian products. (Contributed by Thierry Arnoux, 17-Nov-2017.)
Assertion
Ref Expression
xpco (𝐵 ≠ ∅ → ((𝐵 × 𝐶) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐶))

Proof of Theorem xpco
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4302 . . . . . 6 (𝐵 ≠ ∅ ↔ ∃𝑦 𝑦𝐵)
21biimpi 216 . . . . 5 (𝐵 ≠ ∅ → ∃𝑦 𝑦𝐵)
32biantrurd 532 . . . 4 (𝐵 ≠ ∅ → ((𝑥𝐴𝑧𝐶) ↔ (∃𝑦 𝑦𝐵 ∧ (𝑥𝐴𝑧𝐶))))
4 ancom 460 . . . . . . . 8 ((𝑥𝐴𝑦𝐵) ↔ (𝑦𝐵𝑥𝐴))
54anbi1i 624 . . . . . . 7 (((𝑥𝐴𝑦𝐵) ∧ (𝑦𝐵𝑧𝐶)) ↔ ((𝑦𝐵𝑥𝐴) ∧ (𝑦𝐵𝑧𝐶)))
6 brxp 5668 . . . . . . . 8 (𝑥(𝐴 × 𝐵)𝑦 ↔ (𝑥𝐴𝑦𝐵))
7 brxp 5668 . . . . . . . 8 (𝑦(𝐵 × 𝐶)𝑧 ↔ (𝑦𝐵𝑧𝐶))
86, 7anbi12i 628 . . . . . . 7 ((𝑥(𝐴 × 𝐵)𝑦𝑦(𝐵 × 𝐶)𝑧) ↔ ((𝑥𝐴𝑦𝐵) ∧ (𝑦𝐵𝑧𝐶)))
9 anandi 676 . . . . . . 7 ((𝑦𝐵 ∧ (𝑥𝐴𝑧𝐶)) ↔ ((𝑦𝐵𝑥𝐴) ∧ (𝑦𝐵𝑧𝐶)))
105, 8, 93bitr4i 303 . . . . . 6 ((𝑥(𝐴 × 𝐵)𝑦𝑦(𝐵 × 𝐶)𝑧) ↔ (𝑦𝐵 ∧ (𝑥𝐴𝑧𝐶)))
1110exbii 1849 . . . . 5 (∃𝑦(𝑥(𝐴 × 𝐵)𝑦𝑦(𝐵 × 𝐶)𝑧) ↔ ∃𝑦(𝑦𝐵 ∧ (𝑥𝐴𝑧𝐶)))
12 19.41v 1950 . . . . 5 (∃𝑦(𝑦𝐵 ∧ (𝑥𝐴𝑧𝐶)) ↔ (∃𝑦 𝑦𝐵 ∧ (𝑥𝐴𝑧𝐶)))
1311, 12bitr2i 276 . . . 4 ((∃𝑦 𝑦𝐵 ∧ (𝑥𝐴𝑧𝐶)) ↔ ∃𝑦(𝑥(𝐴 × 𝐵)𝑦𝑦(𝐵 × 𝐶)𝑧))
143, 13bitr2di 288 . . 3 (𝐵 ≠ ∅ → (∃𝑦(𝑥(𝐴 × 𝐵)𝑦𝑦(𝐵 × 𝐶)𝑧) ↔ (𝑥𝐴𝑧𝐶)))
1514opabbidv 5159 . 2 (𝐵 ≠ ∅ → {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥(𝐴 × 𝐵)𝑦𝑦(𝐵 × 𝐶)𝑧)} = {⟨𝑥, 𝑧⟩ ∣ (𝑥𝐴𝑧𝐶)})
16 df-co 5628 . 2 ((𝐵 × 𝐶) ∘ (𝐴 × 𝐵)) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥(𝐴 × 𝐵)𝑦𝑦(𝐵 × 𝐶)𝑧)}
17 df-xp 5625 . 2 (𝐴 × 𝐶) = {⟨𝑥, 𝑧⟩ ∣ (𝑥𝐴𝑧𝐶)}
1815, 16, 173eqtr4g 2793 1 (𝐵 ≠ ∅ → ((𝐵 × 𝐶) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2113  wne 2929  c0 4282   class class class wbr 5093  {copab 5155   × cxp 5617  ccom 5623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-xp 5625  df-co 5628
This theorem is referenced by:  xpcoid  6242  ustund  24138  ustneism  24140  cosnop  32680
  Copyright terms: Public domain W3C validator