MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpco Structured version   Visualization version   GIF version

Theorem xpco 6181
Description: Composition of two Cartesian products. (Contributed by Thierry Arnoux, 17-Nov-2017.)
Assertion
Ref Expression
xpco (𝐵 ≠ ∅ → ((𝐵 × 𝐶) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐶))

Proof of Theorem xpco
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4277 . . . . . 6 (𝐵 ≠ ∅ ↔ ∃𝑦 𝑦𝐵)
21biimpi 215 . . . . 5 (𝐵 ≠ ∅ → ∃𝑦 𝑦𝐵)
32biantrurd 532 . . . 4 (𝐵 ≠ ∅ → ((𝑥𝐴𝑧𝐶) ↔ (∃𝑦 𝑦𝐵 ∧ (𝑥𝐴𝑧𝐶))))
4 ancom 460 . . . . . . . 8 ((𝑥𝐴𝑦𝐵) ↔ (𝑦𝐵𝑥𝐴))
54anbi1i 623 . . . . . . 7 (((𝑥𝐴𝑦𝐵) ∧ (𝑦𝐵𝑧𝐶)) ↔ ((𝑦𝐵𝑥𝐴) ∧ (𝑦𝐵𝑧𝐶)))
6 brxp 5627 . . . . . . . 8 (𝑥(𝐴 × 𝐵)𝑦 ↔ (𝑥𝐴𝑦𝐵))
7 brxp 5627 . . . . . . . 8 (𝑦(𝐵 × 𝐶)𝑧 ↔ (𝑦𝐵𝑧𝐶))
86, 7anbi12i 626 . . . . . . 7 ((𝑥(𝐴 × 𝐵)𝑦𝑦(𝐵 × 𝐶)𝑧) ↔ ((𝑥𝐴𝑦𝐵) ∧ (𝑦𝐵𝑧𝐶)))
9 anandi 672 . . . . . . 7 ((𝑦𝐵 ∧ (𝑥𝐴𝑧𝐶)) ↔ ((𝑦𝐵𝑥𝐴) ∧ (𝑦𝐵𝑧𝐶)))
105, 8, 93bitr4i 302 . . . . . 6 ((𝑥(𝐴 × 𝐵)𝑦𝑦(𝐵 × 𝐶)𝑧) ↔ (𝑦𝐵 ∧ (𝑥𝐴𝑧𝐶)))
1110exbii 1851 . . . . 5 (∃𝑦(𝑥(𝐴 × 𝐵)𝑦𝑦(𝐵 × 𝐶)𝑧) ↔ ∃𝑦(𝑦𝐵 ∧ (𝑥𝐴𝑧𝐶)))
12 19.41v 1954 . . . . 5 (∃𝑦(𝑦𝐵 ∧ (𝑥𝐴𝑧𝐶)) ↔ (∃𝑦 𝑦𝐵 ∧ (𝑥𝐴𝑧𝐶)))
1311, 12bitr2i 275 . . . 4 ((∃𝑦 𝑦𝐵 ∧ (𝑥𝐴𝑧𝐶)) ↔ ∃𝑦(𝑥(𝐴 × 𝐵)𝑦𝑦(𝐵 × 𝐶)𝑧))
143, 13bitr2di 287 . . 3 (𝐵 ≠ ∅ → (∃𝑦(𝑥(𝐴 × 𝐵)𝑦𝑦(𝐵 × 𝐶)𝑧) ↔ (𝑥𝐴𝑧𝐶)))
1514opabbidv 5136 . 2 (𝐵 ≠ ∅ → {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥(𝐴 × 𝐵)𝑦𝑦(𝐵 × 𝐶)𝑧)} = {⟨𝑥, 𝑧⟩ ∣ (𝑥𝐴𝑧𝐶)})
16 df-co 5589 . 2 ((𝐵 × 𝐶) ∘ (𝐴 × 𝐵)) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥(𝐴 × 𝐵)𝑦𝑦(𝐵 × 𝐶)𝑧)}
17 df-xp 5586 . 2 (𝐴 × 𝐶) = {⟨𝑥, 𝑧⟩ ∣ (𝑥𝐴𝑧𝐶)}
1815, 16, 173eqtr4g 2804 1 (𝐵 ≠ ∅ → ((𝐵 × 𝐶) ∘ (𝐴 × 𝐵)) = (𝐴 × 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1783  wcel 2108  wne 2942  c0 4253   class class class wbr 5070  {copab 5132   × cxp 5578  ccom 5584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-co 5589
This theorem is referenced by:  xpcoid  6182  ustund  23281  ustneism  23283  cosnop  30930
  Copyright terms: Public domain W3C validator