MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcomco Structured version   Visualization version   GIF version

Theorem xpcomco 8590
Description: Composition with the bijection of xpcomf1o 8589 swaps the arguments to a mapping. (Contributed by Mario Carneiro, 30-May-2015.)
Hypotheses
Ref Expression
xpcomf1o.1 𝐹 = (𝑥 ∈ (𝐴 × 𝐵) ↦ {𝑥})
xpcomco.1 𝐺 = (𝑦𝐵, 𝑧𝐴𝐶)
Assertion
Ref Expression
xpcomco (𝐺𝐹) = (𝑧𝐴, 𝑦𝐵𝐶)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑦,𝐹,𝑧
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧)   𝐹(𝑥)   𝐺(𝑥,𝑦,𝑧)

Proof of Theorem xpcomco
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpcomf1o.1 . . . . . . . . . 10 𝐹 = (𝑥 ∈ (𝐴 × 𝐵) ↦ {𝑥})
21xpcomf1o 8589 . . . . . . . . 9 𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴)
3 f1ofun 6598 . . . . . . . . 9 (𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴) → Fun 𝐹)
4 funbrfv2b 6704 . . . . . . . . 9 (Fun 𝐹 → (𝑢𝐹𝑤 ↔ (𝑢 ∈ dom 𝐹 ∧ (𝐹𝑢) = 𝑤)))
52, 3, 4mp2b 10 . . . . . . . 8 (𝑢𝐹𝑤 ↔ (𝑢 ∈ dom 𝐹 ∧ (𝐹𝑢) = 𝑤))
6 ancom 464 . . . . . . . 8 ((𝑢 ∈ dom 𝐹 ∧ (𝐹𝑢) = 𝑤) ↔ ((𝐹𝑢) = 𝑤𝑢 ∈ dom 𝐹))
7 eqcom 2831 . . . . . . . . 9 ((𝐹𝑢) = 𝑤𝑤 = (𝐹𝑢))
8 f1odm 6600 . . . . . . . . . . 11 (𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴) → dom 𝐹 = (𝐴 × 𝐵))
92, 8ax-mp 5 . . . . . . . . . 10 dom 𝐹 = (𝐴 × 𝐵)
109eleq2i 2907 . . . . . . . . 9 (𝑢 ∈ dom 𝐹𝑢 ∈ (𝐴 × 𝐵))
117, 10anbi12i 629 . . . . . . . 8 (((𝐹𝑢) = 𝑤𝑢 ∈ dom 𝐹) ↔ (𝑤 = (𝐹𝑢) ∧ 𝑢 ∈ (𝐴 × 𝐵)))
125, 6, 113bitri 300 . . . . . . 7 (𝑢𝐹𝑤 ↔ (𝑤 = (𝐹𝑢) ∧ 𝑢 ∈ (𝐴 × 𝐵)))
1312anbi1i 626 . . . . . 6 ((𝑢𝐹𝑤𝑤𝐺𝑣) ↔ ((𝑤 = (𝐹𝑢) ∧ 𝑢 ∈ (𝐴 × 𝐵)) ∧ 𝑤𝐺𝑣))
14 anass 472 . . . . . 6 (((𝑤 = (𝐹𝑢) ∧ 𝑢 ∈ (𝐴 × 𝐵)) ∧ 𝑤𝐺𝑣) ↔ (𝑤 = (𝐹𝑢) ∧ (𝑢 ∈ (𝐴 × 𝐵) ∧ 𝑤𝐺𝑣)))
1513, 14bitri 278 . . . . 5 ((𝑢𝐹𝑤𝑤𝐺𝑣) ↔ (𝑤 = (𝐹𝑢) ∧ (𝑢 ∈ (𝐴 × 𝐵) ∧ 𝑤𝐺𝑣)))
1615exbii 1849 . . . 4 (∃𝑤(𝑢𝐹𝑤𝑤𝐺𝑣) ↔ ∃𝑤(𝑤 = (𝐹𝑢) ∧ (𝑢 ∈ (𝐴 × 𝐵) ∧ 𝑤𝐺𝑣)))
17 fvex 6664 . . . . 5 (𝐹𝑢) ∈ V
18 breq1 5050 . . . . . 6 (𝑤 = (𝐹𝑢) → (𝑤𝐺𝑣 ↔ (𝐹𝑢)𝐺𝑣))
1918anbi2d 631 . . . . 5 (𝑤 = (𝐹𝑢) → ((𝑢 ∈ (𝐴 × 𝐵) ∧ 𝑤𝐺𝑣) ↔ (𝑢 ∈ (𝐴 × 𝐵) ∧ (𝐹𝑢)𝐺𝑣)))
2017, 19ceqsexv 3526 . . . 4 (∃𝑤(𝑤 = (𝐹𝑢) ∧ (𝑢 ∈ (𝐴 × 𝐵) ∧ 𝑤𝐺𝑣)) ↔ (𝑢 ∈ (𝐴 × 𝐵) ∧ (𝐹𝑢)𝐺𝑣))
21 elxp 5559 . . . . . 6 (𝑢 ∈ (𝐴 × 𝐵) ↔ ∃𝑧𝑦(𝑢 = ⟨𝑧, 𝑦⟩ ∧ (𝑧𝐴𝑦𝐵)))
2221anbi1i 626 . . . . 5 ((𝑢 ∈ (𝐴 × 𝐵) ∧ (𝐹𝑢)𝐺𝑣) ↔ (∃𝑧𝑦(𝑢 = ⟨𝑧, 𝑦⟩ ∧ (𝑧𝐴𝑦𝐵)) ∧ (𝐹𝑢)𝐺𝑣))
23 nfcv 2980 . . . . . . 7 𝑧(𝐹𝑢)
24 xpcomco.1 . . . . . . . 8 𝐺 = (𝑦𝐵, 𝑧𝐴𝐶)
25 nfmpo2 7217 . . . . . . . 8 𝑧(𝑦𝐵, 𝑧𝐴𝐶)
2624, 25nfcxfr 2978 . . . . . . 7 𝑧𝐺
27 nfcv 2980 . . . . . . 7 𝑧𝑣
2823, 26, 27nfbr 5094 . . . . . 6 𝑧(𝐹𝑢)𝐺𝑣
292819.41 2239 . . . . 5 (∃𝑧(∃𝑦(𝑢 = ⟨𝑧, 𝑦⟩ ∧ (𝑧𝐴𝑦𝐵)) ∧ (𝐹𝑢)𝐺𝑣) ↔ (∃𝑧𝑦(𝑢 = ⟨𝑧, 𝑦⟩ ∧ (𝑧𝐴𝑦𝐵)) ∧ (𝐹𝑢)𝐺𝑣))
30 nfcv 2980 . . . . . . . . 9 𝑦(𝐹𝑢)
31 nfmpo1 7216 . . . . . . . . . 10 𝑦(𝑦𝐵, 𝑧𝐴𝐶)
3224, 31nfcxfr 2978 . . . . . . . . 9 𝑦𝐺
33 nfcv 2980 . . . . . . . . 9 𝑦𝑣
3430, 32, 33nfbr 5094 . . . . . . . 8 𝑦(𝐹𝑢)𝐺𝑣
353419.41 2239 . . . . . . 7 (∃𝑦((𝑢 = ⟨𝑧, 𝑦⟩ ∧ (𝑧𝐴𝑦𝐵)) ∧ (𝐹𝑢)𝐺𝑣) ↔ (∃𝑦(𝑢 = ⟨𝑧, 𝑦⟩ ∧ (𝑧𝐴𝑦𝐵)) ∧ (𝐹𝑢)𝐺𝑣))
36 anass 472 . . . . . . . . 9 (((𝑢 = ⟨𝑧, 𝑦⟩ ∧ (𝑧𝐴𝑦𝐵)) ∧ (𝐹𝑢)𝐺𝑣) ↔ (𝑢 = ⟨𝑧, 𝑦⟩ ∧ ((𝑧𝐴𝑦𝐵) ∧ (𝐹𝑢)𝐺𝑣)))
37 fveq2 6651 . . . . . . . . . . . . . 14 (𝑢 = ⟨𝑧, 𝑦⟩ → (𝐹𝑢) = (𝐹‘⟨𝑧, 𝑦⟩))
38 opelxpi 5573 . . . . . . . . . . . . . . 15 ((𝑧𝐴𝑦𝐵) → ⟨𝑧, 𝑦⟩ ∈ (𝐴 × 𝐵))
39 sneq 4558 . . . . . . . . . . . . . . . . . . 19 (𝑥 = ⟨𝑧, 𝑦⟩ → {𝑥} = {⟨𝑧, 𝑦⟩})
4039cnveqd 5727 . . . . . . . . . . . . . . . . . 18 (𝑥 = ⟨𝑧, 𝑦⟩ → {𝑥} = {⟨𝑧, 𝑦⟩})
4140unieqd 4833 . . . . . . . . . . . . . . . . 17 (𝑥 = ⟨𝑧, 𝑦⟩ → {𝑥} = {⟨𝑧, 𝑦⟩})
42 opswap 6067 . . . . . . . . . . . . . . . . 17 {⟨𝑧, 𝑦⟩} = ⟨𝑦, 𝑧
4341, 42syl6eq 2875 . . . . . . . . . . . . . . . 16 (𝑥 = ⟨𝑧, 𝑦⟩ → {𝑥} = ⟨𝑦, 𝑧⟩)
44 opex 5337 . . . . . . . . . . . . . . . 16 𝑦, 𝑧⟩ ∈ V
4543, 1, 44fvmpt 6749 . . . . . . . . . . . . . . 15 (⟨𝑧, 𝑦⟩ ∈ (𝐴 × 𝐵) → (𝐹‘⟨𝑧, 𝑦⟩) = ⟨𝑦, 𝑧⟩)
4638, 45syl 17 . . . . . . . . . . . . . 14 ((𝑧𝐴𝑦𝐵) → (𝐹‘⟨𝑧, 𝑦⟩) = ⟨𝑦, 𝑧⟩)
4737, 46sylan9eq 2879 . . . . . . . . . . . . 13 ((𝑢 = ⟨𝑧, 𝑦⟩ ∧ (𝑧𝐴𝑦𝐵)) → (𝐹𝑢) = ⟨𝑦, 𝑧⟩)
4847breq1d 5057 . . . . . . . . . . . 12 ((𝑢 = ⟨𝑧, 𝑦⟩ ∧ (𝑧𝐴𝑦𝐵)) → ((𝐹𝑢)𝐺𝑣 ↔ ⟨𝑦, 𝑧𝐺𝑣))
49 df-br 5048 . . . . . . . . . . . . . . . 16 (⟨𝑦, 𝑧𝐺𝑣 ↔ ⟨⟨𝑦, 𝑧⟩, 𝑣⟩ ∈ 𝐺)
50 df-mpo 7143 . . . . . . . . . . . . . . . . . 18 (𝑦𝐵, 𝑧𝐴𝐶) = {⟨⟨𝑦, 𝑧⟩, 𝑣⟩ ∣ ((𝑦𝐵𝑧𝐴) ∧ 𝑣 = 𝐶)}
5124, 50eqtri 2847 . . . . . . . . . . . . . . . . 17 𝐺 = {⟨⟨𝑦, 𝑧⟩, 𝑣⟩ ∣ ((𝑦𝐵𝑧𝐴) ∧ 𝑣 = 𝐶)}
5251eleq2i 2907 . . . . . . . . . . . . . . . 16 (⟨⟨𝑦, 𝑧⟩, 𝑣⟩ ∈ 𝐺 ↔ ⟨⟨𝑦, 𝑧⟩, 𝑣⟩ ∈ {⟨⟨𝑦, 𝑧⟩, 𝑣⟩ ∣ ((𝑦𝐵𝑧𝐴) ∧ 𝑣 = 𝐶)})
53 oprabidw 7169 . . . . . . . . . . . . . . . 16 (⟨⟨𝑦, 𝑧⟩, 𝑣⟩ ∈ {⟨⟨𝑦, 𝑧⟩, 𝑣⟩ ∣ ((𝑦𝐵𝑧𝐴) ∧ 𝑣 = 𝐶)} ↔ ((𝑦𝐵𝑧𝐴) ∧ 𝑣 = 𝐶))
5449, 52, 533bitri 300 . . . . . . . . . . . . . . 15 (⟨𝑦, 𝑧𝐺𝑣 ↔ ((𝑦𝐵𝑧𝐴) ∧ 𝑣 = 𝐶))
5554baib 539 . . . . . . . . . . . . . 14 ((𝑦𝐵𝑧𝐴) → (⟨𝑦, 𝑧𝐺𝑣𝑣 = 𝐶))
5655ancoms 462 . . . . . . . . . . . . 13 ((𝑧𝐴𝑦𝐵) → (⟨𝑦, 𝑧𝐺𝑣𝑣 = 𝐶))
5756adantl 485 . . . . . . . . . . . 12 ((𝑢 = ⟨𝑧, 𝑦⟩ ∧ (𝑧𝐴𝑦𝐵)) → (⟨𝑦, 𝑧𝐺𝑣𝑣 = 𝐶))
5848, 57bitrd 282 . . . . . . . . . . 11 ((𝑢 = ⟨𝑧, 𝑦⟩ ∧ (𝑧𝐴𝑦𝐵)) → ((𝐹𝑢)𝐺𝑣𝑣 = 𝐶))
5958pm5.32da 582 . . . . . . . . . 10 (𝑢 = ⟨𝑧, 𝑦⟩ → (((𝑧𝐴𝑦𝐵) ∧ (𝐹𝑢)𝐺𝑣) ↔ ((𝑧𝐴𝑦𝐵) ∧ 𝑣 = 𝐶)))
6059pm5.32i 578 . . . . . . . . 9 ((𝑢 = ⟨𝑧, 𝑦⟩ ∧ ((𝑧𝐴𝑦𝐵) ∧ (𝐹𝑢)𝐺𝑣)) ↔ (𝑢 = ⟨𝑧, 𝑦⟩ ∧ ((𝑧𝐴𝑦𝐵) ∧ 𝑣 = 𝐶)))
6136, 60bitri 278 . . . . . . . 8 (((𝑢 = ⟨𝑧, 𝑦⟩ ∧ (𝑧𝐴𝑦𝐵)) ∧ (𝐹𝑢)𝐺𝑣) ↔ (𝑢 = ⟨𝑧, 𝑦⟩ ∧ ((𝑧𝐴𝑦𝐵) ∧ 𝑣 = 𝐶)))
6261exbii 1849 . . . . . . 7 (∃𝑦((𝑢 = ⟨𝑧, 𝑦⟩ ∧ (𝑧𝐴𝑦𝐵)) ∧ (𝐹𝑢)𝐺𝑣) ↔ ∃𝑦(𝑢 = ⟨𝑧, 𝑦⟩ ∧ ((𝑧𝐴𝑦𝐵) ∧ 𝑣 = 𝐶)))
6335, 62bitr3i 280 . . . . . 6 ((∃𝑦(𝑢 = ⟨𝑧, 𝑦⟩ ∧ (𝑧𝐴𝑦𝐵)) ∧ (𝐹𝑢)𝐺𝑣) ↔ ∃𝑦(𝑢 = ⟨𝑧, 𝑦⟩ ∧ ((𝑧𝐴𝑦𝐵) ∧ 𝑣 = 𝐶)))
6463exbii 1849 . . . . 5 (∃𝑧(∃𝑦(𝑢 = ⟨𝑧, 𝑦⟩ ∧ (𝑧𝐴𝑦𝐵)) ∧ (𝐹𝑢)𝐺𝑣) ↔ ∃𝑧𝑦(𝑢 = ⟨𝑧, 𝑦⟩ ∧ ((𝑧𝐴𝑦𝐵) ∧ 𝑣 = 𝐶)))
6522, 29, 643bitr2i 302 . . . 4 ((𝑢 ∈ (𝐴 × 𝐵) ∧ (𝐹𝑢)𝐺𝑣) ↔ ∃𝑧𝑦(𝑢 = ⟨𝑧, 𝑦⟩ ∧ ((𝑧𝐴𝑦𝐵) ∧ 𝑣 = 𝐶)))
6616, 20, 653bitri 300 . . 3 (∃𝑤(𝑢𝐹𝑤𝑤𝐺𝑣) ↔ ∃𝑧𝑦(𝑢 = ⟨𝑧, 𝑦⟩ ∧ ((𝑧𝐴𝑦𝐵) ∧ 𝑣 = 𝐶)))
6766opabbii 5114 . 2 {⟨𝑢, 𝑣⟩ ∣ ∃𝑤(𝑢𝐹𝑤𝑤𝐺𝑣)} = {⟨𝑢, 𝑣⟩ ∣ ∃𝑧𝑦(𝑢 = ⟨𝑧, 𝑦⟩ ∧ ((𝑧𝐴𝑦𝐵) ∧ 𝑣 = 𝐶))}
68 df-co 5545 . 2 (𝐺𝐹) = {⟨𝑢, 𝑣⟩ ∣ ∃𝑤(𝑢𝐹𝑤𝑤𝐺𝑣)}
69 df-mpo 7143 . . 3 (𝑧𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑧, 𝑦⟩, 𝑣⟩ ∣ ((𝑧𝐴𝑦𝐵) ∧ 𝑣 = 𝐶)}
70 dfoprab2 7194 . . 3 {⟨⟨𝑧, 𝑦⟩, 𝑣⟩ ∣ ((𝑧𝐴𝑦𝐵) ∧ 𝑣 = 𝐶)} = {⟨𝑢, 𝑣⟩ ∣ ∃𝑧𝑦(𝑢 = ⟨𝑧, 𝑦⟩ ∧ ((𝑧𝐴𝑦𝐵) ∧ 𝑣 = 𝐶))}
7169, 70eqtri 2847 . 2 (𝑧𝐴, 𝑦𝐵𝐶) = {⟨𝑢, 𝑣⟩ ∣ ∃𝑧𝑦(𝑢 = ⟨𝑧, 𝑦⟩ ∧ ((𝑧𝐴𝑦𝐵) ∧ 𝑣 = 𝐶))}
7267, 68, 713eqtr4i 2857 1 (𝐺𝐹) = (𝑧𝐴, 𝑦𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2115  {csn 4548  cop 4554   cuni 4819   class class class wbr 5047  {copab 5109  cmpt 5127   × cxp 5534  ccnv 5535  dom cdm 5536  ccom 5540  Fun wfun 6330  1-1-ontowf1o 6335  cfv 6336  {coprab 7139  cmpo 7140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-ral 3137  df-rex 3138  df-rab 3141  df-v 3481  df-sbc 3758  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4820  df-br 5048  df-opab 5110  df-mpt 5128  df-id 5441  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-oprab 7142  df-mpo 7143  df-1st 7672  df-2nd 7673
This theorem is referenced by:  omf1o  8603
  Copyright terms: Public domain W3C validator