MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cos0 Structured version   Visualization version   GIF version

Theorem cos0 15336
Description: Value of the cosine function at 0. (Contributed by NM, 30-Apr-2005.)
Assertion
Ref Expression
cos0 (cos‘0) = 1

Proof of Theorem cos0
StepHypRef Expression
1 0re 10489 . . 3 0 ∈ ℝ
2 recosval 15322 . . 3 (0 ∈ ℝ → (cos‘0) = (ℜ‘(exp‘(i · 0))))
31, 2ax-mp 5 . 2 (cos‘0) = (ℜ‘(exp‘(i · 0)))
4 it0e0 11707 . . . . . 6 (i · 0) = 0
54fveq2i 6541 . . . . 5 (exp‘(i · 0)) = (exp‘0)
6 ef0 15277 . . . . 5 (exp‘0) = 1
75, 6eqtri 2819 . . . 4 (exp‘(i · 0)) = 1
87fveq2i 6541 . . 3 (ℜ‘(exp‘(i · 0))) = (ℜ‘1)
9 re1 14347 . . 3 (ℜ‘1) = 1
108, 9eqtri 2819 . 2 (ℜ‘(exp‘(i · 0))) = 1
113, 10eqtri 2819 1 (cos‘0) = 1
Colors of variables: wff setvar class
Syntax hints:   = wceq 1522  wcel 2081  cfv 6225  (class class class)co 7016  cr 10382  0cc0 10383  1c1 10384  ici 10385   · cmul 10388  cre 14290  expce 15248  cosccos 15251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-inf2 8950  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461  ax-addf 10462  ax-mulf 10463
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-oadd 7957  df-er 8139  df-pm 8259  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-sup 8752  df-inf 8753  df-oi 8820  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-n0 11746  df-z 11830  df-uz 12094  df-rp 12240  df-ico 12594  df-fz 12743  df-fzo 12884  df-fl 13012  df-seq 13220  df-exp 13280  df-fac 13484  df-hash 13541  df-shft 14260  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-limsup 14662  df-clim 14679  df-rlim 14680  df-sum 14877  df-ef 15254  df-cos 15257
This theorem is referenced by:  tan0  15337  sincossq  15362  demoivreALT  15387  cos2kpi  24753  coseq00topi  24771  recosf1o  24800  ex-co  27909  tan2h  34415  cosknegpi  41691  itgsin0pilem1  41776  fourierdlem62  41995  fourierdlem83  42016  sqwvfoura  42055  sqwvfourb  42056  sec0  44339
  Copyright terms: Public domain W3C validator